

Ruizhong Hu Jianming Liu Mingguo Zhai Editor

Mineral Resources Science in China: A Roadmap to 2050

Ruizhong Hu Jianming Liu Mingguo Zhai

Mineral Resources Science in China: A Roadmap to 2050

Chinese Academy of Sciences

Ruizhong Hu Jianming Liu Mingguo Zhai *Editors*

Mineral Resources Science in China: A Roadmap to 2050

With 19 figures

Editors Ruizhong Hu Institute of Geochemistry, CAS 550002, Guiyang, China E-mail: huruizhong@vip.gyig.ac.cn

Mingguo Zhai Institute of Geology and Geophysics, CAS 100029, Beijing, China E-mail: mgzhai@mail.igcas.ac.cn Jianming Liu Institute of Geology and Geophysics, CAS 100029, Beijing, China E-mail: jmliu@mail.igcas.ac.cn

ISBN 978-7-03-026409-1 Science Press Beijing

ISBN 978-3-642-05343-6 Springer Heidelberg Dordrecht London New York e-ISBN 978-3-642-05344-3

Library of Congress Control Number: 2009937448

© Science Press Beijing and Springer-Verlag Berlin Heidelberg 2010

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Cover design: Frido Steinen-Broo, EStudio Calamar, Spain

Printed on acid-free paper

Springer is a part of Springer Science+Business Media (www.springer.com)

Not for sale outside the Mainland of China (Not for sale in Hong Kong SAR, Macau SAR, and Taiwan, and all countries, except the Mainland of China)

Members of the Editorial Committee and the Editorial Office

Editor-in-Chief

Yongxiang Lu

Editorial Committee

Yongxiang Lu Chunli Bai Erwei Shi Xin Fang Zhigang Li Xiaoye Cao Jiaofeng Pan

Research Group on Mineral Resources of the Chinese Academy of Sciences

Head: Ruizhong Hu

Deputy head: Jianming Liu

Members: (In the alphabetical order of Chinese surname)

Xianwu Bi	Institute of Geochemistry, the Chinese Academy of Sciences
Xinbin Feng	Institute of Geochemistry, the Chinese Academy of Sciences
Ruizhong Hu	Institute of Geochemistry, the Chinese Academy of Sciences
Peng Huang	Institute of Oceanology, the Chinese Academy of Sciences
Chunlai Li	National Astronomical Observatories, the Chinese Academy of Sciences
Haoran Li	Institute of Process Engineering, the Chinese Academy of Sciences
Jianming Liu	Institute of Geology and Geophysics, the Chinese Academy of Sciences
Shen Liu	Institute of Geochemistry, the Chinese Academy of Sciences
Fengshan Ma	Institute of Geology and Geophysics, the Chinese Academy of Sciences
Xieyan Song	Institute of Geochemistry, the Chinese Academy of Sciences
Weidong Sun	Guangzhou Institute of Geochemistry, the Chinese Academy of Sciences
Yan Tao	Institute of Geochemistry, the Chinese Academy of Sciences
Yonglan Xiong	National Science Library, the Chinese Academy of Sciences
Mingguo Zhai	Institute of Geology and Geophysics, the Chinese Academy of Sciences
Qian Zhang	Institute of Geochemistry, the Chinese Academy of Sciences
Xingchun Zhang	Institute of Geochemistry, the Chinese Academy of Sciences
Shaoping Zhou	Bureau of Science and Technology for Resources and Environment,
	the Chinese Academy of Sciences

Foreword to the Roadmaps 2050^{*}

China's modernization is viewed as a transformative revolution in the human history of modernization. As such, the Chinese Academy of Sciences (CAS) decided to give higher priority to the research on the science and technology (S&T) roadmap for priority areas in China's modernization process. What is the purpose? And why is it? Is it a must? I think those are substantial and significant questions to start things forward.

Significance of the Research on China's S&T Roadmap to 2050

We are aware that the National Mid- and Long-term S&T Plan to 2020 has already been formed after two years' hard work by a panel of over 2000 experts and scholars brought together from all over China, chaired by Premier Wen Jiabao. This clearly shows that China has already had its S&T blueprint to 2020. Then, why did CAS conduct this research on China's S&T roadmap to 2050?

In the summer of 2007 when CAS was working out its future strategic priorities for S&T development, it realized that some issues, such as energy, must be addressed with a long-term view. As a matter of fact, some strategic researches have been conducted, over the last 15 years, on energy, but mainly on how to best use of coal, how to best exploit both domestic and international oil and gas resources, and how to develop nuclear energy in a discreet way. Renewable energy was, of course, included but only as a supplementary energy. It was not yet thought as a supporting leg for future energy development. However, greenhouse gas emissions are becoming a major world concern over

^{*} It is adapted from a speech by President Yongxiang Lu at the first High-level Workshop on China's S&T Roadmap for Priority Areas to 2050, organized by the Chinese Academy of Sciences, in October, 2007.

the years, and how to address the global climate change has been on the agenda. In fact, what is really behind is the concern for energy structure, which makes us realize that fossil energy must be used cleanly and efficiently in order to reduce its impact on the environment. However, fossil energy is, pessimistically speaking, expected to be used up within about 100 years, or optimistically speaking, within about 200 years. Oil and gas resources may be among the first to be exhausted, and then coal resources follow. When this happens, human beings will have to refer to renewable energy as its major energy, while nuclear energy as a supplementary one. Under this situation, governments of the world are taking preparatory efforts in this regard, with Europe taking the lead and the USA shifting to take a more positive attitude, as evidenced in that: while fossil energy has been taken the best use of, renewable energy has been greatly developed, and the R&D of advanced nuclear energy has been reinforced with the objective of being eventually transformed into renewable energy. The process may last 50 to 100 years or so. Hence, many S&T problems may come around. In the field of basic research, for example, research will be conducted by physicists, chemists and biologists on the new generation of photovoltaic cell, dye-sensitized solar cells (DSC), high-efficient photochemical catalysis and storage, and efficient photosynthetic species, or high-efficient photosynthetic species produced by gene engineering which are free from land and water demands compared with food and oil crops, and can be grown on hillside, saline lands and semi-arid places, producing the energy that fits humanity. In the meantime, although the existing energy system is comparatively stable, future energy structure is likely to change into an unstable system. Presumably, dispersive energy system as well as higher-efficient direct current transmission and storage technology will be developed, so will be the safe and reliable control of network, and the capture, storage, transfer and use of CO₂, all of which involve S&T problems in almost all scientific disciplines. Therefore, it is natural that energy problems may bring out both basic and applied research, and may eventually lead to comprehensive structural changes. And this may last for 50 to 100 years or so. Taking the nuclear energy as an example, it usually takes about 20 years or more from its initial plan to key technology breakthroughs, so does the subsequent massive application and commercialization. If we lose the opportunity to make foresighted arrangements, we will be lagging far behind in the future. France has already worked out the roadmap to 2040 and 2050 respectively for the development of the 3^{rd} and 4^{th} generation of nuclear fission reactors, while China has not yet taken any serious actions. Under this circumstance, it is now time for CAS to take the issue seriously, for the sake of national interests, and to start conducting a foresighted research in this regard.

This strategic research covers over some dozens of areas with a longterm view. Taking agriculture as an example, our concern used to be limited only to the increased production of high-quality food grains and agricultural by-products. However, in the future, the main concern will definitely be given to the water-saving and ecological agriculture. As China is vast in territory, diversified technologies in this regard are the appropriate solutions. Animal husbandry has been used by developed countries, such as Japan and Denmark, to make bioreactor and pesticide as well. Plants have been used by Japan to make bioreactors which are safer and cost-effective than that made from animals. Potato, strawberry, tomato and the like have been bred in germfree greenhouses, and value-added products have been made through gene transplantation technology. Agriculture in China must not only address the food demands from its one billions-plus population, but also take into consideration of the value-added agriculture by-products and the high-tech development of agriculture as well. Agriculture in the future is expected to bring out some energies and fuels needed by both industry and man's livelihood as well. Some developed countries have taken an earlier start to conduct foresighted research in this regard, while we have not yet taken sufficient consideration.

Population is another problem. It will be most likely that China's population will not drop to about 1 billion until the end of this century, given that the past mistakes of China's population policy be rectified. But the subsequent problem of ageing could only be sorted out until the next century. The current population and health policies face many challenges, such as, how to ensure that the 1.3 to 1.5 billion people enjoy fair and basic public healthcare; the necessity to develop advanced and public healthcare and treatment technologies; and the change of research priority to chronic diseases from infectious diseases, as developed countries have already started research in this regard under the increasing social and environmental change. There are many such research problems yet to be sorted out by starting from the basic research, and subsequent policies within the next 50 years are in need to be worked out.

Space and oceans provide humanity with important resources for future development. In terms of space research, the well-known Manned Spacecraft Program and China's Lunar Exploration Program will last for 20 or 25 years. But what will be the whole plan for China's space technology? What is the objective? Will it just follow the suit of developed countries? It is worth doing serious study in this regard. The present spacecraft is mainly sent into space with chemical fuel propellant rocket. Will this traditional propellant still be used in future deep space exploration? Or other new technologies such as electrical propellant, nuclear energy propellant, and solar sail technologies be developed? We haven't yet done any strategic research over these issues, not even worked out any plans. The ocean is abundant in mineral resources, oil and gas, natural gas hydrate, biological resources, energy and photo-free biological evolution, which may arise our scientific interests. At present, many countries have worked out new strategic marine plans. Russia, Canada, the USA, Sweden and Norway have centered their contention upon the North Pole, an area of strategic significance. For this, however, we have only limited plans.

The national and public security develops with time, and covers both

conventional and non-conventional security. Conventional security threats only refer to foreign invasion and warfare, while, the present security threat may come out from any of the natural, man-made, external, interior, ecological, environmental, and the emerging networking (including both real and virtual) factors. The conflicts out of these must be analyzed from the perspective of human civilization, and be sorted out in a scientific manner. Efforts must be made to root out the cause of the threats, while human life must be treasured at any time.

In general, it is necessary to conduct this strategic research in view of the future development of China and mankind as well. The past 250 years' industrialization has resulted in the modernization and better-off life of less than 1 billion people, predominantly in Europe, North America, Japan and Singapore. The next 50 years' modernization drive will definitely lead to a better-off life for 2–3 billion people, including over 1 billion Chinese, doubling or tripling the economic increase over that of the past 250 years, which will, on the one hand, bring vigor and vitality to the world, and, on the other hand, inevitably challenge the limited resources and eco-environment on the earth. New development mode must be shaped so that everyone on the earth will be able to enjoy fairly the achievements of modern civilization. Achieving this requires us, in the process of China's modernization, to have a foresighted overview on the future development of world science and human civilization, and on how science and technology could serve the modernization drive. S&T roadmap for priority areas to 2050 must be worked out, and solutions to core science problems and key technology problems must be straightened out, which will eventually provide consultations for the nation's S&T decision-making.

Possibility of Working out China's S&T Roadmap to 2050

Some people held the view that science is hard to be predicted as it happens unexpectedly and mainly comes out of scientists' innovative thinking, while, technology might be predicted but at the maximum of 15 years. In my view, however, S&T foresight in some areas seems feasible. For instance, with the exhaustion of fossil energy, some smart people may think of transforming solar energy into energy-intensive biomass through improved high-efficient solar thinfilm materials and devices, or even developing new substitute. As is driven by huge demands, many investments will go to this emerging area. It is, therefore, able to predict that, in the next 50 years, some breakthroughs will undoubtedly be made in the areas of renewable energy and nuclear energy as well. In terms of solar energy, for example, the improvement of photoelectric conversion efficiency and photothermal conversion efficiency will be the focus. Of course, the concrete technological solutions may be varied, for example, by changing the morphology of the surface of solar cells and through the reflection, the entire spectrum can be absorbed more efficiently; by developing multi-layer functional thin-films for transmission and absorption; or by introducing of nanotechnology and quantum control technology, etc. Quantum control research used to limit mainly to the solution to information functional materials. This is surely too narrow. In the

future, this research is expected to be extended to the energy issue or energybased basic research in cutting-edge areas.

In terms of computing science, we must be confident to forecast its future development instead of simply following suit as we used to. This is a possibility rather than wild fancies. Information scientists, physicists and biologists could be engaged in the forward-looking research. In 2007, the Nobel Physics Prize was awarded to the discovery of colossal magneto-resistance, which was, however, made some 20 years ago. Today, this technology has already been applied to hard disk store. Our conclusion made, at this stage, is that: it is possible to make long-term and unconventional S&T predictions, and so is it to work out China's S&T roadmap in view of long-term strategies, for example, by 2020 as the first step, by 2030 or 2035 as the second step, and by 2050 as the maximum.

This possibility may also apply to other areas of research. The point is to emancipate the mind and respect objective laws rather than indulging in wild fancies. We attribute our success today to the guidelines of emancipating the mind and seeking the truth from the facts set by the Third Plenary Session of the 11th Central Committee of the Communist Party of China in 1979. We must break the conventional barriers and find a way of development fitting into China's reality. The history of science tells us that discoveries and breakthroughs could only be made when you open up your mind, break the conventional barriers, and make foresighted plans. Top-down guidance on research with increased financial support and involvement of a wider range of talented scientists is not in conflict with demand-driven research and free discovery of science as well.

Necessity of CAS Research on China's S&T Roadmap to 2050

Why does CAS launch this research? As is known, CAS is the nation's highest academic institution in natural sciences. It targets at making basic, forward-looking and strategic research and playing a leading role in China's science. As such, how can it achieve this if without a foresighted view on science and technology? From the perspective of CAS, it is obligatory to think, with a global view, about what to do after the 3rd Phase of the Knowledge Innovation Program (KIP). Shall we follow the way as it used to? Or shall we, with a view of national interests, present our in-depth insights into different research disciplines, and make efforts to reform the organizational structure and system, so that the innovation capability of CAS and the nation's science and technology mission will be raised to a new height? Clearly, the latter is more positive. World science and technology develops at a lightening speed. As global economy grows, we are aware that we will be lagging far behind if without making progress, and will lose the opportunity if without making foresighted plans. S&T innovation requires us to make joint efforts, break the conventional barriers and emancipate the mind. This is also what we need for further development.

The roadmap must be targeted at the national level so that the strategic research reports will form an important part of the national long-term program. CAS may not be able to fulfill all the objectives in the reports. However, it can select what is able to do and make foresighted plans, which will eventually help shape the post-2010 research priorities of CAS and the guidelines for its future reform.

Once the long-term roadmap and its objectives are identified, system mechanism, human resources, funding and allocation should be ensured for full implementation. We will make further studies to figure out: What will happen to world innovation system within the next 30 to 50 years? Will universities, research institutions and enterprises still be included in the system? Will research institutes become grid structure? When the cutting-edge research combines basic science and high-tech and the transformative research integrates the cutting-edge research with industrialization, will that be the research trend in some disciplines? What will be the changes for personnel structure, motivation mechanism and upgrading mechanism within the innovation system? Will there be any changes for the input and structure of innovation resources? If we could have a clear mind of all the questions, make foresighted plans and then dare to try out in relevant CAS institutes, we will be able to pave a way for a more competitive and smooth development.

Social changes are without limit, so are the development of science and technology, and innovation system and management as well. CAS must keep moving ahead to make foresighted plans not only for science and technology, but also for its organizational structure, human resources, management modes, and resource structures. By doing so, CAS will keep standing at the forefront of science and playing a leading role in the national innovation system, and even, frankly speaking, taking the lead in some research disciplines in the world. This is, in fact, our purpose of conducting the strategic research on China's S&T roadmap.

Prof. Dr.-Ing. Yongxiang Lu President of the Chinese Academy of Sciences