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Preface

This volume contains revised papers that were presented at the international workshop
entitled Computational Methods for Algebraic Spline Surfaces (“COMPASS”), which
was held from September 29 to October 3, 2003, at Schloß Weinberg, Kefermarkt (Aus-
tria).

The workshop was mainly devoted to approximate algebraic geometry and its ap-
plications. The organizers wanted to emphasize the novel idea of approximate impliciti-
zation, that has strengthened the existing link between CAD / CAGD (Computer Aided
Geometric Design) and classical algebraic geometry. The existing methods for exact
implicitization (i.e., for conversion from the parametric to an implicit representation
of a curve or surface) require exact arithmetic and are too slow and too expensive for
industrial use. Thus the duality of an implicit representation and a parametric represen-
tation is only used for low degree algebraic surfaces such as planes, spheres, cylinders,
cones and toroidal surfaces. On the other hand, this duality is a very useful tool for de-
veloping efficient algorithms. Approximate implicitization makes this duality available
for general curves and surfaces.

The traditional exact implicitization of parametric surfaces produce global repre-
sentations, which are exact everywhere. The surface patches used in CAD, however,
are always defined within a small box only; they are obtained for a bounded parameter
domain (typically a rectangle, or – in the case of “trimmed” surface patches – a subset
of a rectangle). Consequently, a globally exact representation is not really needed in
practice. Instead of a single exact high–degree implicit representation, the methods of
approximate implicitization produce piecewise implicit surfaces of relatively low de-
gree, which may cover the shape with any desired accuracy. This results in so–called
algebraic spline surfaces, which can be expected to replace the exact implicit represen-
tation in many algorithms.

Compared to the traditional parametric representations, such as rational curves and
surfaces (so–called Non-Uniform-Rational-B-Splines – NURBS), algebraic spline sur-
faces offer several computational advantages. For instance, by exploiting the duality be-
tween implicit and parametric representation, the intersection of two surfaces can easily
be traced if one of the surfaces is given in implicit, and the other surface is given in para-
metric form. In this case, the problem can be reduced to a two-dimensional root-finding
problem. In the case of two parametric surfaces, one has to solve a four–dimensional
problem instead. As another advantage, the fitting of surfaces to scattered data, which
is a fundamental tool for generating free-form geometry from prototypes, can be done
without mapping the data into a plane – a process which often limits the flexibility and
usefulness of the surface fitting techniques which are available today. We also fore-
see a number of other applications, e.g., in the computer game industry, virtual reality,
medical imaging, and scientific computing.

The workshop, and the papers collected in this volume, was devoted both to the
theoretical fundamentals and to the various computational aspects which arise in appli-
cations of approximate algebraic geometry. These applications are based on techniques
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developed in different branches of mathematics and computer science, including nu-
merical analysis and scientific computing, algebraic geometry, applied geometry, and
computer graphics. For instance, numerical methods are needed to efficiently gener-
ate implicit representations, and algebraic techniques are essential for detecting and
analyzing singularities, which may help to solve practical problems arising in applied
geometry and computer graphics.

Traditionally, these fields are represented by several fairly disjoint scientific com-
munities, which traditionally do not communicate much. In order to stimulate the ex-
change of ideas, and to promote interdisciplinary research, the workshop brought to-
gether experts from the various fields involved.

The papers included in this volume provide an overview about the state-of-the-art
in approximative implicitization and various related topics, including both the theoreti-
cal basis and the existing computational techniques. This can be expected to encourage
and promote the use of approximate implicitization for solving geometric problems in
computer-aided design. In some of the papers and in the panel discussion at COMPASS,
which is also documented in this volume, the authors try to identify a number of prob-
lems (both theoretical and practical ones) which need to be addressed by the different
research communities, in order to exploit the potential of implicit representations.

The editors are convinced that this volume will support the mutual exchange of ideas
between the various research communities, promoting interdisciplinary research. The
interactions between different mathematical disciplines such as approximation theory,
classical algebraic geometry and computer aided geometric design will play an essential
role for exploiting the new idea of approximate algebraic geometry.

The editors of this volume are indebted to the European Science Foundation (ESF)
for providing generous financial support of the COMPASS event, which was organized
as an ESF Exploratory workshop (EW 02/55). They would like to thank the staff at
Springer–Verlag, Heidelberg, for the constructive cooperation during the preparation
production of these proceedings. The time and the effort of the 37 referees, whose
reports have greatly helped to improve the quality and the presentation of the material,
is gratefully acknowledged. Last, but not least, they would like to thank Elmar Wurm
and Martin Aigner for collecting the papers and preparing the final manuscript.

Oslo and Linz, May 2004 Tor Dokken
Bert Jüttler
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Approximate Parametrisation of Confidence Sets�

Zbyněk Šı́r

Charles University, Sokolovská 83, Prague, Czech Republic,
sir@karlin.mff.cuni.cz

Abstract. In various geometrical applications, the analysis and the visualization
of the error of calculated or constructed results is required. This error has very
often character of a nontrivial multidimensional probability distribution. Such
distributions can be represented in a geometrically interesting way by a system of
so called confidence sets. In our paper we present a method for an approximate
parametrisation of these sets. In sect. 1 we describe our motivation, which con-
sists in the study of the errors of so called Passive Observation Systems (POS).
In sect. 2 we give a result about the intersection of quadric surfaces of revolu-
tion, which is useful in the investigation of the POS. In sect. 3 we give a general
method for an approximate parametrisation of the confidence sets via simulta-
neous Taylor expansion. This method, which can be applied in a wide range of
geometrical situations, is demonstrated on a concrete example of the POS.

1 Motivation

Our research was motivated by concrete problem of the analysis and the visualization
of the errors of so called Passive Observation Systems (POS).

1.1 Passive Observation Systems

The POS have been successfully constructed and produced in Czech Republic since the
1960’s as an alternative to the classical radars. These systems, which do not transmit
any signal (therefore passive), are based on the principle of the time difference. A pulse
in the transmission of an object (a plane) is received at four (or more) observation sites.
In practice any plane is forced to transmit some signals, at least in order to ensure its
orientation. From the differences of the time of reception of the pulse the position of
the object can be determined.

The POS have two main advantages comparing to the standard radars. As they do
not transmit any signal they can not be itself detected and have very low energy con-
sumption.

In addition the error of the POS has a different characteristic comparing to the clas-
sical radars. For this reason a simultaneous use of the POS and the classical radars can
be very interesting. For more details about the principle of the POS and for the basic
information about their precision see [1, Chapter 5].

� The author’s research has been supported by the grant No. 201/03/D113 of the Czech Science
Foundation.
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1.2 Geometry of POS

The construction of POS creates many difficult problems on the level of the electrical
engineering, but the underlying geometry is quite simple. Let a pulse transmitted by an
object X be received at the sites A and A′ respectively at times tA and tA′ . Multiplying
the difference tA − tA′ by the speed of the signal (typically the speed of light) we get
the difference dAA′ of distances from the object X to the sites A and A′. The object X
must therefore lie on one of sheets of the two-sheet hyperboloid of revolution, which is
determined by its foci A, A′ and the measured difference of distances dAA′ . The sign
of dAA′ indicates which of the two sheets must be taken.

Repeating the same procedure for two other pairs of sites (B, B ′) and (C, C ′), we
get in all three hyperboloids on which the object X must lie and its position can be
therefore determined as their intersection. The space coordinates [x1, x2, x3] of X are
then computed from the measured distance differences dAA′ , dBB′ and dCC′ .

The difference vector [dAA′ , dBB′ , dCC′ ] can be easily computed from [x1, x2, x3],
and the corresponding mapping F : [x1, x2, x3]→ [dAA′ , dBB′ , dCC′ ] can be explicitly
expressed. If the sites A, A′ have the space coordinates [a1, a2, a3] and [a′

1, a
′
2, a

′
3]

respectively, then for example

dAA′ =
√

(x1 − a1)2 + (x2 − a2)2 + (x3 − a3)2

−
√

(x1 − a′
1)

2 + (x2 − a′
2)

2 + (x3 − a′
3)

2.

On the other hand the inversion mapping F−1 can not be in general expressed ex-
plicitly and the position of X must be computed from [dAA′ , dBB′ , dCC′ ] numerically
as a solution of a system of algebraic equations of the total degree 8.

In practice a network of observation sites should be used. But the smallest oper-
ational system consists of four sites only. In this case one site O = A′ = B′ = C ′

is considered as central one and the position of the object X is computed from the
distance differences [dAO, dBO, dCO]. In the sequel we will restrict ourselves to this
simplest case. As we will show, in this case an explicit inversion formula for F −1 can
be always given.

1.3 Measurement Error of the POS

Suppose, that a pulse is received at four observation sites O, A, B and C at times tO, tA,
tB and tC . The error of the vector [tO, tA, tB, tC ] of independently measured times can
be well modeled by a multivariate normal distribution, characterized by its mean value
[0, 0, 0, 0] and the variation-covariation matrix having on the diagonal the variations of
the time errors at the four sites, which are not necessarily the same⎡⎢⎢⎣

σO
2 0 0 0

0 σA
2 0 0

0 0 σB
2 0

0 0 0 σC
2

⎤⎥⎥⎦ . (1)

The differences dAO, dBO and dCO have no more independent errors, but the error
of the vector [dAO, dBO, dCO] has still a normal distribution characterized by its mean
value [0, 0, 0] and the variation-covariation matrix
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c2

⎡⎣σA
2 + σO

2 σO
2 σO

2

σO
2 σB

2 + σO
2 σO

2

σO
2 σO

2 σC
2 + σO

2

⎤⎦ , (2)

where c is the speed of light. See [3] for the details about multivariate distributions and
their characteristics.

If we compute the position [x1, x2, x3] using dAO, dBO and dCO we transform the
error distribution by the mapping F−1. The transformed distribution will be no more
normal. For this reason the mean value and the variation-covariation matrix are no more
sufficient characteristics of this transformed error distribution.

In fact the analysis of such complex multivariate distributions is a difficult problem.
This is due to the fact that the standard concepts used in in the case of one dimensional
distributions, are insufficient for the description of the geometry of the multivariate
distributions. We are convinced that the methods of the applied geometry would be
very useful in the analysis of both theoretical distributions and experimental data. See
[2] for one possible approach based on the concept of the data depth.

1.4 Confidence Sets

The confidence sets (called also tolerance regions) are perhaps geometrically the most
interesting characteristics of probability distributions.

Definition 1. For a given random variable U having the density function pU and for a
given probability α ∈ (0, 1] we define the confidence set CU,α as a region for which∫

x∈CU,α

pU (x) = α (3)

In other words a confidence set is a region in which the random variable U lies with the
probability α. In practice α is set quite high, for example 0.99, and thus a confidence
set is simply a region in which the random variable lies with a reasonable certitude.

It is clear from the definition, that for a given probability α < 1 there is in general
more then one confidence set. There are natural additional properties which can be
required of the confidence sets. First of all the confidence sets should be as small as
possible in order to give good information about the probability density. For the same
reason their boundaries should be the iso-lines (iso-surfaces) of the density function. In
the case of multivariate normal distributions it is customary to use suitable ellipsoids as
confidence sets. These ellipsoids satisfy both additional requirements (see for example
[3, 45.9]).

The distribution of the error of the vector [dAO, dBO, dCO] can be described by a
system of ellipsoids (confidence sets) depending on the probability α and on the values
[dAO, dBO, dCO] (the error may in general depend on the value of [dAO, dBO, dCO]).
Transforming this system by F−1 we will get a new system of confidence sets describ-
ing the error of the position [x1, x2, x3]. The boundaries of these new confidence sets
will be iso-surfaces of the new density function.
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2 Explicit Inversion Formula

The importance of an explicit formula for F−1 is obvious from the previous section. As
X is obtained as intersection of three quadric surfaces, the resulting system of equations
has degree 8. Therefore there is seemingly no possibility to obtain an explicit expression
for F−1. However for concrete examples, we were able to reduce the degree of the
problem and even obtain a simple explicit formula. A deeper investigation of this fact
has shown, that this simplification is due to the following interesting property.

2.1 Intersection of Quadric Surfaces of Revolution

Proposition 2. Let S1, S2 be two quadric surfaces of revolution, each of which ob-
tained by rotating a conic section around its main axis. (The only axis for a parabola
and the axis passing through the foci for an ellipse or an hyperbola.) Suppose that S1

and S2 have a common focus. Then their intersection can be decomposed into curves
of degree 2.

A

p

2d

1d

F

Proof. Let F be the common focus. Clearly the axes of S1 and S2 intersect in the
point F and therefore they lie in a plane. The previous fig. represents this plane and its
intersections with all mentioned objects.

We can characterize the surfaces S1 and S2 using the focus-directrix property of
the generating conic sections. Obviously the surface S1 is precisely the set of points in
the space, having a constant ratio of distances to the focus F and a directrix plane d1,
perpendicular to the main axis: S1 = {X, |XF |

|Xd1| = r1} for some fixed ratio r1. For r1 =

1 we get a paraboloid, for r1 < 1 an ellipsoid and for r1 > 1 a two-sheet hyperboloid.
In the same way the surface S2 can be characterized as the set S2 = {X, |XF |

|Xd2| = r2}
for some plane d2 perpendicular to the axis of S2 and for some fixed ratio r2.

For the points of the intersection X ∈ S1∩S2 we thus get |Xd1|
|Xd2| = r2

r1
. This equality

characterizes all the points lying in two planes passing through the intersection d1 ∩ d2.
One of these planes is denoted p on the figure. As the intersection of a quadric surface
with a plane is of degree 2, the intersection S1 ∩ S2 must have a component of degree
2. As S1 ∩ S2 is itself of degree 4, the proposition is proved. ��

So the intersection of two hyperboloids, which is in general a curve of degree 4, will
have components of degree 2 (conic sections) if the two hyperboloids share a focus.

Consequently the degree 8 system describing a general POS will be decomposed if
two of hyperboloids have a common focus. If particular if the three hyperboloids have a
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common focus - the site O - the problem will be reduced twice and the resulting system
can be decomposed to the degree 2 systems. In this case therefore an explicit inversion
formula can be always obtained.

We will not describe this explicit formula in general, but we will study in detail
one particular example. In this example the situation is simplified even more by the
additional condition, that the four sites A, B, C, O are coplanar.

2.2 Example

Let us consider the POS in which the four sites lie in one plane and have the coordinates:
O = [0, 0, 0], A = [30, 0, 0], B = [−15, 26, 0] and C = [−15,−26, 0]. The mapping
F is then expressed by formulae:

dAO =
√

x2
1 − 60x1 + 900 + x2

2 + x2
3 −

√
x2

1 + x2
2 + x2

3

dBO =
√

x2
1 + 30x1 + 901 + x2

2 − 52x2 + x2
3 −

√
x2

1 + x2
2 + x2

3

dCO =
√

x2
1 + 30x1 + 901 + x2

2 + 52x2 + x2
3 −

√
x2

1 + x2
2 + x2

3

(4)

We implicitise these equations and obtain implicit algebraic equations of the three
hyperboloids HAO, HBO and HCO . For example the implicit equation of HAO is

4d2
AO

(
x2

1 + x2
2 + x2

3

)
−
(
900− 60x1 − d2

AO

)2
= 0.

Due to the Proposition 2 any two of these hyperboloids intersect in two conic sec-
tions. Because of the symmetry with regard to the plane x3 = 0 these conics lie in
the planes perpendicular to the plane x3 = 0. Their projections to this plane will be
therefore lines.

For the determination of the 8 intersections of the hyperboloids HAO, HBO and
HCO we first evaluate the resultant with respect to x3 of the implicit equations of HAO

and HBO. Because of the previous observations this resultant (of degree 4 in x1, x2) can
be factorised in two linear factors (each of them of with multiplicity two) describing two
stright lines p1 and p2. In a similar way from the equations of HAO and HCO we get
two lines q1 and q2. As intersection of this two pairs of lines we get four points Xi,j =
pi ∩ qj , i, j = 1..2, each of them being projection of two symetrical intersections of
the three hyperboloids. The signs of dAO, dAO and dAO will indicate which of the four
points Xi,j must be taken. The last coordinate xi

3 can be calculated from the equation
of any of the three hyperboloids.

Let us give the explicit formula of one of the 4 pairs of solutions of our example
system (4):

x1 =
dAO(d2

BO + d2
CO − 1802) + (900− d2

AO)(dBO + dCO)

60(dAO + dBO + dCO)
(5)

x2 =
dAO(d2

CO − d2
BO) + (d2

AO − 2dBOdCO − 2702)(dBO − dCO)

104(dAO + dBO + dCO)
(6)

x3 = ±
√

P6(dAO, dBO, dCO)

dAO + dBO + dCO
(7)
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where P6(dAO, dBO, dCO) is a polynomial of degree 6 in dAO, dBO and dCO.
The x3 is usually supposed to be positiv, as the object (plane) is usually ”over” the
observation sites.

A similar explicit form of F−1 can be in general obtained for any POS having the
four sites in a plane. In this case, the first two coordites x1, x2 can be expressed as
rational functions in dAO, dBO and dCO, but the expression of x3 will involve a square
root.

If the four sites are not coplanar, an explicit formula can be still obtained, but square
roots will appear in the expressions of all coordinates.

For a general POS, based on three independent pairs of sites (A, A′), (B, B′) and
(C, C ′), no closed expression of F−1 can be obtained.

3 Approximate Representation

The explicit inversion formula is not available for the POS in the general position. In
some other cases the inversion formula can be too complicated. For this reason we will
describe in this section a general method for the approximation of F −1.

3.1 General Setting
Let us consider the following general setting. Suppose that x = [x1, . . . , xn] is a set
of parameters which is transformed by a local diffeomorphism F to a second set of
parameters y = [y1, . . . , yn]:

F : [x1, . . . , xn] → [y1, . . . , yn] (8)

Suppose in addition that an algebraic implicitisation of F is available. We mean by this
a system of algebraic equations

G(x, y) = 0 (9)

which hold if and only if y = F (x).
Next suppose that in the space of parameters y the system of confidence sets (for

example a system of ellipsoids) is described. We want to obtain a description of the
transformed system of the confidence sets in the space of the parameters x.

3.2 Implicit Representation
If the confidence sets in the space of parameters y are described implicitly we can obtain
an implicit description in the space of parameters x in a straightforward way. Suppose,
that the boundaries of the confidence sets in the space of parameters y are given by
implicit equations

Eα,y(y) = 0 (10)

depending algebraically on the measured value y. Then substituting y = F (x) and
y = F (x) in this equations we get mplicit representations of the boundaries of the
confidence sets in the space x depending on x.

The drawbacks of this methods are obvious. As the transformation F is not neces-
sarily rational, we obtain in general a complicated (non algebraic) implicit representa-
tion depending in a complicated way on x.



Approximate Parametrisation of Confidence Sets 7

3.3 Approximation by the Taylor Expansion

Another natural possibility is to approximate the inversion F−1 by its Taylor expansion
in a suitable point y:

F−1(y) = F−1(y)+D1F
−1
y (y−y)+

1

2
D2F

−1
y (y−y)+

1

6
D3F

−1
y (y−y)+ . . . (11)

where DiF
−1
y is the i-th total differential of F−1 at the point y. See [4, par. 3.14] for the

details about the multivariate Taylor expansion. The value of x = F−1(y) can be cal-
culated numerically from (9) and the operators DiF

−1
y can be obtained by the implicit

differentiation of (9), or from the known partial derivatives of F at the point x. This ap-
proximation can be used for an approximate representation of the confidence sets in the
space of parameters x. In particular if we have a parametrisation of the boundaries of
the confidence sets in the space of parameters y, we can compose this parametrisation
with the Taylor expansion and this way obtain an approximate parametrisation of the
boundaries of the confidence sets in the space of parameters x.

The disadvantage of this approach is that the Taylor expansion can give a sufficiently
good approximation in the proximity of the point y but will not be sufficient for more
distant points.

3.4 Symbolic Computation of the Taylor Expansion

We propose a different approach, which consists in the symbolic computation of the
Taylor expansion simultaneously in all points. If the mapping F−1 can not be expressed
explicitly, there is no hope to get a general expression of the Taylor expansion depend-
ing on the point y. On the other hand it is possible to get such general expression
depending on the target point x = F−1(y).

The total differentials DiF
−1
y can be symbolically computed via partial differentia-

tion of the equality

G(F−1(y), y) = 0 (12)

For example by taking all the partial derivatives of the first order ∂
dyi

for i = 1..n, we

obtain a system of n linear equations for n unknown partial derivatives ∂F−1

dyi
. The co-

efficients of these equations are polynomials in y and F−1(y). This system can be sym-
bolically solved and we get ∂F−1

dyi
in the form of a rational function of y and F−1(y). If

we use in a similar way the higher partial derivatives of (12), we get the same king of
expression for the higher partial derivatives. See [4, par. 4.5] for more details about the
implicit differentiation.

Substituting these expressions into (11), we obtain the Taylor expansion having all
the coefficients dependent rationally on y and F−1(y). In this expression we can simply
substitute F (x) for y and x for F−1(y) and we obtain the desired simultaneous Taylor
expansion depending on x.


