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Preface

The field of cosmology is currently undergoing a revolution driven by dra-
matic observational progress and by novel theoretical scenarios imported from
particle physics. In particular, two most remarkable results were recently ob-
tained from measurements of the angular spectrum of the fluctuations in the
Cosmic Microwave Background (CMB) radiation providing convincing evi-
dence that the Universe is nearly flat and from the Hubble diagram of distant
supernovae indicating an accelerating expansion rate, which implies the exis-
tence of some dark energy as the dominant component of the Universe. Indeed,
the next decade will benefit from high quality data on cosmology from differ-
ent major experiments and observatories, with a particular important contribu-
tion from space missions such as WMAP, Planck Surveyor, XMM and SNAP
among others. On one side, cosmologists believe they understand the origin
of the main ingredients which allow a coherent description of the Universe
from its very early phase, namely inflation, to the actual epoch which accounts
for the origin of the primordial fluctuations, allowing predictions of their im-
prints in the cosmic microwave sky and leading to the large scale structure
of the Universe as observed. On the other side, the existence of a non-zero
vacuum density is certainly one of the most astonishing results of modern fun-
damental physics. Understanding its nature and its origin will be one of the
major directions of research in the following years. In view of the intensive
current activity in the field, a School fully dedicated to these both sides in
cosmology was timely. This 11-days NATO Advanced Study Institute took
place in the lovely setting of the Institut d’Études Scientifiques de Cargèse
(Corse, France) and was attended by about 80 participants from several coun-
tries. These proceedings contain the papers that were presented during the
School and which covered the following fields : quintessence/dark energy; in-
flation; CMB: anisotropies and polarization; large scale structure; clusters of
galaxies; gravitational lensing; galaxy formation; dark matter; supernovae and
the accelerating expansion of the Universe.

ALAIN BLANCHARD & MONIQUE SIGNORE
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Chapter 1

BASICS OF COSMOLOGY

Monique Signore
LERMA, Observatoire de Paris, 61 Av.de l’Observatoire,75014 Paris, France

Monique.Signore@obspm.fr

Alain Blanchard
LATT, Observatoire Midi-Pyrénées, CNRS 14, Av. Ed. Belin, 31 400 Toulouse, France

Alain.Blanchard@ast.obs-mip.fr

Introduction

We will begin by briefly reviewing the General Cosmological Framework
in which the following lectures will fit the Hot Big Bang!
In practice, on the basis of three observational facts :
i) the Universe is currently in a state of uniform expansion ,
ii) the Universe is filled with photons that come from background blackbody
radiation at a temperature of about 2.74 K ,
iii) the Universe is isotropic on large scales i.e. beyond nearly 1000 Mpc,
one can construct, from General Relativity, a generic cosmological model known
as the Hot Big Bang or the Standard Big Bang Model.
This model, which ancestor is the Lemaî tre Primeval atom, is but a mere 40
years old and provides a description of some other observations like, in partic-
ular, the abundances of light elements.

The paper is organized as follows : in section 2, we briefly review the ge-
ometry and dynamics of the Universe and then give the Einstein-Friedman-
Lemaître (hereafter EFL) equations; section 3 introduces some important quan-
tities needed for observations; in section 4, we rapidly present some solutions
of the EFL equations, i.e. some cosmological models; in section 5, the Stan-
dard Big Bang Nucleosynthesis Model is described while section 6 shows a
statement of observations of primordial abundances; in section 7, we confront
the predictions of the Standard Big Bang Nucleosynthesis (hereafter SBBN)
model to the observations of the primordial abundances; a brief conclusion is

1
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given in section 8.

Let us also mention the recent review "Precision Cosmology" - and refer-
ences therein - due to Melchiorri et al. (2003 ) which develops many topics
that are rapidly presented here.

1. Geometry and Dynamics

Geometry of 4-dimensional space-time

The fundamental idea of geometrical theory of gravity starts from the fact
that we can assign four coordinates to any event observed in our vicinity, for
instance in Cartesian coordinates (x, y, z, t). Locally, space appears flat. How-
ever this does not prejudge of the global shape of space : local observations
put us in the same situation that lead people to think the earth was flat. Let us
take the line element of a homogeneous 3D space which can be shown to be :

dl2 = r2(dθ2 + sin2 θdφ2) +
dr2

1 − k
(

r
R

)2
where k is −1, 0, 1 accordingly to whether space is hyperbolic, flat or spherical.
R is a characteristic size (in the spherical case, that is the radius of the 3D-
sphere embedded in a 4D space).

We can add the time as the fourth coordinate, to build the equivalent of
the Minkowski space-time element. We then get the Robertson-Walker line
element after the change of variables r

R → r:

ds2 = −c2dt2 + R(t)2[r2(dθ2 + sin2 θdφ2) +
dr2

1 − kr2
] (1.1)

Topology

The above line element depends on the local shape of space: the curvature
(i.e. the value of k) is only a local property of space, its geometry, but does
not tell us the global shape of space. For instance, the Euclidean plane is
an infinite flat surface while the surface of a cylinder is a 2D-space which is
flat everywhere but is finite in one direction. Identically, we may in principle
derived the local geometry of space through General Relativity. It does not
prejudge of the global topology of space. Only direct observations would allow
to test what the topology actually is. Of course this will not be possible on
scales larger than what can be observed (the horizon). We can therefore hope
to prove that the Universe is finite, if it is small enough, but we could never
know whether we are in a finite Universe of which the scale is larger than the
horizon, or whether we are in an infinite Universe.
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Dynamics

The function R(t) which appears in the RW line element, is totally indepen-
dent of any geometrical consideration. It can be specified only within a theory
of gravity. Although General Relativity (GR hereafter) is at the starting point
of modern cosmology, it is often of little use in practice as in most cases we are
in the weak field regime, for which Newton theory is sufficient. Therefore, this
lecture will say almost nothing about GR. The basic equation of GR relates the
geometrical tensor Gij to the energy-momentum tensor TijTT

Gij = Rij − 1
2
gijR = 8πGTijTT (1.2)

There exists a coordinates system, called the comoving coordinates, in which
the matter is at rest, and the tensor TijTT is diagonal with T00TT = ρ and T11TT =
T22TT = T33TT = p, ρ being the density and p the pressure. A fundamental aspect
of GR is that the source of gravity includes explicitly a term coming from the
pressure : ρ + 3p/c2. Finally, there is an analog of the Gauss theorem, that is
the Birkhoff’s theorem: if the matter distribution is spherical then the evolution
of the radius of a given shell of matter does depend only on its internal content.

From the above rules, we can easily derive the equation for R(t). Let us
consider a spherical region of radius a in a homogeneous distribution of matter.
The equivalent Newtonian acceleration is:

d2a

dt2
= g

with the acceleration being generated by the “mass” of the above spherical
region M(a) :

g = −GM(a)
a2

= −4
3
πG(ρ + 3p/c2)a

The density term includes the effect of kinetic energy (E = mc2!), so that
energy conservation can be written inside the volume of the sphere, and ele-
mentary thermodynamics gives:

d(EtEE ) = d(ρV c2) = −pdV

leading to :

ρ̇ = −3(
p

c2
+ ρ)

ȧ

a
From these two equations, the pressure can be eliminated, and, after having
multiply both term by ȧ, the differential equation can be easily integrated. This
leads to the following equation:(

ȧ

a

)2

=
8πGρ

3
− Kc2

a2


