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Preface

Problems linking the shape of a domain or the coefficients of an elliptic operator
to the sequence of its eigenvalues are among the most fascinating of mathematical
analysis. One of the reasons which make them so attractive is that they involve
different fields of mathematics: spectral theory, partial differential equations, ge-
ometry, calculus of variations .... Moreover, they are very simple to state and
generally hard to solve! In particular, one can find in the next pages more than 30
open problems!

In this book, we focus on extremal problems. For instance, we look for a
domain which minimizes or maximizes a given eigenvalue of the Laplace operator
with various boundary conditions and various geometric constraints. We also con-
sider the case of functions of eigenvalues. We investigate similar questions for other
elliptic operators, like Schrédinger, non-homogeneous membranes or composites.

The targeted audience is mainly pure and applied mathematicians, more
particularly interested in partial differential equations, calculus of variations, dif-
ferential geometry, spectral theory. More generally, people interested in properties
of eigenvalues in other fields such as acoustics, theoretical physics, quantum me-
chanics, solid mechanics, could find here some answers to natural questions. For
that purpose, I choose to recall basic facts and tools in the two first chapters
(with only a few proofs). In chapters 3, 4 and 5, we present known results and
open questions for the minimization problem of a given eigenvalue A\ () of the
Laplace operator with Dirichlet boundary conditions, where the unknown is here
the domain Q itself. In chapter 6, we investigate various functions of the Dirichlet
eigenvalues, while chapter 7 is devoted to eigenvalues of the Laplace operator with
other boundary conditions. In chapter 8, we consider the eigenvalues of Schrédinger
operators: therefore, the unknown is no longer the shape of the domain but the
potential V. Chapter 9 is devoted to non-homogeneous membranes and chapter
10 to more general elliptic operators in divergence form. At last, in chapter 11, we
are interested in the bi-Laplace operator.

Of course no book can completely cover such a huge field of research. In mak-
ing personal choices for inclusion of material, I tried to give useful complementary
references, in the process certainly neglecting some relevant works. I would be
grateful to hear from readers about important missing citations.
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Chapter 1

Eigenvalues of elliptic operators

1.1 Notation and prerequisites

In this section, we recall the basic results of the theory of elliptic partial differential
equations. The prototype of elliptic operator is the Laplacian, but the results that
we state here are also valid for more general (linear) elliptic operators. For the basic
facts we recall here, we refer to any textbook on partial differential equations and
operator theory. For example, [36], [58], [75], [83] are good standard references.

1.1.1 Notation and Sobolev spaces

Let Q be a bounded open set in RY. We denote by L?(f2) the Hilbert space
of square summable functions defined on Q and by H*(f2) the Sobolev space of
functions in L?(2) whose partial derivatives (in the sense of distributions) are in
L?(Q):

ou

HY(Q) := {u € L*(Q) such that P
Xq

€ L*(Q),i=1,2,...,N}.
This is a Hilbert space when it is endowed with the scalar product

(u,v) g ::/Qu(:zc)v(m) dx + /QVu(gc).Vv(x)dx

and the corresponding norm:

1/2
llu|l g := (/ u(z)? de + |Vu(x)|2dx> .
Q Q
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In the case of Dirichlet boundary conditions, we will use the subspace H¢ (2) which
is defined as the closure of C* functions compactly supported in € (functions in
Cs°(Q)) for the norm || ||g1. It is also a Hilbert space. At last, H~1(2) denotes
the dual space of Hg(£2). For some non-linear problems, for example when we are
interested in the p-Laplace operator, it is more convenient to work with the spaces
LP p > 1 instead of L2. In this case, the Sobolev spaces, defined exactly in the
same way, are denoted by W1P(Q) and WO1 "P(Q) respectively. These are Banach
spaces.

When Q is bounded (or bounded in one direction), we have the Poincaré
inequality:

3C = () such that Yu € H}(Q), /

[ e d:zch/Q|Vu(x)| do. (11)

Actually the constant C' which appears in (1.1) is closely related to the eigenvalues
of the Laplacian since we will see later (cf (1.36)) that the best possible constant C
is nothing other than 1/A;1(2) where A1(Q) is the first eigenvalue of the Laplacian
with Dirichlet boundary conditions.

By definition, H{(2) and H'(Q2) are continuously embedded in L?(f2), but
we will need later a compact embedding. This is the purpose of the following
theorem.

Theorem 1.1.1 (Rellich).
e For any bounded open set Q, the embedding H}(Q) — L?() is compact.

o If ) is a bounded open set with Lipschitz boundary, the embedding H* () —
L2(Q2) is compact.

Remark 1.1.2. We can weaken the assumption of Lipschitz boundary but not too
much, see e.g. the book [148] for more details.

1.1.2 Partial differential equations
Elliptic operator

Let a;;(x), i, = 1,..., N be bounded functions defined on Q and satisfying the
usual ellipticity assumption:

Ja > 0, such that V&€ = (&1,&s,...,6n) €RY, Vo € Q

Zz]'\,rjzl aij(2)&:&5 > aléf? (1.2)

where || = (§+&+---+ 512\,)1/2 denotes the euclidean norm of the vector &.
We will also assume a symmetry assumption for the a;; namely:

Vx € Q,VZ,] aij(x) = aji(x) . (13)
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Let ag(x) be a bounded function defined on 2. We introduce the linear elliptic
operator L, defined on H'(f2) by:

Lu=-Y" 8"371_ (aij(x)gu ) + ao(@)u (1.4)

T
i,j=1 J

(derivatives are to be understood in the sense of distributions). The prototype of
elliptic operator is the Laplacian:
N 92y

—Ay = — 92 (1.5)
i=1 07

which will be considered in the main part of this book (chapters 3 to 7). In chapter
8, we consider the Schrédinger operator Lyu = —Au+V (x)u where V' (the poten-
tial) is a bounded function, while chapters 9 and 10 deal with more general elliptic
operators. In that case, we will keep the notation L when we want to consider
general operators given by (1.4). At last, in chapter 11, we consider operators of
fourth order.

Remark 1.1.3. Let us remark that, since we are only interested in eigenvalue
problems, we do not put any sign condition on the function ag(x) which appears
in (1.4). Indeed, since ag(x) is bounded, we can always replace the operator L by
L+ (JJag|leo + 1)Id, i.e. replace the function ag(z) by ag(x) + ||ag||ec + 1 if we need
a positive function in the term of order 0 of the operator L. For the eigenvalues,
that would just induce a translation of ||ag||ec + 1 to the right.

Dirichlet boundary condition
Let f be a function in L?(2). When we call u a solution of the Dirichlet problem

Lu = f in{,

u = 0 on 99, (1.6)
we actually mean that v is the unique solution of the variational problem
u € HY(Q) and Yv € H}(Q),
{ SNy o) 3 20 det [y ao(@)u(@ye(e) de = fy @) de . )

Existence and uniqueness of a solution for problem (1.7) follows from the Lax-
Milgram Theorem, the ellipticity assumption (1.2) and the Poincaré inequality
(1.1). Note that, according to Remark 1.1.3, we can restrict ourselves to the case
ap(x) > 0. In the sequel, we will denote by AP (or AP(Q) when we want to
emphasize the dependence on the domain ) the linear operator defined by:

AP L2(Q) —  HE(Q) c L*(Q),

1.8
f — wsolution of (1.7). (18)
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Neumann boundary condition

In the same way, if f is a function in L?(€2), we will also consider u a solution of
the Neumann problem

Lu = [ inQ,

Zgjzlaija‘?j n; = 0 ondfd (1.9)

(where n stands for the exterior unit normal vector to 9Q and n; is its ith coor-

dinate). For example, when L = —A, the boundary condition reads (formally)
ou
=0.
on

It means that u is the unique solution in H'(€) of the variational problem

u € HY(Q) and Vv € H(Q),

{ Zgjﬂ fQ a;j(x) gzui g;’j dr + fQ ao(z)u(z)v(x) de = fQ f(x)v(x)dw . (1.10)

Existence and uniqueness of a solution for problem (1.10) follows from the Lax-
Milgram Theorem, the ellipticity assumption (1.2) and the fact that we can assume
that ag(z) > 1 (according to Remark 1.1.3). In the sequel, we will denote by AY
the linear operator defined by:

AN L2(Q) —  HYQ) c L*(Q),

. (1.11)
f +— wsolution of (1.10).

Remark 1.1.4. We will also consider later, for example in chapter 7, other kinds
of boundary conditions like Robin or Stekloff boundary conditions.

1.2 Eigenvalues and eigenfunctions

1.2.1 Abstract spectral theory

Let us now give the abstract theorem which provides the existence of a sequence
of eigenvalues and eigenfunctions. Let H be a Hilbert space endowed with a scalar
product (.,.) and recall that an operator T is a linear continuous map from H into
H. We say that:

e T is positive if, Vo € H, (Tx,x) > 0,
e T is self-adjoint, if Va,y € H, (Tx,y) = (z,Ty),

e T is compact, if the image of any bounded set is relatively compact (i.e. has
a compact closure) in H.



1.2. Eigenvalues and eigenfunctions )

Theorem 1.2.1. Let H be a separable Hilbert space of infinite dimension and T a
self-adjoint, compact and positive operator. Then, there exists a sequence of real
positive eigenvalues (v,), n > 1 converging to 0 and a sequence of eigenvectors
(2n), n > 1 defining a Hilbert basis of H such that ¥n, T x, = vy Zp.

Of course, this theorem can be seen as a generalization to Hilbert spaces of the
classical result in finite dimension for symmetric or normal matrices (existence of
real eigenvalues and of an orthonormal basis of eigenvectors).

1.2.2 Application to elliptic operators
Dirichlet boundary condition

We apply Theorem 1.2.1 to H = L?(2) and the operator AP defined in (1.8).
o AP is positive: let f € L?(Q) and u = AP f be the solution of (1.7). We get

(1A 1) = [ flau(o)do = 3 [as@rgt 2t [ an(arteyd

7,j=1

Now, we recall that ag(z) can be taken as a positive function and then the
ellipticity condition (1.2) yields the desired result. Moreover, we see that
(f, AP f) > 0 as soon as f # 0 (strict positivity).

o AP is self-adjoint: let f,g € L?(Q) and u = AP f, v = AP g. We have:

(f, AL 9) :/wf(x) z)dr = Z /az] ;)Z 5('9:117; dw—l—/ﬂao(x)u(x)v(x)dx.

7,j=1
(

1.1
Now, according to the symmetry assumption (1.3) and the equation (1.7
satisfied by v, the right-hand side in (1.12) is equal to [, u(z)g(x)dr =
(47 £.9).

e AP is compact: it is an immediate consequence of the Rellich Theorem 1.1.1.

l\D
~— —

As a consequence of Theorem 1.2.1, there exists (u,,) a Hilbert basis of L?(Q) and

a sequence v, > 0, converging to 0, such that AE Uy = Vp Uy Actually, the v, are

positive, since the strict positivity of AP yields vy, |uy| 2 = (un, AP uy) > 0.
Coming back to (1.7), we see that u,, satisfies, Vv € H}(Q):

Z /Q aij(x ?;Z 88;] dl’Jr/Q ao(x)un(x)v(z) dz :/Qun(x)v(x) dx

1,7=1

which means 1
Lu, = Up, -
Un

Setting A\, = we have proved:

Un )



