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Preface

The increasing accuracy requirements in many of today’s simulation tasks
in science and engineering more and more often entail the need to take into
account more than one physical effect. Among the most important and, with
respect to both modelling and computational issues, most challenging of such
‘multiphysics’ problems are fluid-structure interactions (FSI), i.e. interactions
of some movable or deformable elastic structure with an internal or surround-
ing fluid flow. The variety of FSI occurrences is abundant and ranges from
huge tent-roofs to tiny micropumps, from parachutes and airbags to blood
flow in arteries.

Although a lot of research has been done in this thriving field, with some-
times really impressive results, and although most of today’s software pack-
ages for computational fluid dynamics or computational structural mechan-
ics offer extensions that, at least to some extent, allow for simulating certain
classes of FSI scenarios, some of the key questions have not been answered yet
in a satisfying way: How can the coupling itself be modelled in an appropri-
ate way? What are the possibilities and limits of monolithic and partitioned
coupling schemes or hybrid approaches? What can be said concerning the ad-
vantages and drawbacks of the various discretization schemes used on the flow
and on the structure side? How reliable are the results, and what about error
estimation? How can a flexible data and geometry model look like – espe-
cially against the background of large geometric or even topological changes?
What can be said about the design of robust and efficient solvers? And how
can sensitivity and optimization issues enter the game?

The book in hand contains the proceedings of a workshop on fluid-struct-
ure interactions held in Hohenwart, Germany, in October 2005. This 2-day
workshop was organized by the Research Unit 493 ‘Fluid-Structure Interac-
tion: Modelling, Simulation, Optimization’ established by the Deutsche For-
schungsgemeinschaft (DFG) in 2003 and bringing together researchers from
seven German universities from the fields of mathematics, informatics, me-
chanical engineering, chemical engineering, and civil engineering. Designed
as a forum for presenting the research unit’s latest results as well as for ex-
changing ideas with leading international experts, the workshop consisted of
fifteen lectures on computational aspects of fluid-structure interactions. The
topics now gathered in this volume cover a broad spectrum of up-to-date FSI
issues, ranging from more methodical aspects to applications.

We would like to thank the editors of Springer’s Lecture Notes in Compu-
tational Science and Engineering for admitting our volume to this series and
Springer Verlag and, in particular, Dr. Martin Peters, for their helpful sup-
port from the first ideas up to the final layout. Furthermore, we are obliged
to Markus Brenk, who did a great job in compiling the single contributions
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to a harmonic ensemble. Finally, we are grateful for the Research Unit 493
‘Fluid-Structure Interaction: Modelling, Simulation, Optimization’ funded by
the Deutsche Forschungsgemeinschaft (DFG). Without this financial support,
neither many of the results presented in this book nor the book itself would
have been possible.

München and Darmstadt Hans-Joachim Bungartz
March 2006 Michael Schäfer
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Implicit Coupling of Partitioned
Fluid-Structure Interaction Solvers using
Reduced-Order Models

Jan Vierendeels

Ghent University, Department of Flow, Heat and Combustion Mechanics,
St.-Pietersnieuwstraat 41, B-9000 Ghent, Belgium

Abstract. In this contribution a powerful technique is described which allows the
strong coupling of partitioned solvers in fluid-structure interaction (FSI) problems.
The method allows the use of a black box fluid and structural solver because it
builds up a reduced order model of the fluid and structural problem during the
coupling process. Each solution of the fluid/structural solver in the coupling process
can be seen as a sensitivity response of an applied displacement/pressure mode.
The applied modes and their responses are used to build up the reduced order
model. The method is applied on the flow in the left ventricle during the filling and
emptying phase. Two to three modes are needed, depending on the moment in the
heart cycle, to reduce the residual by four orders of magnitude and to achieve a
fully coupled solution at each time step.

1 Introduction

The computation of fluid-structure interaction (FSI) problems has gain a
lot of interest in the past decade. The interaction can be loose or strong.
For loose coupling problems (e.g. for flutter analysis [1–3]) existing fluid and
structural solvers can be used as partitioned solvers. The main difficulty is
the data exchange between those solvers.

When strong interaction is present, strong coupling of the fluid and struc-
tural solver can be achieved with a monolithic scheme [4]. However parti-
tioned schemes can also be used for these applications. Vierendeels et al.
[5,6] used a partitioned procedure and reached stabilization of the interac-
tion procedure by introducing artificial compressibility in the subiterations
by preconditioning the fluid solver. Recently strongly coupled partitioned
methods were developed [7–10] using approximate or exact Jacobians of the
fluid and structural solver. In these methods no black box fluid and/or solid
solver can be used.

When existing fluid and structural solvers are used to solve strongly cou-
pled FSI problems, a subiteration process has to be set up for every time step
in order to achieve the strong coupling, but in order to obtain convergence
typically quite a lot of subiterations are required. Mok et al. [11] used an
Aitken-like method to enhance the convergence behaviour of this subitera-
tion process.



2 J. Vierendeels

In this contribution a coupling procedure is presented which outperforms
the Aitken-like method for strongly coupled FSI problems. A partitioned pro-
cedure is used and implicit coupling is achieved through sensitivity analysis
of the important displacement and pressure modes. These modes are detected
during the subiteration procedure for each time step. The method allows the
use of black box fluid and structural solver. The method is applied to a 2D
axisymmetrical model of the cardiac wall which motion is computed during
a complete heart cycle. The structural solver was already developed in previ-
ous work [5]. As fluid solver the commercial CFD software package Fluent 6.1
(Fluent Inc.) is used to illustrate the practical applicability of the method.

2 Methods

2.1 Fluid and Structural Solver

The black box fluid solver which is used has to fulfill some conditions. It must
be possible to prescribe the movement of the boundary of the fluid domain
through e.g. a user subroutine and it must be possible to extract the stress
data at the moving boundaries. In our application we only need the pressure
distribution at the moving boundary. The response of the flow solver can be
represented by the function F :

pn+1
k+1 = Fn+1

(
Xn+1

k+1

)
, (1)

where Xn+1
k+1 denotes the prescribed position of the boundary nodes obtained

from the structural solver in subiteration k + 1 when computing the solution
on time level n + 1. It is assumed that the solution on time level n is known.
The superscript n + 1 on F denotes other variables in the flow solver that are
already known on time level n + 1, such as in- and outflow boundary condi-
tions. Starting from time level n the pressure distribution on the boundary
nodes pn+1

k+1 can be computed, which is then passed to the structural solver.
The choice of the boundary conditions needs some attention. When the

ventricle is filling the fluid domain has only an inlet, no outlet is present.
Therefore it is impossible to specify a velocity at the inlet boundary. This
would conflict with the change in volume of the ventricle which is already
prescribed by the boundary position on the new time level. Moreover, also the
pressure field will be undefined upto a constant value if no pressure boundary
is specified. Therefore it is necessary to prescribe the pressure at the inflow
boundary during the filling phase and at the outflow during the emptying
phase.

The structural model which is used was already developed in previous
work [5]. The structural equations are given by G:

Gn+1
(
Xn+1

k+1 , pn+1
k ,∆pn+1

k+1

)
= 0. (2)

Since we are dealing with the cardiac cycle the function Gn+1 incorporates the
prescribed time dependency of the structural properties. In our application,
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it is assumed that the volume of the ventricle is known as a function of time,
therefore the structural solver does not only compute the new position of the
boundary nodes, given a pressure distribution at the boundary, but it also
computes a pressure shift, ∆pn+1

k+1 , equal for all nodes, so that the volume
corresponds with the prescribed volume at that time level. This pressure
shift is used to adjust the pressure level in the fluid calculations by adjusting
the pressure level of the boundary conditions. In the sequel we denote the
structural equations as

Gn+1
(
Xn+1

k+1 , pn+1
k

)
= 0 (3)

for a given pressure input pn+1
k coming from the fluid solver, neglecting the

notation for the update of the pressure boundary condition needed in the
fluid solver. The structural solver can also be denoted as

Xn+1
k+1 = Sn+1(pn+1

k ). (4)

The superscript n + 1 on F, G and S are dropped from now on. Equation (3)
is solved by Newton’s method.

2.2 Classical Strong Coupling Methods for Partitioned Solvers

Explicit subiterations within a time step Strong coupling can be ob-
tained by calling the fluid and structural solver subsequently during the cal-
culation of a time step until convergence is obtained. When there is a lot of
interaction between both subproblems, this approach can lead to divergence
in the subiteration process. When underrelaxation is introduced with a con-
stant underrelaxation parameter, divergence can be avoided but convergence
is not really obtained as is illustrated below.

A non-constant underrelaxation parameter can be used to improve the
convergence of the subiteration process. The underrelaxation parameter can
be obtained with an Aitken-like acceleration method [11] as follows:

ωk =
(Xk − Xk−1) · (R(Xk) − R(Xk−1))

(R(Xk) − R(Xk−1)) · (R(Xk) − R(Xk−1))
(5)

where R(X) = S ◦ F (X) − X. Xk+1 can be obtained with

Xk+1 = Xk − ωkR(Xk). (6)

An initial value for ω has to be chosen. We used an initial value of 0.01.

Comparison of the different classical methods If subsequently the
structural solver and the fluid solver are called within the subiterations of a
time step, divergence is detected. This is shown in Fig. 1 for the first time
step of the first heart cycle at the onset of filling. Even when underrelaxation
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Fig. 1. Residual behaviour of the coupling method for the first time step of the
first heart cycle at the onset of filling: (a) no reduced order model, without under-
relaxation, (b) no reduced order model, with underrelaxation 0.05, (c) no reduced
order model, with Aitken-like acceleration technique, (d) with the reduced order
model for the fluid solver, (e) with the reduced order models for both the fluid and
structural solver.

is used, convergence within the subiterations could not be obtained in a
reasonable number of subiterations (Fig. 1). With the Aitken-like method,
convergence was also not really obtained for the first time step within a
reasonable number of subiterations. During the next time steps even a worse
convergence behaviour was observed.

Figure 2 shows the evolution of the position of the boundary during the
subiteration process of the first time step when subsequent calls of strucural
and fluid solver without underrelaxation are performed. One can detect that
the behaviour of low frequency modes are responsable for the divergence
behaviour.

From this observation, it can be expected that when implicitness is intro-
duced in the subiteration process for a few low frequency modes, convergence
could be obtained.

2.3 Coupling Method with a Reduced Order Model for the Fluid
Solver (Method 1)

Since the fluid solver is a black box commercial code, it is not possible to
retrieve or construct the Jacobian FX , which is needed to solve the structural
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Fig. 2. Illustration of the computed displacements of the heart wall if subsequently
the structural and fluid solver are called and when no underrelaxation is used.

problem in an implicit way:

G
(
Xn+1

k+1 , pn+1
k+1

)
= 0. (7)

However it is possible to construct a reduced order model of the fluid solver
which can be differentiated easily. Let’s denote the reduced order model of
the fluid solver by

p̂n+1
k+1 = F̂

(
Xn+1

k+1

)
, (8)

then the equations for the structure are written as

G
(
Xn+1

k+1 , p̂n+1
k+1

)
= 0. (9)

A Newton iteration method can be set up after inserting (8) into (9) as
follows:

G
(
Xn+1

k+1,s, p̂
n+1
k+1,s

)
+
(

∂G

∂X
+

∂G

∂p̂

∂p̂

∂X

)(
Xn+1

k+1,s+1 − Xn+1
k+1,s

)
≈ 0, (10)

which is solved for Xn+1
k+1,s+1 upon convergence. Remark that this iteration

procedure with index s involves only the solution of the structural problem.

The problem can be solved if we have an expression for the Jacobian
∂p̂

∂X
of the reduced order model for the fluid problem which we will denote by F̂X

in the sequel.

Construction of the reduced order model After k subiteration loops
(and thus k fluid solver calls) k sets of boundary positions and corresponding
pressure distributions are obtained that fulfill the flow equations (1). From
the moment that minimum two sets (Xi, pi) , i = 1 . . . k are available, a set
of displacement modes Vm = {vm,m = 1 . . . k − 1} is constructed with

vm = Xk − Xm. (11)
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The corresponding pressure mode to vm is denoted by ∆pm = pk − pm. A
pressure mode matrix ∆Pk−1 is constructed:

∆Pk−1 =
[
∆p1 · · · ∆pk−1

]
, (12)

where the columns contain the computed pressure modes.
An arbitrary displacement ∆X can be projected onto the set of displace-

ment modes Vm. The displacement ∆X can be written as

∆X =
k−1∑

m=1

αmvm + ∆Xcorr (13)

where αm denotes the coordinates of ∆X in the set Vm. Note that the number
of displacement modes (k − 1) is much smaller than the dimension of ∆X,
which explains the correction term. If the displacement modes are well chosen,
∆X can be approximated by ∆X̃:

∆X ≈ ∆X̃ =
k−1∑

m=1

αmvm. (14)

This is an overdetermined problem for the coordinates αm, which can be
faced with the least square approach. With this approach, the coordinates
αm can be computed as







α1

α2

...
αk−1








=








〈v1, v1〉 〈v1, v2〉 · · · 〈v1, vk−1〉
〈v2, v1〉 〈v2, v2〉 · · · 〈v2, vk−1〉

...
...

...
〈vk−1, v1〉 〈vk−1, v2〉 · · · 〈vk−1, vk−1〉








−1 






vT
1

vT
2
...

vT
k−1








∆X (15)

The coordinates αm denote the amount of each mode in the displacement
∆X so that the corresponding change in pressure ∆p can be approximated
as

∆p ≈ ∆Pk−1α, (16)

where α = [α1 · · ·αk−1]
T . The Jacobian F̂X of the reduced order model can

thus be written as

F̂X =
[
∆p1 · · · ∆pk−1

]






〈v1, v1〉 · · · 〈v1, vk−1〉
...

...
〈vk−1, v1〉 · · · 〈vk−1, vk−1〉






−1 




vT
1
...

vT
k−1




 (17)

The reduced order model, used in subiteration k + 1 is written as

p̂n+1
k+1 = pn+1

k + F̂X

(
Xn+1

k+1 − Xn+1
k

)
. (18)

Once eq. (9) is solved for Xn+1
k+1 , pn+1

k+1 is obtained from eq. (1) and the residual

rn+1
k+1 = G

(
Xn+1

k+1 , pn+1
k+1

)
(19)

is computed with the pressure from the fluid solver, i.e. not from the reduced
order model.


