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INTRODUCTION

R. VERPOORTE
Division of Pharmacognosy, section Metabolomics, IBL, Leiden University
PO Box 9502, 2300RA Leiden, The Netherlands,
Email: VERPOORT@LACDR.LeidenUniv.NL

In the past years the interest in plant secondary has increased rapidly. Three major
reasons can be mentioned for this. First because plants are a major source for
the production of medicines and the development of novel medicines; second
because plants contain health promoting secondary metabolites, third because of
the interest in the resistance of plants against pests and diseases in which the
secondary metabolism plays a crucial role. Seven years ago we edited a book
(Verpoorte and Alfermann 2000) on the engineering of plant secondary metabolism.
A general overview was given of plant secondary metabolism, and the strategies one
could envisage for engineering plant secondary metabolite pathways. Furthermore,
a number of examples were presented describing the state-of-the-art of engineering
plant secondary metabolism. Now we have again compiled a series of papers on
the engineering of plant metabolism.

Obviously in the past period quite a few applications have been reported. Some
of them were successful, others were less successful and the unsuccessful ones we
will probably never hear of. Reasons for failure are often basic biological problems:
the regeneration of transgenic plants from transformed cells, and the stability of
transformed cell lines or transformed plants. The toolkit for transformation and overex-
pressing genes has improved and consequently the number of successful transfor-
mations increased. However, the major difficulties concern the fact that the biosyn-
thetic pathways involved proved to be much more complicated than originally thought.
Engineering a single step may result in an increase of the immediate product but
not necessarily in an increase of the final product of the pathway. As we discussed
in the previous book, problems of pathway architecture, interaction between various
pathways in the total metabolic network, enzyme complexes, compartmentation,
feedback inhibition, and regulation all play an important role. It means that unraveling
pathways on all levels should have the highest priority. Eventually this might enable
us to design efficient approaches to pathway engineering.

xi



xii VERPOORTE

PATHWAY ELUCIDATION

The key to genetic engineering is the detailed knowledge of the pathways of interest.
The step-by-step approach for elucidation of pathways remains an important,
though elaborate, tool in biosynthetic studies. Retrobiosynthetic studies and labeling
experiments have shown to be excellent tools to confirm pathways on the level of
intermediates (e.g. Eisenreich et al., 2004). Once the intermediates are known, one
has to identify the enzymes involved. However, the isolation of enzymes catalyzing
the individual steps of a pathway is hampered by, among others, low levels of
the enzyme, instability of the enzyme, and problems in obtaining the substrate for
measuring activity. Consequently many of the secondary metabolite pathways still
have quite a few black boxes, for which paper chemistry has proposed intermediates,
but for which no actual experimental evidence exists.

To elucidate pathways various molecular biological approaches have been
advocated. Many are based on making “mutants” by knocking out genes (trans-
poson tagging, RNAi, etc.). However, the problem is the identification of the steps
which have been blocked in a mutant. Plants in which an essential biosynthetic
gene for the flower pigments is affected are immediately observed by eye. In a split
second one can screen hundreds of plants for the flower color. However, in case
of a colorless metabolite in roots or leaves elaborate analytical methods are needed
to identify a mutant. This explains why the flavonoids/anthocyanin biosynthesis is
one of best known biosynthetic pathways (Springob et al., 2003).

FUNCTIONAL GENOMICS

Because of the problems in pathway mapping, functional genomics was thought to
be a way to elucidate secondary metabolite pathways on all levels from genes to
products. Functional genomics aims at determining the function of genes. Transcrip-
tomic data, proteomic data, metabolomic data and physiological functions are all
matched through biostatistical methods and bioinformatics. In case of organisms
with a known genome sequence such an approach may be successful. But lack of
sequence data is a major constraint in studying secondary metabolism in non-model
plants.

Proteomics is not the panaceae to solve these problems, as only a small percentage
of all proteins will be observed. Particularly low abundance proteins will not be
observed (Jacobs et al., 2000, 2005; Chen and Harmon 2006). Secondary metabolism
often only represents a small part of the total metabolism, e.g. the energy needed for
the biosynthesis of alkaloids was found to be less than 1% of the total metabolism
in the development of Cinchona seedlings (Aerts et al., 1990, 1991). The enzymes
involved may be below the level of detection. For example in proteomics of
Catharanthus roseus cell cultures some 100 proteins were found to be induced
when alkaloid biosynthesis was turned on. Only two of these are known indole
alkaloid biosynthesis enzymes (Jacobs et al., 2000, 2005). About 60 had homology
with peptide sequences from primary metabolite genes from other plants, whereas
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the peptides of about 40 proteins did not match with any known sequence. To
identify the genes encoding these proteins and determine their function would be
quite difficult and elaborate.

Goossens and co-workers (Goossens et al., 2003; Oksman-Caldentey et al., 2004;
Rischer et al. 2006) developed a cDNA-amplified fragment-length polymorphism
method that in combination with targeted metabolomics can be used to identify
genes involved in certain pathways. Indeed it was shown that in this way a number
of genes involved with the induction of alkaloid biosynthesis in Catharanthus roseus
can be identified, though many of them are primary metabolism related genes,
and not directly involved in the pathway. Genes with sequences not matching any
known genes are candidates for structural genes of species specific pathways, but
it requires extensive further studies to identify the precise role.

Metabolomics, the latest of the – omics family, aims at the qualitative and
quantitative analysis of all metabolites in an organism (Fiehn, 2001; Rochfort,
2005; Ryan and Robards, 2006). Metabolomics can be considered as the chemical
characterization of a phenotype, and is thus an important tool in functional genomics.
It can be used to measure the levels of compounds under different conditions.
By correlating these data with proteomic and transcriptomic data one may get
information about genes involved in the regulation of pathways and the structural
genes involved.

The integration of all the – omics data and physiological data, i.e. taking a holistic
view at the organism at all levels without a starting hypothesis, is a novel approach
to biological research now known as systems biology. Also for plants this approach
is now recognized as a very promising way to study for example plant interaction
with insects or microorganisms (Oksman-Caldentey et al., 2004; Sweetlove and
Fernie, 2005; Verpoorte et al., 2005).

Even though the various tools of functional genomics can be helpful in identifying
genes involved in secondary metabolite pathways, none of them is capable of
identifying all intermediates, proteins or genes involved in a pathway. Besides
problems of low concentrations, the major problem is that in a living system, the
changes in levels of transcripts, activity of enzymes and level of metabolites have
different dynamics. The final result of an induction at gene level is only observed
many hours or days later, if one even at all can speak about a final result in a
dynamic system.

COMPARTMENTATION

The compartmentation of secondary metabolite biosynthetic pathways has received
much attention in the past years. Several reviews on this topic have been published
(e.g. Kutchan, 2005; Yazaki, 2005). If we take Catharanthus roseus as an example
it has been shown that both intra- and intercellular compartmentation do play an
important role. The early terpenoid precursors from the MEP-terpenoid pathway and
geraniol-10-hydroxylase are made in different cells (internal phloem parenchyma)
than the other important precursor tryptamine (epidermis). The last step of the
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biosynthesis of the terpenoid precursor secologanin occurs also in these epidermis
cells. Strictosidine synthase present in the vacuoles of these cells catalyzes the
condensation of tryptamine and secologanin to yield the intermediate strictosidine,
which is the starting point for several different pathways leading to different types
of terpenoid indole alkaloid skeletons (for a review see van der Heijden et al. 2004).
The branch leading to vindoline is present in other specialized cells (ideoblasts and
laticifers), thus requiring intercellular transport of strictosidine or a later product
from the vindoline branch.

Concerning the intracellular compartmentation, it is known that plastids are the
source of the terpenoid precursors and tryptophan. Decarboxylation of tryptophan
occurs in the cytosol, whereas strictosidine is produced in the vacuole from the
precursors secologanin and tryptamine in the vacuole. Further steps are again outside
the vacuole. The required glucosidase, for example, is localized in the ER (Geerlings
et al, 2000), whereas a crucial step in the vindoline biosynthesis occurs in green
chloroplasts (for a review see van der Heijden et al., 2004; Kutchan, 2005). This has
implications for engineering alkaloid production in the native host of the pathway.
One needs to express the gene in the correct compartment and the correct type of
cell, otherwise no or little effect is achieved. But even more important, it means
that the flux through a pathway is not only controlled by structural genes catalyzing
a chemical reaction, but also by transport from the site of production of a precursor
to the site of the next enzyme.

TRANSPORT

Because of the different compartments involved in biosynthetic pathways, the
intermediates need to be reallocated to the proper compartment. Reallocation is a
complex phenomenon in plants and plant cells. Diffusion is always involved in
the reallocation of compounds. Affinity for lipid membranes (lipophylic properties
of a compound) and intra- and extracellular fluids (hydrophilic properties of a
compound) are important factors for diffusion driven transport through membranes
(Blom et al. 1991). On top of that active transport through membranes may occur
through e.g. a proton antiport mechanism or ABC-type of transporters (such as
proteins belonging to the PDR, MRP and MDR families). For example from
measuring transport of alkaloids and iridoids into isolated C. roseus vacuoles,
we concluded that bidirectional transport occurs through different type of trans-
porters (MRD out and ABC and MRP proteins in) with quite different rates for
the different C. roseus alkaloids and secologanin (Roytrakul, 2004; Roytrakul and
Verpoorte, 2007). In other cell organelles and the cell membranes similar processes
might occur. Furthermore, conjugation of compounds with e.g. glutathione under
the influence of glutathione transferases and peroxidases may play a role in the
vacuolar transport of certain compounds (Dean and Devarenne, 1997; Grotewold
2004; Yazaki 2005). Transport is thus extremely complex as besides diffusion driven
transport, different types of active transport are involved, with different directions
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and for each single compound a different selectivity. Biosynthetic rates might thus
very well be controlled on the level of transport.

Besides transport also storage is an important aspect of secondary metabolite
production. Vacuoles are storage organelles, but import of the products is required.
For example overexpression of the terpenoid indole alkaloid pathway genes
encoding tryptophan decarboxylase and strictosidine synthase in tobacco cells in
combination with feeding of the precursor secologanin did not result in any storage
of the products. Instead the products were excreted into the medium, which is
opposite to the situation in C. roseus cells where the alkaloids are stored in the
vacuole (Hallard et al., 1997).

In this introduction I will not try to give a complete overview of all aspects of
compartmentation, transport and storage. I only want to conclude that the green factory
in many aspects is very similar to an industrial factory, (e.g. a factory assembling
cars). Both require energy for the production process, transport from the sites of the
production of building blocks to the site where these are assembled to yield the final
product and a storage site for the stock of the final product. It might thus be possible to
apply technical engineering strategies to plan plant metabolic engineering.

TARGETS FOR METABOLIC ENGINEERING

Metabolic engineering is possible, but what are the targets? Why should one like
to alter the metabolism of plants?

The following goals can be mentioned:
– Improved quality for producer (farmer)

� Improved yield
� Improved resistance against pests and diseases
� Improved traits for cultivation and harvesting

– Improved quality for processing (industry)

� Storage of food
� Suppress level of unwanted products (e.g. toxic compounds) or improve quality

of product (e.g. starch, lignins)
� Higher level of specialty chemicals, e.g. for medicines
� Fiber quality
� Biofuel viscosity, stability

– Novel compounds for drug development (industry)
– Improved quality for consumer

� Taste of food
� Color of food or flowers
� Increased level of health improving compounds
� Lower level of undesired compounds
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Looking at this list of possibilities it is clear that the applications concern changes
in primary metabolism or in secondary metabolism. It also implies that choices have
to be made, e.g. does one go for yields or quality (Morris and Sands 2006; Singh
et al. 2006). Secondary metabolism is per definition species specific, it serves the
producing organism to survive in its ecosystem. In plants it is, among others, involved
in defense against pests and diseases, and in attracting pollinators. Furthermore
taste, flavor and color of our food are related to secondary metabolism. Also
various health effects of food are connected with secondary metabolites. The defense
compounds are of different character, some are constitutively expressed (phytoan-
ticipins), others are only biosynthesized after wounding or in infection (phytoalexins)
(Zhao et al. 2005). That means that the regulation of secondary metabolism in
part is developmentally regulated, in part is dependent of external (stress) signals.

Starting from ubiquitous primary metabolites as precursors the number of steps
in secondary metabolite pathways differs considerably. The biosynthesis of the
phytoalexin resveratrol from ubiquitous primary metabolites consists of only a single
step, catalyzed by one single enzyme, encoded by one single gene (Hain and Grimmig,
2000). Whereas the biosynthesis of an indole alkaloid like vinblastine, includes at
least 30 different steps, at least three different cells types and four different cellular
compartments, and consequently also is regulated by transport systems (van der
Heijden et al. 2004; Pasquali et al., 2006). Because secondary metabolism is species-
specific, the knowledge about most pathways is limited, and very few pathways
in plants have been fully elucidated to all levels of intermediates, enzymes and genes.

STRATEGIES

For developing a strategy for metabolic engineering of plant secondary metabolism,
one has to keep all the above mentioned aspects in mind. There is a clear difference
in approach for increasing or decreasing the flux through a pathway.

Decreasing a flux could for example be of interest in case of undesired (toxic)
compounds, or to cut off certain pathways that compete with the pathway of interest.
Also catabolic pathways might be of interest to cut, in order to increase the level
of a desired compound. To decrease a flux, the level of the protein of interest can
be decreased by an antisense or RNAi approach or by overexpresssing an antibody
of the selected enzyme of the target pathway. As long as not any vital pathway is
knocked out, this approach should be easy with a good chance of success.

To increase the level of a compound, one needs to know the pathway into
much detail to be able to select targets for engineering. This should result in the
identification of possible sites for modification, e.g. overcoming limiting steps. As
mentioned above, only a few genes of plant secondary metabolite pathways are
known. Engineering long pathways thus requires extensive studies to elucidate the
pathway. One may also consider the use of microbial genes to achieve certain
reactions in plants for which the encoding plant genes are not known yet. The
production of salicylate in plants by overexpression of microbial genes is such an
example (Verberne et al. 2000).


