Bernd Bertsche · Hans-Jörg Bullinger (Hrsg.)

Entwicklung und Erprobung innovativer Produkte – Rapid Prototyping

Grundlagen, Rahmenbedingungen und Realisierung

Bernd Bertsche · Hans-Jörg Bullinger (Hrsg.)

Entwicklung und Erprobung innovativer Produkte – Rapid Prototyping

Entwicklung und Erprobung innovativer Produkte – Rapid Prototyping

Grundlagen, Rahmenbedingungen und Realisierung

Unter Mitarbeit von Heiko Graf sowie Thorsten Rogowski und Joachim Warschat

mit 240 Abbildungen

Prof. Dr.-Ing. Bernd Bertsche Universität Stuttgart Institut für Maschinenelemente Pfaffenwaldring 9 70569 Stuttgart bernd.bertsche@ima.uni-stuttgart.de

Prof. Dr.-Ing. habil. Prof. e.h. mult. Dr. h.c. mult. Hans-Jörg Bullinger Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Postfach 200733 80007 München hans-joerg.bullinger@zv.fraunhofer.de

Bibliografische Information der Deutsche Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

ISBN 978-3-540-69879-1 Springer Berlin Heidelberg New York

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdrucks, des Vortrags, der Entnahme von Abbildungen und Tabellen, der Funksendung, der Mikroverfilmung oder der Vervielfältigung auf anderen Wegen und der Speicherung in Datenverarbeitungsanlagen, bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Eine Vervielfältigung dieses Werkes oder von Teilen dieses Werkes ist auch im Einzelfall nur in den Grenzen der gesetzlichen Bestimmungen des Urheberrechtsgesetzes der Bundesrepublik Deutschland vom 9. September 1965 in der jeweils geltenden Fassung zulässig. Sie ist grundsätzlich vergütungspflichtig. Zuwiderhandlungen unterliegen den Strafbestimmungen des Urheberrechtsgesetzes.

Springer ist ein Unternehmen von Springer Science+Business Media springer.de

© Springer-Verlag Berlin Heidelberg 2007

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Buch berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften. Sollte in diesem Werk direkt oder indirekt auf Gesetze, Vorschriften oder Richtlinien (z. B. DIN, VDI, VDE) Bezug genommen oder aus ihnen zitiert worden sein, so kann der Verlag keine Gewähr für die Richtigkeit, Vollständigkeit oder Aktualität übernehmen. Es empfiehlt sich, gegebenenfalls für die eigenen Arbeiten die vollständigen Vorschriften oder Richtlinien in der jeweils gültigen Fassung hinzuzuziehen.

Satz: Digitale Druckvorlage der Herausgeber Herstellung: LE-T_EX, Jelonek, Schmidt & Vöckler GbR, Leipzig Umschlaggestaltung: WMXDesign, Heidelberg Gedruckt auf säurefreiem Papier 68/3100 YL – 5 4 3 2 1 0

Vorwort

"Wenn wir Schlittschuh über dünnes Eis laufen, liegt unser Heil nur in der Schnelligkeit." meinte Ralph Waldo Emerson (1803-82), amerikanischer Philosoph und Dichter. Innovationsorientierte Unternehmen müssen in der Lage sein zu beschleunigen, wenn es drauf ankommt. Sie müssen "die Nase vorn haben" mit Erfolg versprechenden Neuerungen, um die Konkurrenz auf dem überlasteten Eis förmlich stehen zu lassen.

Wie sieht das Umfeld in der Forschung und Entwicklung heutzutage aus? Zeit- und Kostendruck, eine stark differenzierte Markt- bzw. Kundenorientierung, sowie steigende Qualitätsanforderungen sowohl bei den Produkten wie auch den zugehörigen Prozessen bilden herausfordernde und treibende Rahmenbedingungen. Innovationen müssen in diesem turbulenten und komplexen Umfeld nicht nur zielgerichtet und Ressourcen schonend sondern auch schnell und effizient entwickelt werden. "Wer auf dünnem Eis verharrt, kann schnell einbrechen."

"Entwicklung und Erprobung innovativer Produkte – Rapid Prototyping" ist die Zielsetzung des von der DFG geförderten Sonderforschungsbereichs 374, dessen Ergebnisse in diesem Band beschrieben werden. Hauptanliegen ist dabei die Verkürzung der für die Produktentwicklung benötigten Zeit unter den aktuellen Rahmenbedingungen. Dieses Ziel kann nur ganzheitlich und interdisziplinär gelöst werden. Ausgehend von der Fragestellung: "Welche Methoden und Werkzeuge können Unternehmen dabei unterstützen, innovative Produkte in kurzer Zeit zu entwickeln?" ergeben sich weitere Fragen, auf die in diesem Band eingegangen wird:

- Wie kann die Arbeit in interdisziplinären Teams möglichst effektiv organisiert werden? Wie wird Wissen aus unterschiedlichen Disziplinen effizient integriert? Wie kann bei den vorhandenen flexiblen iterativen Prozessen schon in den frühen Entwicklungsphasen das Projektmanagement unterstützt und der Termin gehalten werden?
- Wie können Kosten und Qualität während des kompletten Produktentwicklungsprozesses so abgeschätzt und sicherstellt werden, dass die Zielvorgaben erreicht werden?

- Welche informationstechnische Unterstützung wird benötigt, um die Vielzahl der anfallenden Informationen anwendungsübergreifend zu bündeln, zu integrieren, zu verteilen und darzustellen?
- Wie können möglichst früh Aussagen über die Eigenschaften der in der Entwicklung befindlichen Produkte gemacht werden? Wie können physische, virtuelle und hybride Prototypen den Produktentwicklungsprozess beschleunigen und beitragen, die Qualitäts- und Kostenziele zu erreichen?

Während der zwölfjährigen Laufzeit des Sonderforschungsbereichs 374 wurden die dargestellten Fragen intensiv und systematisch erforscht. Durch die interdisziplinäre Verknüpfung der Fachgebiete Psychologie, Betriebswirtschaftslehre, Ingenieurwissenschaften und Informatik konnten umfassende Lösungen erarbeitet werden. Diese basieren auf dem Gedanken einer evolutionären und iterativen Produktentwicklung. Kennzeichnend hierfür sind die gezielte Nutzung schneller Iterationszyklen, die situationsgerechte Verwendung von Prototypen sowie die dezentrale Struktur selbstorganisierter, vernetzter Teams.

Als Anwendungsfeld wurde die Automobilbranche gewählt, weil diese durch ihre Größe und Stärke in Deutschland eine klare Vorreiterrolle innehat und für viele Branchen als Beispiel und Trendsetter in der Produktentwicklung fungiert. Durch den intensiven Dialog mit der Industrie wurde die Praxisrelevanz der erarbeiteten Ergebnisse sichergestellt. Die erarbeiteten und anwendungsorientiert dargestellten Ergebnisse ermöglichen dem Leser einen intensiven Einstieg in das Thema und geben Anregungen zum Einsatz im Unternehmen. Die entwickelten Methodiken und Techniken werden praxisnah beschrieben und erläutert. Der wissenschaftlich interessierte Leser erhält einen umfassenden Überblick über den Stand der Technik sowie eine Vielzahl von Anregungen für seine Forschungsarbeiten.

Als Sprecher des Sonderforschungsbereichs 374 "Entwicklung und Erprobung innovativer Produkte – Rapid Prototyping" danken wir an dieser Stelle der Deutschen Forschungsgemeinschaft für ihre Unterstützung und die gute Kooperation, die diesen Sonderforschungsbereich erst möglich machten. Wir danken den am Sfb 374 beteiligten Institutionen, deren Einsatz und ausgezeichnete Zusammenarbeit an diesem gemeinsamen Projekt maßgeblich den Erfolg des Sonderforschungsbereichs sicherten:

- Betriebswirtschaftliches Institut Lehrstuhl Controlling, Stuttgart
- DaimlerChrysler AG, Stuttgart
- Höchstleistungsrechenzentrum, Stuttgart

- Institut für Arbeitswissenschaft und Technologiemanagement, Stuttgart
- Institut für Industrielle Fertigung und Fabrikbetrieb, Stuttgart
- Institut für Kunststoffprüfung und Kunststoffkunde (jetzt: Institut für Kunststofftechnik), Stuttgart
- Institut für Maschinenelemente, Stuttgart
- Institut für Psychologie (jetzt: Institut für Allgemeine Psychologie), TU Dresden
- Institut für Rechnergestützte Ingenieursysteme, Stuttgart
- Institut für Strahlwerkzeuge, Stuttgart
- Institut für Umformtechnik, Stuttgart

Unser Dank geht nicht zuletzt an die Autoren und die Redaktion, bestehend aus Dipl.-Ing. Jens Bohnet, Dipl.-Inform. Michael Diederich, Dipl.-Kfm. Jens Leyh, sowie cand. fmt. Markus Prasse, unter der Leitung von Dipl.-Ing. Heiko Graf. Sie haben durch ihre Flexibilität und intensive Absprache ermöglicht, dieses Herausgeberwerk integrativ zu schreiben und die komplexen Zusammenhänge umfassend und prägnant darzustellen.

Weiterhin danken wir Prof. Dr.-Ing. Joachim Warschat und Dipl.-Wirtsch.-Ing. Thorsten Rogowski von der Geschäftsstelle des Sfb 374 für die nicht immer einfache Koordination der Arbeiten des gesamten Sonderforschungsbereiches.

Der deutschen Wirtschaft fällt es schwer mit dem beschleuigten Tempo der globalisierten Märkte Schritt zu halten. Der entscheidende Stellhebel zum schnelleren "time to market" ist die Verkürzung der Entwicklungszeiten. Die in diesem Band vorgestellten Methoden und Werkzeuge sollen Ihnen dabei eine Unterstützung bieten. Wir hoffen, dass wir Ihnen als Leser Ideen und Anregungen für Ihre tägliche Arbeit geben können. Wenn Sie durch die Vorschläge in diesem Band schneller zu innovativen Produkten kommen, dann haben wir ein wichtiges Ziel erreicht, nämlich neue Methoden und Werkzeuge aus der Forschung in die industrielle Praxis zu transferieren und damit die deutschen Unternehmen zu stärken. Bezogen auf das eingangs zitierte Bild von Ralph Waldo Emerson heißt das, dass sie den benötigten Schwung erhalten, um auf dem dünner gewordenen Eis davon zu fliegen.

Stuttgart, im Dezember 2006

Hans-Jörg Bullinger Bernd Bertsche

Inhalt

1 Einleitung	1
1.1 Übersicht über den Sonderforschungsbereich 374	
1.1.1 Ziele	
1.1.2 Überblick	
1.1.3 Prototypen im RPD	
1.1.4 IT Unterstützung im RPD.	
1.1.5 Sfb 374 - Aufbau und Wissenswertes	19
1.2 Integrationsszenario	23
1.2.1 Grundlegende Verbesserungen	
1.2.2 Integration der Teilprojekte am Beispiel eines Pkw-Cockpits	
2 Organisation und Wissenskooperation	33
2.1 Merkmale des Rapid Product Development	
2.2 Anforderungen an Produktentwicklungsteams	
2.2.1 Innovationsanforderungen	
2.2.2 Komplexitätsanforderungen	35
2.2.3 Kooperationsanforderungen	
2.3 Planungsmethoden innovativer Produkte in dezentralen Teams	40
2.3.1 Grenzen einer formalen Planung	
für das Rapid Product Development	40
2.3.2 Potenziale der evolutionären Planung	
für das Rapid Product Development	41
2.3.3 Kompetenzmanagement zur Ünterstützung	
einer evolutionären Planung für das RPD	44
2.3.4 Das entwicklungsfähige Projektplanungssystem für das RPD	47
2.3.5 Zusammenfassung und Ausblick	
2.4 Wissensintensive Kooperationsprozesse	
bei der Entwicklung innovativer Produkte	70

2.4.1 Ausgangssituation	70
2.4.2 Modellentwicklung und Ableitung von	
Unterstützungsinstrumenten zur Wissensintegration im RP	D. 76
2.4.3 Ergebnis der Modellentwicklung zur Wissensintegration	
2.4.4 Ergebnisse der Analyse von Kooperationskonstellationen	
im Produktentwicklungsprozess (Studie 1)	82
2.4.5 Ergebnisse der Untersuchung von Kooperationsanforderun	gen
im Produktentwicklungsprozess (Studie 2)	
2.4.6 Handlungsempfehlungen aus Studie 1 und 2	93
2.4.7 Ergebnisse der Untersuchung von Auswirkungen	
fachlicher Teamheterogenität (Studie 3)	94
2.4.8 Handlungsempfehlungen zur Wissensintegration	
aus Studie 3	106
2.4.9 Umsetzung der Ergebnisse aus den Studien	
in Unterstützungsinstrumente	
2.4.10 Ausblick	
2.4.11 Zusammenfassung	
Literatur	114
3 Vernetztes Wissen für die interaktive Entwicklung	100
von Prototypen	
	107
3.1 Vernetztes Entwicklungswissen durchgehend nutzen	
3.2 Aktives Semantisches Konstruktions- und Zuverlässigkeitsnetz	.130
3.2 Aktives Semantisches Konstruktions- und Zuverlässigkeitsnetz 3.2.1 Semantische Vernetzung	. 130 135
3.2 Aktives Semantisches Konstruktions- und Zuverlässigkeitsnetz 3.2.1 Semantische Vernetzung 3.2.2 CAD – Datenaustausch	. 130 135 136
3.2 Aktives Semantisches Konstruktions- und Zuverlässigkeitsnetz 3.2.1 Semantische Vernetzung 3.2.2 CAD – Datenaustausch 3.2.3 Integration der Produktkostenüberwachung	. 130 135 136
3.2 Aktives Semantisches Konstruktions- und Zuverlässigkeitsnetz 3.2.1 Semantische Vernetzung 3.2.2 CAD – Datenaustausch	.130 135 136 138
3.2 Aktives Semantisches Konstruktions- und Zuverlässigkeitsnetz 3.2.1 Semantische Vernetzung 3.2.2 CAD – Datenaustausch 3.2.3 Integration der Produktkostenüberwachung 3.2.4 Integration der qualitativen und quantitativen Zuverlässigkeitsanalyse	. 130 135 136 138
3.2 Aktives Semantisches Konstruktions- und Zuverlässigkeitsnetz 3.2.1 Semantische Vernetzung 3.2.2 CAD – Datenaustausch 3.2.3 Integration der Produktkostenüberwachung 3.2.4 Integration der qualitativen und quantitativen Zuverlässigkeitsanalyse 3.2.5 Anwendungsbeispiele	.130 135 136 138 139
3.2 Aktives Semantisches Konstruktions- und Zuverlässigkeitsnetz 3.2.1 Semantische Vernetzung 3.2.2 CAD – Datenaustausch 3.2.3 Integration der Produktkostenüberwachung 3.2.4 Integration der qualitativen und quantitativen Zuverlässigkeitsanalyse 3.2.5 Anwendungsbeispiele 3.2.7 Zusammenfassung	130 135 136 138 139 146
3.2 Aktives Semantisches Konstruktions- und Zuverlässigkeitsnetz 3.2.1 Semantische Vernetzung 3.2.2 CAD – Datenaustausch 3.2.3 Integration der Produktkostenüberwachung 3.2.4 Integration der qualitativen und quantitativen Zuverlässigkeitsanalyse 3.2.5 Anwendungsbeispiele 3.2.7 Zusammenfassung 3.3 Qualitätsmanagement im Rapid Prototyping	130 135 136 138 139 146 158
3.2 Aktives Semantisches Konstruktions- und Zuverlässigkeitsnetz 3.2.1 Semantische Vernetzung 3.2.2 CAD – Datenaustausch 3.2.3 Integration der Produktkostenüberwachung 3.2.4 Integration der qualitativen und quantitativen Zuverlässigkeitsanalyse 3.2.5 Anwendungsbeispiele 3.2.7 Zusammenfassung 3.3 Qualitätsmanagement im Rapid Prototyping 3.3.1 Frühe Phasen – Prognose und Merkmalsextraktion	130 135 136 138 139 146 159 161
3.2 Aktives Semantisches Konstruktions- und Zuverlässigkeitsnetz 3.2.1 Semantische Vernetzung 3.2.2 CAD – Datenaustausch. 3.2.3 Integration der Produktkostenüberwachung 3.2.4 Integration der qualitativen und quantitativen Zuverlässigkeitsanalyse 3.2.5 Anwendungsbeispiele 3.2.7 Zusammenfassung 3.3 Qualitätsmanagement im Rapid Prototyping 3.3.1 Frühe Phasen – Prognose und Merkmalsextraktion 3.2.2 Methoden der Risikoanalyse in der Produktkonfiguration	130 135 138 138 146 158 159 161
3.2 Aktives Semantisches Konstruktions- und Zuverlässigkeitsnetz 3.2.1 Semantische Vernetzung 3.2.2 CAD – Datenaustausch 3.2.3 Integration der Produktkostenüberwachung 3.2.4 Integration der qualitativen und quantitativen Zuverlässigkeitsanalyse 3.2.5 Anwendungsbeispiele 3.2.7 Zusammenfassung 3.3 Qualitätsmanagement im Rapid Prototyping 3.3.1 Frühe Phasen – Prognose und Merkmalsextraktion 3.2.2 Methoden der Risikoanalyse in der Produktkonfiguration 3.2.3 Verfahren und Methoden der Prozessüberwachung	130 135 138 138 146 158 159 161
3.2 Aktives Semantisches Konstruktions- und Zuverlässigkeitsnetz 3.2.1 Semantische Vernetzung 3.2.2 CAD – Datenaustausch 3.2.3 Integration der Produktkostenüberwachung 3.2.4 Integration der qualitativen und quantitativen Zuverlässigkeitsanalyse 3.2.5 Anwendungsbeispiele 3.2.7 Zusammenfassung 3.3 Qualitätsmanagement im Rapid Prototyping 3.3.1 Frühe Phasen – Prognose und Merkmalsextraktion 3.2.2 Methoden der Risikoanalyse in der Produktkonfiguration 3.2.3 Verfahren und Methoden der Prozessüberwachung 3.2.4 Systemfeedback – Umfassendes Qualitätsmanagement	130 135 136 138 146 158 159 161 167
3.2 Aktives Semantisches Konstruktions- und Zuverlässigkeitsnetz 3.2.1 Semantische Vernetzung 3.2.2 CAD – Datenaustausch. 3.2.3 Integration der Produktkostenüberwachung 3.2.4 Integration der qualitativen und quantitativen Zuverlässigkeitsanalyse 3.2.5 Anwendungsbeispiele 3.2.7 Zusammenfassung 3.3 Qualitätsmanagement im Rapid Prototyping 3.3.1 Frühe Phasen – Prognose und Merkmalsextraktion 3.2.2 Methoden der Risikoanalyse in der Produktkonfiguration 3.2.3 Verfahren und Methoden der Prozessüberwachung 3.2.4 Systemfeedback – Umfassendes Qualitätsmanagement mit material- und prozessimmanenten Informationen	130 135 138 139 146 159 161 167 172
3.2 Aktives Semantisches Konstruktions- und Zuverlässigkeitsnetz 3.2.1 Semantische Vernetzung 3.2.2 CAD – Datenaustausch. 3.2.3 Integration der Produktkostenüberwachung 3.2.4 Integration der qualitativen und quantitativen Zuverlässigkeitsanalyse 3.2.5 Anwendungsbeispiele 3.2.7 Zusammenfassung 3.3 Qualitätsmanagement im Rapid Prototyping 3.3.1 Frühe Phasen – Prognose und Merkmalsextraktion 3.2.2 Methoden der Risikoanalyse in der Produktkonfiguration 3.2.3 Verfahren und Methoden der Prozessüberwachung 3.2.4 Systemfeedback – Umfassendes Qualitätsmanagement mit material- und prozessimmanenten Informationen 3.3.5 Zusammenfassung	130 135 138 139 146 158 159 161 167 172
3.2 Aktives Semantisches Konstruktions- und Zuverlässigkeitsnetz 3.2.1 Semantische Vernetzung 3.2.2 CAD – Datenaustausch 3.2.3 Integration der Produktkostenüberwachung 3.2.4 Integration der qualitativen und quantitativen Zuverlässigkeitsanalyse 3.2.5 Anwendungsbeispiele 3.2.7 Zusammenfassung 3.3 Qualitätsmanagement im Rapid Prototyping 3.3.1 Frühe Phasen – Prognose und Merkmalsextraktion 3.2.2 Methoden der Risikoanalyse in der Produktkonfiguration 3.2.3 Verfahren und Methoden der Prozessüberwachung 3.2.4 Systemfeedback – Umfassendes Qualitätsmanagement mit material- und prozessimmanenten Informationen 3.3.5 Zusammenfassung 3.4 Kostenmanagement im Prozess des Rapid Prototyping	130 135 136 138 139 146 158 161 167 172
3.2 Aktives Semantisches Konstruktions- und Zuverlässigkeitsnetz 3.2.1 Semantische Vernetzung 3.2.2 CAD – Datenaustausch. 3.2.3 Integration der Produktkostenüberwachung 3.2.4 Integration der qualitativen und quantitativen Zuverlässigkeitsanalyse 3.2.5 Anwendungsbeispiele 3.2.7 Zusammenfassung 3.3 Qualitätsmanagement im Rapid Prototyping 3.3.1 Frühe Phasen – Prognose und Merkmalsextraktion 3.2.2 Methoden der Risikoanalyse in der Produktkonfiguration 3.2.3 Verfahren und Methoden der Prozessüberwachung 3.2.4 Systemfeedback – Umfassendes Qualitätsmanagement mit material- und prozessimmanenten Informationen 3.3.5 Zusammenfassung	130 135 136 138 139 146 158 159 161 167 172

4 Wissensrepräsentation und Kommunikation	205
(RPD-IT-Infrastruktur)	
4.1 Ganzheitliche Modelle zur Repräsentation aktiven Wissens	
4.1.1 Einleitung	
	210
4.1.3 Meilensteine der Entwicklung, Stufe 1 – ASN,	210
Metamodell, ECA	210
Objektmanagement, Slot-Dämon, Transaktionskonzept	212
4.1.5 Meilensteine der Entwicklung - Stufe 3	
4.1.6 Ergebnisse und ihre Bedeutung	
4.1.8 Offene Fragen und Ausblick	
•	
4.2 Agentenbasierte Middleware als Integrationsplattform für aktiv	
Wissenskommunikation im Rapid Product Development	238
4.2.1 Die Herausforderung: Wissenskommunikation	220
im Rapid Product Development	
4.2.2 Stand der Technik	
4.2.3 Das Aktive Semantische Netz	
4.2.4 Die agentenbasierte RPD-Middleware	
4.2.5 Zusammenfassung	200
4.3 Teamorientiertes Kommunikationssystem für vernetztes Arbeiten	267
4.3.1 Einleitung	
4.3.2 Entwicklungsverlauf der Arbeiten im Teilprojekt	
4.3.3 Stand der Forschung	
4.3.4 Methoden	
4.3.5 Ergebnisse	
4.4 Adaptive Benutzungsoberflächen	
4.4.1 Einleitung	
4.4.2 Grundlagen von adaptiven Benutzungsoberflächen	
4.4.3 Das RPD-Portal	
4.4.4 Zusammenfassung	
Literatur	316
5 Erstellung virtueller und physischer Prototypen	329
5.1 Virtuelle Realität.	
5.1.1 Virtuelle Realität in der Produktentwicklung	
5.2 Virtuelle Realität als Gestaltungs- und Evaluationswerkzeug	
5.2.1 Montierbarkeitsuntersuchungen am Virtuellen Prototypen	
5.2.2 Visuelle Beurteilung von Objektgeometrien	
5.2.3 Lageänderung von 3D-Objekten im Raum	
	/

5.2.4 Verbauwege, Einsehbarkeit, Beurteilung der Handlungen	
des Monteurs im Kontext	340
5.2.5 Data Mining in Virtuellen Umgebungen	343
5.3 VR in der Konstruktion	344
5.3.1 CAD-Review	344
5.3.2 CAD-VR Integration	347
5.3.3 VR am Konstruktionsarbeitsplatz	
5.3.4 Realitätsnahe Darstellung in VR	
5.4 Paralleles Rendering	
5.5 Virtuelle und Hybride Prototypen	362
5.5.1 Virtuelle Prototypen	
5.5.2 Online-Simulationen	364
5.5.3 Hybride Prototypen	370
5.5.4 Kooperatives Arbeiten mit virtuellen und	
hybriden Prototypen	374
5.5.5 Zusammenfassung und Ausblick	377
5.6 Daten- und informationstechnische Integration	
des Entwurfsprozesses in die RPD-Prozesskette	379
5.6.1 Ausgangssituation	379
5.6.2 Lösungsansätze	381
5.6.3 Zusammenfassung	392
5.6.4 Ausblick	395
5.7 Multi Material Modelling von Design- und	
Funktionsprototypen	395
5.7.1 Multi Material Modelling für den iterativen Aufbau von	
konzeptionellen Prototypen	396
5.7.2 Funktionalisierung von Prototypen durch das	
Multi Material Modelling	399
5.7.3 Zusammenfassung und Ausblick	400
5.8 Oberflächenveredelung von RP-Bauteilen	401
5.8.1 Ausgangssituation	401
5.8.2 Anforderungen an Oberflächen	402
5.8.3 Verfahren zur Veränderung der Eigenschaften von	
Oberflächen	403
5.8.4 Lösungsansätze zur Funktionalisierung von RP-Bauteilen .	
5.8.6 Verfahrenskombinationen	409
5.8.7 Zusammenfassung und Ausblick	
5.9 Lasergenerieren im modularen System	
5.9.1 Einleitung	
5.9.2 Verfahrensprinzip	
5.9.3 Prozesssteuerung	
5.9.4 Prozesskontrolle durch einen Tiefensensor	420

5.9.5 Prozessregelung	422
5.9.6 Modulares System	427
5.9.7 Zusammenfassung und Ausblick	429
5.10 Selektives Lasersintern von Hochleistungspolymeren	
mittels Nd:YAG-Laser	430
5.10.1 Einleitung	430
5.10.2 Ausgangssituation	
5.10.3 Lösungsansätze	436
5.10.4 Weiterentwicklung der Prozesstechnik	440
5.10.5 Verfahrenskombinationen	442
5.10.6 Zusammenfassung und Ausblick	
5.11 Prototypwerkzeuge und Prototypbauteile	444
5.11.1 Werkstoffe für Prototyp-Werkzeuge	
5.11.2 Grauguss	
5.11.3 Stahl und Aluminium	446
5.11.4 Niedrigschmelzende NE- Schwermetall-Legierungen	446
5.11.5 Kunststoffe, Polyamide und Photopolymere	447
5.11.6 Werkzeugentwicklung	450
5.11.7 3D-Visualisierung der Werkzeugkonstruktion	456
5.11.8 Visualisierung der Simulation des Umformvorgangs	458
5.11.9 Werkzeugherstellungsprozesse	460
5.11.10 Optimierung des Prozesses durch Einsatz	
des Vakuumformverfahrens	461
5.11.11 Tribologische Anforderungen an die Werkzeugwirkfläc	he465
5.11.12 Charakterisierung des Verschleißverhaltens	470
5.11.13 Einfluss des Prototypwerkzeugstoffes auf die Kriterien	
Prototyp-Teilequalität und Werkzeugstandzeit	473
5.11.14 Segment-elastischer Niederhalter aus Kunstharz	
mit Pyramidenstumpfförmigen Stahl-Einsätzen	475
Literatur	478

Autorenverzeichnis

Kap.	Name, Vorname	Titel	Institut
1 1.1	Rogowski, Thorsten Warschat, Joachim	DiplWirtsch Ing. Prof. DrIng. habil.	Institut für Arbeitswissenschaft und Technologiemanagement (IAT) Institut für Arbeitswissenschaft und Technologiemanagement (IAT)
1.2	Bertsche, Bernd Graf, Heiko	UnivProf. DrIng. DiplIng.	Institut für Maschinenelemente (IMA) Institut für Maschinenelemente (IMA)
2 2.1	Kremer, David Leyh, Jens	DiplPsych. DiplKfm	Institut für Arbeitswissenschaft und Technologiemanagement (IAT) Institut für Arbeitswissenschaft und Technologiemanagement (IAT)
2.2	Kremer, David Leyh, Jens	DiplPsych. DiplKfm	Institut für Arbeitswissenschaft und Technologiemanagement (IAT) Institut für Arbeitswissenschaft und Technologiemanagement (IAT)
2.3	Laufs, Uwe Leyh, Jens Spath	M.Comp.Sc. DiplIng.(FH) DiplKfm Prof. DrIng.	Institut für Arbeitswissenschaft und Technologiemanagement (IAT Institut für Arbeitswissenschaft und Technologiemanagement (IAT) Institut für Arbeitswissenschaft und Technologiemanagement (IAT)

2.4	Bienzeisler, Bernd	Dipl Soz.Wiss.	Institut für Arbeitswissenschaft und Technologiemanagement
	Kremer, David	DiplPsych.	(IAT) Institut für Arbeitswissenschaft und Technologiemanagement
	Spath	Prof. DrIng.	(IAT) Institut für Arbeitswissenschaft und Technologiemanagement (IAT)
3, 3.1	Becker, Ralf	DiplIng.(FH) Master of Design	Institut für Industrielle Fertigung und Fabrikbetrieb (IFF)
	Graf, Heiko	DiplIng.	Institut für Maschinenelemente (IMA)
	Grzesiak, Andrzej	DiplIng.	Institut für Industrielle Fertigung und Fabrikbetrieb (IFF)
	Henning, Axel	DiplIng.	Fraunhofer-Institut für Produkti- onstechnik und Automatisierung (IPA)
	Kempf, Michael	DiplMath.	Fraunhofer-Institut für Produkti- onstechnik und Automatisierung (IPA)
3.2	Bertsche, Bernd	UnivProf. DrIng.	Institut für Maschinenelemente (IMA)
	Graf, Heiko	DiplIng.	Institut für Maschinenelemente (IMA)
	Wacker, Michael	DiplIng.	Institut für Maschinenelemente (IMA)
3.3	Becker, Ralf	DiplIng.(FH) Master of Design	Institut für Industrielle Fertigung und Fabrikbetrieb (IFF)
	Grzesiak, Andrzej	DiplIng.	Institut für Industrielle Fertigung und Fabrikbetrieb (IFF)
	Henning, Axel	DiplIng.	Fraunhofer-Institut für Produkti- onstechnik und Automatisierung (IPA)
	Kempf, Michael	DiplMath.	Fraunhofer-Institut für Produkti- onstechnik und Automatisierung (IPA)
	Westkämper, Engelbert	UnivProf. DrIng. Prof. E.h. DrIng. E.h. Dr. h.c. mult.	Institut für Industrielle Fertigung und Fabrikbetrieb (IFF)
3.4	Boomers, Achim	Dr.	Ehem. Betriebswirtschaftliches Institut (BWI)

	Cassack, Ingo	Dr.	Ehem. Betriebswirtschaftliches
	Horváth, Peter	Univ. Prof. Dr. Dr. h.c. mult.	Institut (BWI) Ehem. Betriebswirtschaftliches Institut (BWI)
4	Diederich, Michael K.	DiplInform.	Institut für Arbeitswissenschaft und Technologiemanagement (IAT)
	Warschat, Joachim	Prof. DrIng. habil.	Institut für Arbeitswissenschaft und Technologiemanagement (IAT)
4.1	Mesina, Marian	DrIng.	Ehem. Institut für Rechnergestützte Ingenieursysteme (IRIS)
	Roller, Dieter	UnivProf. HonProf. Dr.	Institut für Rechnergestützte Ingenieursysteme (IRIS)
4.2	Dalakakis, Stavros	DiplIng.	Ehem. Institut für Rechnergestützte Ingenieursysteme (IRIS)
	Diederich, Michael K.	DiplInform.	Institut für Arbeitswissenschaft und Technologiemanagement (IAT)
	Roller, Dieter	UnivProf. HonProf. Dr.	Institut für Rechnergestützte Ingenieursysteme (IRIS)
	Warschat, Joachim	Prof. DrIng. habil.	Institut für Arbeitswissenschaft und Technologiemanagement (IAT)
4.3	Tippmann, Volker		Institut für Arbeitswissenschaft und Technologiemanagement (IAT)
	Warschat, Joachim	Prof. DrIng. habil.	Institut für Arbeitswissenschaft und Technologiemanagement (IAT)
4.4	Aslanidis, Stephanie	DiplMath.	Ehem. Institut für Arbeitswissenschaft und Technologiemanagement (IAT)
	Warschat, Joachim	Prof. DrIng. habil.	Institut für Arbeitswissenschaft und Technologiemanagement (IAT)
	Weisbecker, Anette	PrivDoz. Dr Ing. habil.	Fraunhofer Institut für Arbeits- wirtschaft und Organisation (IAO)