Jörg Henkel Sri Parameswaran *Editors* 

# Designing Embedded Processors

A Low Power Perspective



## DESIGNING EMBEDDED PROCESSORS

# **Designing Embedded Processors**

# A Low Power Perspective

Edited by

J.HENKEL University of Karlsruhe, Germany

and

## S.PARAMESWARAN

University of South Wales, NSW, Australia



A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN 978-1-4020-5868-4 (HB) ISBN 978-1-4020-5869-1 (e-book)

Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

www.springer.com

Printed on acid-free paper

All Rights Reserved © 2007 Springer No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

# Contents

| Forew  | ord: Embedded Processors – what is next?                      | XV  |
|--------|---------------------------------------------------------------|-----|
| Jörg H | Ienkel and Sri Parameswaran                                   |     |
| 1.     | Philosophy of This Book                                       | xvi |
| 2.     | Contents                                                      | xvi |
|        |                                                               |     |
| Part I | Application Specific Embedded Processors                      |     |
| 1      |                                                               |     |
| Applic | cation-Specific Embedded Processors                           | 3   |
| Jörg H | Ienkel, Sri Parameswaran, and Newton Cheung                   |     |
| 1.     | Introduction and Motivation                                   | 4   |
|        | 1.1 Some Trends in Designing SOCs                             | 6   |
|        | 1.2 Extensible Processor Platforms as a Possible Solution     | 7   |
|        | 1.3 Open Issues and Key Techniques                            | 10  |
|        | 1.4 SOC Design Distinction                                    | 11  |
| 2.     | Challenges in Embedded Extensible Processor Design            | 12  |
|        | 2.1 Code Segment Identification                               | 12  |
|        | 2.2 Extensible Instruction Generation                         | 14  |
|        | 2.3 Architectural Customization Selection                     | 17  |
|        | 2.4 Summary                                                   | 19  |
| Re     | ferences                                                      | 19  |
| 2      |                                                               |     |
| Low-F  | Power Design with NISC Technology                             | 25  |
| Bita G | orjiara, Mehrdad Reshadi, and Daniel Gajski                   |     |
| 1.     | Introduction                                                  | 25  |
| 2.     | Overview of NISC Technology                                   | 27  |
| 3.     | NISC Compared to Other Approaches                             | 29  |
|        | 3.1 NISC vs. ASIP                                             | 29  |
|        | 3.2 NISC vs. VLIW                                             | 30  |
|        | 3.3 NISC vs. Microcoded Architectures                         | 30  |
|        | 3.4 NISC vs. HLS                                              | 31  |
|        | Overview of the Compilation Algorithm                         | 32  |
| 5.     | Power Optimizations in NISC                                   | 37  |
|        | 5.1 Reducing the Switching Capacitance                        | 37  |
|        | 5.2 Reducing Number of Cycles                                 | 39  |
| 6.     | Experiments                                                   | 39  |
|        | 6.1 The Effect of Pipeline Structure on Power and Performance | 39  |
|        | 6.2 Custom Datapath Design for DCT                            | 42  |

| 7. Conclusion<br>References                                                                | 49<br>49 |
|--------------------------------------------------------------------------------------------|----------|
| 3                                                                                          |          |
| Synthesis of Instruction Sets for High-Performance and Energy-Efficient ASIP               | nt 51    |
| Jong-Eun Lee, Kiyoung Choi, and Nikil D. Dutt                                              |          |
| 1. Introduction                                                                            | 52       |
| 2. Related Work                                                                            | 53       |
| 3. Synthesizing Instruction Sets                                                           | 54       |
| 4. Optimizing for Energy-Efficiency                                                        | 55       |
| 4.1 ASIP Energy Model                                                                      | 56       |
| 4.2 EDP Change due to IS Customization                                                     | 57       |
| 4.3 Modifying the Selection Algorithm                                                      | 58       |
| 5. Experiments                                                                             | 58       |
| 5.1 Experimental Setup                                                                     | 59       |
| 5.2 Improvement through IS Synthesis                                                       | 60       |
| 5.3 Effects of Bitwidth Variation                                                          | 63       |
| 6. Conclusion                                                                              | 63       |
| References                                                                                 | 64       |
|                                                                                            | 65       |
| A Framework for Extensible Processor Based MPSoC Design                                    | 03       |
| Fei Sun, Srivaths Ravi, Anand Raghunathan, and Niraj K. Jha                                |          |
| 1. Introduction                                                                            | 66       |
| 2. Overview of MPSoC Synthesis                                                             | 67       |
| 3. Custom Processor Synthesis                                                              | 69       |
| 3.1 Motivation                                                                             | 70       |
| 3.2 Extensible Processor Synthesis Methodology                                             | 71       |
| 3.3 Template Generation                                                                    | 72       |
| 3.4 Experimental Results                                                                   | 75       |
| 4. Hybrid Custom Instruction and Co-Processor Synthesis                                    | 77       |
| 4.1 Methodology Overview                                                                   | 77       |
| 4.2 Multiobjective Evolutionary Algorithm                                                  | 79       |
| 4.3 Experimental Results                                                                   | 81       |
| 5. Heterogeneous Multiprocessor Synthesis                                                  | 84       |
| 5.1 Basic Synthesis Methodology                                                            | 84       |
| 5.2 Enhanced Synthesis Methodology                                                         | 87       |
| 5.3 Experimental Results                                                                   | 88       |
| 6. Related Work                                                                            | 92       |
| 7. Conclusions                                                                             | 93       |
| References                                                                                 | 93       |
|                                                                                            | 07       |
| Design and Run Time Code Compression for Embedded Systems                                  | 97       |
| Sri Parameswaran, Jörg Henkel, Andhi Janapsatya, Talal Bonny,<br>and Aleksandar Ignjatovic |          |
| 1. Introduction                                                                            | 98       |
| 1.1 Design Time Compression                                                                | 98       |
| 1.2 Run Time Code Compression                                                              | 100      |

| 2. | Rela  | ited Work                                                    | 100 |
|----|-------|--------------------------------------------------------------|-----|
| 3. | Des   | ign Time – Cache Trace Compression and Cache Size Prediction | 103 |
|    | 3.1   | Methodology                                                  | 103 |
|    | 3.2   | Compression Algorithm                                        | 103 |
|    | 3.3   | Cache Simulation Algorithm                                   | 109 |
|    | 3.4   | Experimental Setup and Results                               | 111 |
| 4. | Run   | Time – Code Compression                                      | 114 |
|    | 4.1   | Code Compression Technique                                   | 114 |
|    |       | Hardware Implementation                                      | 119 |
|    | 4.3   | Experiments and Results                                      | 121 |
|    | 4.4   | Conclusion                                                   | 124 |
| Re | feren | ces                                                          | 125 |

#### Part II Embedded Memories

| 6                                                                   |     |
|---------------------------------------------------------------------|-----|
| Power Optimisation Strategies Targeting the Memory Subsystem        | 131 |
| Preeti Ranjan Panda                                                 |     |
| 1. Introduction                                                     | 131 |
| 2. Power-Efficient Memory Architectures                             | 133 |
| 2.1 Partitioned Memory and Caches                                   | 133 |
| 2.2 Augmenting with Additional Buffers/Caches                       | 134 |
| 2.3 Reducing Tag Comparison Power                                   | 137 |
| 2.4 Reducing Cache Leakage Power                                    | 139 |
| 2.5 Other Cache Ideas                                               | 140 |
| 3. Compiler Optimisations Targeting Memory Power                    | 141 |
| 3.1 Data Layout                                                     | 142 |
| 3.2 Instruction Layout                                              | 142 |
| 3.3 Scratch Pad Memory Utilisation                                  | 143 |
| 3.4 Memory Bank Utilisation                                         | 144 |
| 4. Application Specific Memory Customisation                        | 145 |
| 5. Other Techniques: Dynamic Voltage Scaling,                       |     |
| Compression, Encoding, etc.                                         | 146 |
| 5.1 Dynamic Voltage Scaling                                         | 147 |
| 5.2 Power Management in DRAM                                        | 147 |
| 5.3 Encoding                                                        | 148 |
| 5.4 Compression                                                     | 148 |
| References                                                          | 150 |
| 7                                                                   |     |
| Layer Assignment Techniques for Low Energy in Multi-Layered Memory  | 157 |
| Organizations                                                       |     |
| Erik Brockmeyer, Bart Durinck, Henk Corporaal, and Francky Catthoor |     |
| 1. Introduction                                                     | 158 |
| 2. Basic Problem Definition                                         | 160 |
| 2.1 Data Reuse Analysis                                             | 161 |
| 2.2 Memory Hierarchy Assignment                                     | 162 |
| 2.3 Power, Area and Time Trade-off                                  | 165 |
| 2.4 Overall Methodology for MHLA                                    | 166 |

| Contents |
|----------|
|----------|

| 3. Data Reuse Analysis                                            | 167 |
|-------------------------------------------------------------------|-----|
| 3.1 Copy Candidates                                               | 168 |
| 3.2 Block Transfers                                               | 168 |
| 3.3 Non-Carried Copy Candidates                                   | 170 |
| 3.4 Branches in Reuse Tree                                        | 172 |
| 3.5 Write Accesses in the Reuse Tree                              | 173 |
| 4. High-Level Estimations                                         | 173 |
| 4.1 Energy Estimation                                             | 173 |
| 4.2 Size Estimation                                               | 173 |
| 4.3 Time Estimation                                               | 175 |
| 5. Exploration Methodology for MHLA Search Space                  | 182 |
| 5.1 Steering Heuristic                                            | 182 |
| 5.2 Incremental Assignment                                        | 182 |
| 6. Case Studies                                                   | 183 |
| 6.1 QSDPCM                                                        | 183 |
| 6.2 DAB Wireless Receiver                                         | 185 |
| 6.3 Execution Time Measurements                                   | 186 |
| 7. Related Work                                                   | 186 |
| 8. Conclusion and Future Work                                     | 188 |
| References                                                        | 188 |
| 8                                                                 |     |
| Memory Bank Locality and Its Usage in Reducing Energy Consumption | 191 |
| Mahmut Kandemir                                                   |     |
| 1. Introduction and Motivation                                    | 191 |
| 2. Banked Memory Architecture and Low-Power Operating Modes       | 193 |
| 3. Affine Mappings of Arrays to Banks                             | 195 |
| 4. Constraints for Bank Locality                                  | 197 |
| 5. Loop Transformations for Bank Locality                         | 198 |
| 6. Implementing Array Decompositions                              | 202 |
| 7. Global Optimizations                                           | 203 |
| 7.1 Single Nest, Multiple Arrays                                  | 203 |
| 7.2 Multiple Nest, Single Array                                   | 204 |
| 7.3 Multiple Nests, Multiple Arrays                               | 206 |
| 7.4 Discussion                                                    | 207 |
| 8. Folding Functions                                              | 207 |
| 9. Experiments                                                    | 208 |
| 9.1 Benchmark Codes and Experimental Framework                    | 208 |
| 9.2 Results                                                       | 210 |
| 10. Concluding Remarks and Future Work                            | 210 |
| References                                                        | 214 |
| Kelelences                                                        | 215 |
| Part III Dynamic Voltage and Frequency Scaling                    |     |
| 9                                                                 |     |
| Fundamentals of Power-Aware Scheduling                            | 219 |
| Xiaobo Sharon Hu and Gang Quan                                    |     |

| Contents                                                                             | ix  |
|--------------------------------------------------------------------------------------|-----|
| 3. Basics in Real-Time Scheduling                                                    | 222 |
| 4. Impacts of Power-Aware Scheduling                                                 | 223 |
| 5. Further Reading                                                                   | 224 |
| 5.1 Application Characteristics                                                      | 224 |
| 5.2 Scheduling Decisions                                                             | 225 |
| 5.3 Architectures                                                                    | 226 |
| References                                                                           | 226 |
| 10                                                                                   | 221 |
| Static DVFS Scheduling                                                               | 231 |
| Gang Quan and Xiaobo Sharon Hu                                                       | 021 |
| 1. Introduction                                                                      | 231 |
| 2. EDF Scheduling                                                                    | 232 |
| 3. Fixed-Priority Scheduling                                                         | 233 |
| 3.1 Determining the Minimum Constant Speed for Each Job                              | 235 |
| 3.2 Determining the Global Voltage Schedule                                          | 239 |
| 4. Related Work                                                                      | 240 |
| References                                                                           | 241 |
| 11<br>Description DVEC Caladation                                                    | 243 |
| Dynamic DVFS Scheduling                                                              | 243 |
| Padmanabhan S. Pillai and Kang G. Shin                                               | 242 |
| 1. Introduction                                                                      | 243 |
| 2. Schedulability Constraints for EDF and RM                                         | 244 |
| 3. Cycle-Conserving, Real-time DVFS                                                  | 245 |
| 3.1 Cycle-Conserving EDF                                                             | 247 |
| 3.2 Cycle-Conserving RM                                                              | 249 |
| 4. Look-ahead DVFS                                                                   | 252 |
| 5. Evaluating Energy Performance of DVFS Algorithms                                  | 255 |
| 6. Related Readings                                                                  | 257 |
| References                                                                           | 257 |
| 12<br>Voltage Selection for Time-Constrained                                         | 259 |
| Multiprocessor Systems                                                               | 207 |
| Alexandru Andrei, Petru Eles, Zebo Peng, Marcus Schmitz,<br>and Bashir M. Al-Hashimi |     |
| 1. Introduction                                                                      | 260 |
| 2. System and Application Model                                                      | 261 |
| 3. Processor Power and Delay Models                                                  | 262 |
| 4. Optimization of Mapping and Schedule for Voltage Selection                        | 262 |
| 4.1 Genetic Task Mapping Algorithm                                                   | 265 |
| 4.2 Genetic Scheduling Algorithm                                                     | 265 |
| 5. Motivational Example                                                              | 269 |
| 5.1 Optimizing the Dynamic and Leakage Energy                                        | 269 |
| 5.2 Considering the Transition Overheads                                             | 20) |
| 6. Problem Formulation                                                               | 270 |
|                                                                                      | 212 |

| 7. Optimal Continuous Voltage Selection               | 272                 |
|-------------------------------------------------------|---------------------|
| 7.1 Continuous Voltage Selection without Ov           | verheads (CNOH) 272 |
| 7.2 Continuous Voltage Selection with Overl           | neads (COH) 274     |
| 8. Optimal Discrete Voltage Selection                 | 274                 |
| 8.1 Problem Complexity                                | 274                 |
| 8.2 Discrete Voltage Selection without Overl          |                     |
| 8.3 Discrete Voltage Selection with Overhead          | ds (DOH) 276        |
| 8.4 Discrete Voltage Selection Heuristic              | 278                 |
| 9. Experimental Results                               | 279                 |
| 10. Related Work                                      | 280                 |
| 11. Summary                                           | 281                 |
| References                                            | 282                 |
| Part IV Compiler Techniques                           |                     |
| 13                                                    |                     |
| Compilation Techniques for Power, Energy,             | 287                 |
| and Thermal Management                                |                     |
| Ulrich Kremer                                         |                     |
| 1. Optimizing Compilers                               | 287                 |
| 2. Optimization Metrics                               | 289                 |
| 2.1 Power vs. Energy                                  | 289                 |
| 2.2 Power/Energy vs. Performance                      | 292                 |
| 2.3 Power/Energy vs. Temperature                      | 295                 |
| 2.4 Summary                                           | 296                 |
| 3. Future Compiler Research Directions                | 297                 |
| 4. Techniques Covered in Subsequent Chapters          | 298                 |
| 4.1 Dynamic Voltage and Frequency Scaling             |                     |
| 4.2 Resource Hibernation                              | 299                 |
| 4.3 Remote Task Mapping                               | 299                 |
| References                                            | 300                 |
| 14<br>Compiler-Directed Dynamic CPU Frequency and Vol | tage Scaling 305    |
| Chung-Hsing Hsu and Ulrich Kremer                     |                     |
| 1. DVFS                                               | 305                 |
| <ol> <li>DVFS Scheduling is Challenging</li> </ol>    | 306                 |
| 3. Our DVFS Algorithm in a Nutshell                   | 307                 |
| 4. An Illustrating Example                            | 308                 |
| 5. Design and Implementation Issues                   | 311                 |
| 5.1 What is a Region                                  | 311                 |
| 5.2 How Many Regions to Slow Down                     | 312                 |
| 5.3 What Region to Pick                               | 312                 |
| 5.4 Why Compiler-Directed                             | 313                 |
| 5.5 Is Profile-Driven Necessary                       | 313                 |
| 6. Evaluation Strategy                                | 314                 |
| 6.1 Hardware Platform                                 | 314                 |
| 6.2 Software Platform                                 | 314                 |
| 6.3 Benchmark Choices                                 | 315                 |

| Contents                                                                                                                                                                                | xi                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| <ol> <li>7. Experimental Results</li> <li>7.1 The Compilation Time</li> <li>7.2 Effectiveness</li> <li>7.3 Different Training Inputs</li> <li>8. Conclusions and Future Work</li> </ol> | 317<br>317<br>318<br>319<br>321 |
| References                                                                                                                                                                              | 322                             |
|                                                                                                                                                                                         | 324                             |
| 15<br>Link Idle Period Exploitation for Network Power Management                                                                                                                        | 325                             |
| Feihui Li, Guangyu Chen, Mahmut Kandemir, and Mustafa Karakoy                                                                                                                           | 525                             |
| 1. Introduction                                                                                                                                                                         | 326                             |
| 2. Experimental Setup                                                                                                                                                                   | 327                             |
| 3. Quantification of Last Idle Times                                                                                                                                                    | 329                             |
| 4. Network Abstraction and Hardware Support                                                                                                                                             | 330                             |
| 5. Compiler Support                                                                                                                                                                     | 333                             |
| 5.1 Splitting Loop Nests                                                                                                                                                                | 334                             |
| 5.2 Inserting Link Turn-off Instructions                                                                                                                                                | 337                             |
| 5.3 Example                                                                                                                                                                             | 338                             |
| 5.4 Discussion                                                                                                                                                                          | 340                             |
| 6. Experimental Results                                                                                                                                                                 | 340                             |
| 7. Concluding Remarks                                                                                                                                                                   | 343                             |
| References                                                                                                                                                                              | 344                             |
| 16                                                                                                                                                                                      |                                 |
| Remote Task Mapping                                                                                                                                                                     | 347                             |
| Zhiyuan Li and Cheng Wang                                                                                                                                                               |                                 |
| 1. Computation Offloading on Handheld Devices                                                                                                                                           | 347                             |
| 1.1 An Overview                                                                                                                                                                         | 349                             |
| 1.2 The Execution Model                                                                                                                                                                 | 351                             |
| 1.3 Message Passing                                                                                                                                                                     | 352                             |
| <ul><li>1.4 A Number of Primitives</li><li>1.5 Code Generation</li></ul>                                                                                                                | 353<br>357                      |
| 1.6 Task-Assignment Analysis                                                                                                                                                            | 360                             |
| 1.7 Experiments                                                                                                                                                                         | 365                             |
| 1.8 Related Work                                                                                                                                                                        | 369                             |
| References                                                                                                                                                                              | 369                             |
| Part V Multi-Processors                                                                                                                                                                 |                                 |
|                                                                                                                                                                                         |                                 |
| 17                                                                                                                                                                                      | 272                             |
| A Power and Energy Perspective on MultiProcessors                                                                                                                                       | 373                             |
| Grant Martin 1. Introduction                                                                                                                                                            | 373                             |
| 1.1 Multicore and Multiprocessor Definitions                                                                                                                                            | 373                             |
| 1.2 Power/Energy Drivers for Multiprocessor                                                                                                                                             | 574                             |
| and Multicore Architectures                                                                                                                                                             | 376                             |
| 1.3 Classifying Multiprocessor Architectures                                                                                                                                            | 378                             |
|                                                                                                                                                                                         |                                 |

| 2.    | A Survey of Multiprocessor Approaches                             |     |
|-------|-------------------------------------------------------------------|-----|
|       | for Low-Power, Low-Energy Design                                  | 379 |
|       | 2.1 Basic Techniques                                              | 379 |
|       | 2.2 Formal Control of DVFS for CMP                                | 382 |
|       | 2.3 Use of Transactional Memory in Multiprocessor Systems         | 383 |
| 3.    | Asymmetric Multiprocessing                                        | 383 |
|       | 3.1 Multiprocessor Systems of Configurable, Extensible Processors | 383 |
| 4.    | Techniques Covered in Subsequent Chapters                         | 385 |
|       | 4.1 Power-Performance Modeling and Design                         |     |
|       | for Heterogeneous Multiprocessors                                 | 385 |
|       | 4.2 System-Level Design of Network-on-Chip Architectures          | 386 |
|       | Conclusion                                                        | 387 |
| R     | eferences                                                         | 388 |
| 18    |                                                                   |     |
| Syste | m-Level Design of Network-on-Chip Architectures                   | 391 |
| Kara  | m S. Chatha and Krishnan Srinivasan                               |     |
| 1.    | Introduction                                                      | 392 |
|       | 1.1 Multi-Processor System-on-Chip (MPSoC) Architectures          | 392 |
|       | 1.2 Interconnection Woes and Network-on-Chip (NoC)                | 392 |
|       | 1.3 IP-based Methodology for NoC Design                           | 394 |
| 2.    | NoC Router Architecture and Characterization                      | 395 |
|       | 2.1 NoC Router Architecture                                       | 396 |
|       | 2.2 Power and Performance Characterization                        | 398 |
|       | 2.3 Elements of NoC Design Process                                | 399 |
| 3.    | Design and Optimization Techniques for NoC                        | 404 |
|       | 3.1 MILP based Approach                                           | 405 |
|       | 3.2 Heuristic Approach                                            | 410 |
|       | 3.3 MOCA Phase I: Core to Router Mapping                          | 410 |
|       | 3.4 MOCA Phase II: Route Generation                               | 411 |
| 4.    | Related Research                                                  | 415 |
|       | 4.1 NoC Router Architectures                                      | 415 |
|       | 4.2 NoC Performance and Power Consumption Models                  | 416 |
|       | 4.3 NoC Design and Optimization Techniques                        | 416 |
|       | Conclusion                                                        | 416 |
| R     | eferences                                                         | 417 |
| 19    |                                                                   |     |
|       | r-Performance Modeling and Design                                 | 423 |
|       | or Heterogeneous Multiprocessors                                  |     |
| JoAn  | n M. Paul and Brett H. Meyer                                      |     |
| 1.    |                                                                   | 423 |
| 2.    |                                                                   | 424 |
| 3.    | MESH                                                              | 425 |
|       | 3.1 MESH as a Performance Simulator                               | 426 |
|       | 3.2 Energy Modeling in MESH                                       | 428 |
|       | 3.3 Power-Performance Design Evaluation in MESH                   | 429 |
| 4.    | Performance Evaluation of SCHMs                                   | 430 |
|       | 4.1 Application Performance Classification                        | 432 |

| Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | xiii                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| <ul> <li>4.2 Arrival Characteristics and Timing</li> <li>4.3 Observations</li> <li>5. Heterogeneous Performance Balance</li> <li>5.1 Processing Elements</li> <li>5.2 Applications and System Scheduling</li> <li>5.3 Tiles and the Tiled System</li> <li>5.4 Modeling Assumptions</li> <li>5.5 Experiments and Results</li> <li>5.6 Discussion</li> <li>6. Conclusions</li> <li>References</li> </ul>                                                                                                                                      | 432<br>434<br>435<br>435<br>438<br>439<br>440<br>441<br>445<br>445<br>446 |
| Part VI Reconfigurable Computing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                           |
| <ul> <li>20</li> <li>Basics of Reconfigurable Computing</li> <li><i>Reiner Hartenstein and TU Kaiserslautern</i> <ol> <li>Configurable Cells</li> <li>von Neumann vs. Reconfigurable Computing Paradigm</li> <li>Future of FPGA (Technologies)</li> <li>Coarse-Grained vs. Fine-Grained Reconfigurability</li> <li>History of FPGAs</li> <li>References</li> </ol> </li> </ul>                                                                                                                                                              | 451<br>459<br>466<br>476<br>478<br>487<br>489                             |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 503                                                                       |
| <ul> <li>Dynamic Reconfiguration</li> <li><i>Jürgen Becker and Michael Hübner</i> <ol> <li>Basis of Reconfiguration and Terminology</li> <li>Exploiting Dynamic and Partial Reconfiguration<br/>for Power-Reduction</li> </ol> </li> <li>References</li> </ul>                                                                                                                                                                                                                                                                              | 503<br>504<br>506<br>511                                                  |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                           |
| Applications, Design Tools and Low Power Issues<br>in FPGA Reconfiguration                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 513                                                                       |
| <ul> <li>Adam Donlin <ol> <li>Introduction</li> <li>Applying Reconfiguration <ol> <li>Applications of FPGA Reconfiguration</li> </ol> </li> <li>Design Flow for Reconfigurable Systems <ol> <li>Dynamic Reconfiguration Design Flow</li> <li>Deploying Dynamic Reconfiguration</li> </ol> </li> <li>Low Power and FPGA Reconfiguration <ol> <li>Low Power and FPGA Reconfiguration</li> <li>The FPGA Low Power Landscape</li> <li>Low Power Use Cases for Dynamic Reconfiguration</li> </ol> </li> <li>Acknowledgments</li> </ol></li></ul> | 513<br>514<br>516<br>522<br>523<br>529<br>532<br>532<br>532<br>535<br>539 |
| Acknowledgments<br>References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 539<br>540                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                           |

# Foreword

# **Embedded Processors – What is Next?**

Jörg Henkel and Sri Parameswaran

These are exciting times for the system level designer/researcher. The world seems to burgeon with embedded systems. Consumers demand superior electronic products more often than ever before. Moore's law continues to be valid 40 years after it was first stated, allowing the adventurous to design with billions of transistors. Demanding managers require products in shorter time than previously. All of this has led to an unending search for superior methods and tools to design embedded systems.

Interminable appetite by consumers for portable embedded systems has continued to churn out chips with ever growing functionality. Soaring nonrecurring engineering costs of chips has forced designers towards large scale chips which exhibit computation capability along with communication protocols. These designs are expected to be flexible by being software upgradeable, reduce time to market by being rapidly verifiable, and produced in large volumes to reduce the cost per chip. To truly make such systems ubiquitous, it is necessary to reduce the power consumed by such a system. These often conflicting demands have meant that chips have to exhibit smaller footprint and consume less power. For a long time now, the narrowing feature sizes of chips and continuously reducing supply voltages were sufficient to satisfy the size and power demands. Unfortunately, this trend towards smaller feature sizes and lower supply voltages is slowing due to physical limitations. This has led to looking at system level methods to reduce power in embedded systems.

Unlike circuit level methods to reduce power, system level methods often allow a plethora of techniques to be applied at various levels. Often these techniques are orthogonal to one another, and can be applied simultaneously, assuming that the designer has sufficient time. Some of these techniques are at the architecture level-such as application specific processors, some are run-time techniques-which respond to the workload by switching voltage and frequency, some are at design time-such as compiler techniques which allow lower power consumption of the compiled code.

Time is indeed changing the way we design systems. Reducing design time and the size of a design team are increasingly crucial. Numerous tools and methods are available to educated designer. Many of these are point tools, though several tool vendors work tirelessly towards making these point tools interoperable so that seamless design flows can be created, which are useable by designers, increasing productivity several times. While such design flows from the RTL level down are quite mature, the design tools and flows at the system level are still evolving and will evolve for some time to come. Research in this area is very much alive at this time and will be for the foreseeable future.

This book examines system level design techniques, which allow the automation of system level designs, with a particular emphasis towards low power. We expect researchers, graduate students and system level designers to benefit from this book. The authors of the individual chapters are all well known researchers in their respective fields.

### 1. Philosophy of This Book

In order to provide a maximum degree of usability for novices and researchers alike, the book is organized in the following way: each of the individual six sub-topics comprises one section that introduces to the whole area. For example, the section Application Specific Embedded Processors starts with the chapter Designing Application Specific Embedded Processors. That chapter gives an introduction to the field in a textbook-like style along with a mentioning of the specific grand challenges followed by a review of the most relevant related work. Thus, the first chapter of a section introduces a novice to the field. Experts in the respective fields may skip that chapter. The subsequent chapters then pick a research topic and present state-of-the-art research approaches that are representative and most challenging from the current perspective. If too specific, more generally interested readers may skip those chapters. In that sense, the book is useful for both, the expert researcher as well as the novice. Also in that sense, this book provides a new (and hopefully useful) concept.

### 2. Contents

Though there are certainly many more aspects in designing embedded processors with respect to low power, we had to restrict the book and eventually identified six main topics (according to the six sections) namely: I. Application