


Atmospheric Icing of Power Networks



Atmospheric Icing of Power
Networks

Masoud Farzaneh
Editor
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Foreword

Atmospheric ice takes a wide range of forms, usually quite beautiful and harm-
less. But it may, on occasion, pose severe risks to the security of many types of
man-made structures, including power networks and transportation systems. As ice
or sticky snow accumulates on network equipment and structures, it adds weight
which, if combined with wind, can upset the precarious balance of these systems,
sometimes leading to partial or total collapse. Other factors can also come into play;
for example, ice or wet snow formation along insulators can eventually bridge the
shed spacing, which can cause flashovers and, consequently, power outages. Serious
damage and even loss of life can result from severe ice storms, as has been noted in
the recent past, and efforts to mitigate their effects are on-going. This brings us to
the purpose of this book.

First of all, let us mention that, despite the existence of many technical reports
and papers in specialized journals and conference proceedings, none are assembled
as a comprehensive study of the atmospheric icing phenomenon, and the results
are not sufficiently distilled to support power line design. With its clear and tight
focus, this book aims to fill that gap in the field of atmospheric icing. Furthermore,
standards-based, deterministic approaches to overhead line design are currently used
in the field, while international standards are striving to incorporate probabilistic de-
sign methods. Design experts need to understand where the probability distributions
come from and know how to apply them.

Consequently, a team of internationally acclaimed experts in various aspects of
atmospheric icing was invited to produce a compendium of their respective exper-
tise. This compilation gives a detailed account of the fundamentals of atmospheric
icing and it moves through a survey of the state of the art in design, modelling,
prevention, and more, all in a richly illustrated format. In essence, we wanted to
arrange the book in a logical sequence, from the meteorological aspect, moving
on through various subjects, and finally leading to design. Accordingly, Chapter 1,
Modern Meteorology and Atmospheric Icing, looks at how meteorology can help
engineers and designers to better plan power-line routes or situate wind-turbine
parks, through better understanding of weather patterns in a given region. In the
next chapter, Statistical Analysis of Icing Event Data for Transmission Line Design
Purposes, the authors describe how data from ice storms is gathered by monitoring
systems and is used to establish design parameters for lines crossing regions where
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vi Foreword

severe icing events occur. The third chapter, Numerical Modelling of Icing on Power
Network Equipment, discusses how numerical icing models have become such es-
sential tools in the field, as they use observations and measurements to produce
simulations of extreme events that may be beyond our empirical experience. This is
followed by Wet Snow Accretion on Overhead Lines, which deals with the physics
of snow, particularly wet snow accretion on power line conductors, both in the wind
tunnel and under natural conditions, in terms of overload hazards. Chapter 5, Effects
of Ice and Snow on the Dynamics of Transmission Line Conductors, deals with
the reliability and lifespan of iced conductors under such stresses as galloping, or
wind-induced oscillations and aeolian vibrations, the mechanisms involved, and pre-
vention methods. This is followed by a review of mitigation methods in Anti-icing
and De-icing Techniques for Overhead Lines, which describes the various methods
used by utilities, or under development, to combat ice accretion, by either removing
already accreted ice or preventing it from sticking to surfaces. Then, Effects of Ice
and Snow on the Electrical Performance of Power Network Insulators is a detailed
look at the electrical performance of line and station insulators covered with ice
or snow; it takes us through the modelling, testing, design and mitigation stages.
Finally, Chapter 8, Design of Transmission Lines for Atmospheric Icing, is the ABC
of structural design for adverse winter conditions – a thorough description of trans-
mission line design, taking into account snow and ice overloads and other extreme
weather effects. All in all, the book is a comprehensive and exhaustive examination
of atmospheric icing, its causes, effects, and how to best mitigate the various hazards
it poses.

The work is intended as a useful tool for utilities, first and foremost, looking
to implement or adjust company-wide design policies with regard to severe wind
and ice loads on overhead lines, and utility maintenance engineers and operators,
who try to balance the costs and benefits of mitigation options when addressing
specific icing problems. As well, professionals involved with the IEEE Power En-
gineering Society (PES), CIGRE and IEC, in their efforts to develop international
icing standards, will find the book useful in their detailed studies of specific areas
of research and consulting. The volume is also intended to be used as a fundamental
text for students and researchers in the area of high voltage power transmission
in university and college programs, who will find in it many worked examples for
evaluating network reliability under various load conditions.

In the end, we hope that this book will, first of all, fill the need for up-to-date
knowledge about the progress of research in the field of atmospheric icing of power
network equipment and other sensitive man-made structures in recent years. Sec-
ondly, we hope we have achieved the purpose we had in mind, by compiling, in a
single volume, much essential information that would otherwise remain dispersed
throughout various technical journals and workshop proceedings.

As Editor, I would like to sincerely thank everyone who contributed to the pub-
lishing of this endeavour, and particularly the authors, who put in countless hours
to provide us with the core of their research and developments. These utility and
academic experts jointly participate in a biennial conference series called the In-
ternational Workshop on Atmospheric Icing of Structures (IWAIS), where they are



Foreword vii

motivated to discuss ways to reduce the devastation from atmospheric icing at a
practical cost. The rich content of these workshops, two of which I have had the
honour to Chair, in Chicoutimi in 1996 and in Montreal in 2005, is at the root of
the idea for this book. Indeed, on the occasion of the 11th IWAIS in Montreal, I
invited keynote speakers to head the individual sessions of the conference and I
subsequently asked them to expand their presentations for inclusion in this book.
Once again, I thank them and I hope that the fruit of their efforts will find its place
everywhere that atmospheric icing issues need to be managed.

Masoud Farzaneh
Editor
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Chapter 1
Modern Meteorology and Atmospheric Icing

Svein M. Fikke, Jón Egill Kristjánsson and Bjørn Egil Kringlebotn Nygaard

1.1 Introduction

Atmospheric icing affects a wide variety of man-made structures in many coun-
tries. It is generally well known to occur in northern countries like Japan (Admi-
rat and Sakamoto 1988), Canada (Farzaneh and Savadjiev 2001), United Kingdom
(Wareing and Chetwood 2000), Iceland (Thorsteins and Elı́asson 1998), Finland
(Lehtonen et al. 1986), Hungary (Krómer 1993), Norway (Fikke and Johansen 1987),
Czech Republic (Popolanský 2000), Romania (Goia 2000) and Russia (Golikova
et al. 1989), as well as many other countries in both hemispheres.

Man-made structures at the top of mountains are often exposed to rime icing.
In other areas, wet snow or freezing rain likewise affect infrastructures at lower
altitudes. Therefore, power lines, wind turbines, telecommunication towers or high
masts, ski lifts and other buildings are designed to withstand the loads and other
adverse effects due to icing, as well as ice loads affecting their mechanical strength
or operational reliability in many ways. Most countries have their own standards to
take care of ice loads on their structures. At the international level, efforts are made
to establish and improve standards and methodologies for handling the impacts of
icing on various structures in the most economical and rational manner by both the
International Electrotechnical Commission (IEC 1997; IEC 2003), the International
Standardisation Organisation (ISO 2000) and the International Council on Large
Electric Systems (Cigré 2001).

Some examples of icing are illustrated in Figs. 1.1, 1.2 and 1.3. Figure 1.1 shows
the largest ice loading ever recorded on an overhead power line. This accretion was
observed in Norway in April 1961, and the greatest elliptic cross-section diame-
ter was measured at 1.4 m and the smallest at 0.95 m. A one-metre length of the
accretion was collected and weighed 305 kg.

Figure 1.2 shows a wet snow incidence in Iceland. The cross-section accretion
is in this case quite uniform in physical appearance, without a pronounced pattern
showing the elliptic build-up.

S.M. Fikke
Meteorology Consultant – Overhead lines, Lindeveien 1, 1470 Lørenskog, Norway
e-mail: fikke@metconsult.no

M. Farzaneh (ed.), Atmospheric Icing of Power Networks,
C© Springer Science+Business Media B.V. 2008

1



2 S.M. Fikke et al.

Fig. 1.1 Rime icing on a 22 kV electric power line in Norway April 1961, 1 400 m above sea level.
The ice load was measured to 305 kg/m (Photo: O. Wist, reproduced by permission of S. M. Fikke)

Figure 1.3 is from a Swiss test station on the mountain Gütsch, near Andermatt, in
the Alps. Together with an operating wind turbine, there is a test site where a variety
of meteorological instruments as well as icing detectors and devices for measuring
ice loads are installed for the purpose of performance and feasibility testing. The
project is a part of the European Cooperation in the field of Scientific and Technical
Research (COST) Action 727: “Atmospheric Icing on Structures Measurements and
Data Collection on Icing”, operating through the years 2004–2009. The project also
generates data sets to be used for calibrating atmospheric models for icing forecasts,
see (Fikke 2005a, 2007a,b).

During the last century, when societies expanded their economic developments
and new infrastructures had to be established in hitherto unknown places, experience

Fig. 1.2 Wet snow accretion
on a collapsed power line in
Iceland (Reproduced by
permission of Á. Elı́asson,
Landsnet, Iceland)


