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 Preface 

The strength of metallic materials determines the usability and reliability of all 
the machines, tools and equipment around us. Yet, the question about which 
mechanisms control the strength and damage resistance of materials and how they 
can be optimised remains largely unanswered. How do real, heterogeneous mate-
rials deform and fail? Why can a small modification of the microstructure increase 
the strength and damage resistance of materials manifold? How can the strength of 
heterogeneous materials be predicted?  

The purpose of this book is to present different experimental and computational 
analysis methods of micromechanics of damage and strength of materials and to 
demonstrate their applications to various micromechanical problems. This book 
summarizes at a glance some of the publications of the Computational Mechanics 
Group at the IMWF/MPA Stuttgart, dealing with atomistic, micro- and mesome-
chanical modelling and experimental analysis of strength and damage of metallic 
materials.  

In chapter 1, the micromechanisms of damage and fracture in different groups 
of materials are investigated experimentally, using direct observations and inverse 
analysis. The interaction of microstructural elements with the evolving damage is 
studied in these experiments. Chapter 2 presents different approaches to the mi-
cromechanical simulation of composite materials: embedded unit cells, multiphase 
finite elements and multiparticle unit cells. Examples of the application of these 
models to the analysis of deformation and damage in different materials are given. 
Chapter 3 deals with the methods of numerical modelling of damage evolution and 
crack growth in heterogeneous materials. Different methods of damage evolution 
modelling, in particular in materials with ductile (aluminium, cobalt) and brittle 
matrices, are applied to investigate the interrelations between microstructures and 
strength of these materials. Chapter 4 provides an insight into several methods of 
micromechanical computational modelling of materials with interpenetrating 
phases using graded materials. It defines the matricity model and demonstrates its 
application to the analysis of different materials. Multilayer models of graded ma-
terials, functionally graded finite elements, multiparticle unit cells with graded 
particle distribution and voxel based method of the 3D FE mesh generation are de-

Chapter 5 deals with methods of atomistics and dislocation modelling of the 
material behaviour and damage. 
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scribed in this chapter as well as models of graded materials used for milling ap-
plications. 
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Chapter 1: Micromechanical Experiments 

The purpose of this chapter is to analyse the micromechanisms of damage and 
fracture in heterogeneous materials, metals and composites, using direct observa-
tions of the damage evolution at the microlevel, combined with the macroscopic 
and/or computational analysis of the damage evolution. 

In section 1.1, a SEM study of the micromechanism of fracture in SiC particle-
reinforced 6061 aluminium composites is presented. The results lead to a better 
understanding of the micromechanism of particle breakage and interface debond-
ing, and the special role of the particle effects in these composites. 
In section 1.2, the mechanisms of damage initiation, evolution and crack growth in 
AlSi cast alloys are studied by in-situ tensile testing in a scanning electron micro-
scope. It is shown that microcracks in these alloys are predominantly formed in 
the Si particles. Shear bands are seen to precede the breaking of the Si particles 
and the dislocation pile-up mechanism can thus be confirmed as the dominant 
damage initiating process in the matrix. Both micro- and macrocrack coalescence 
have been observed in the course of the experiments. The effect of the microstruc-
ture of the AlSi7Mg cast alloys on damage nucleation, crack formation and com-
pliance reduction is analysed. 

In section 1.3, micromechanisms of damage initiation and crack growth in high 
speed and cold work steels are investigated using scanning electron microscopy in 
situ experiments. The role of primary carbides in initiation and growth of cracks in 
tool steels is clarified. It is shown that initial microcracks in the steels are formed 
in primary carbides and then join together. A hierarchical finite element model of 
damage initiation, which included a macroscopic model of the deformation of the 
specimen under real experimental conditions and a mesomechanical model of 
damage in real microstructures of steels, was developed. Using the hierarchical 
model, the conditions of local failure in the steels have been obtained. 

 
 



2      Chapter 1:  Micromechanical Experiments 

1.1 Micromechanisms of fracture in Al/SiC composites1 

Engineering materials with a discontinuous second phase as a toughener [1] or re-
inforcement [2] have been widely studied in materials science and engineering. 
Investigations of the fracture characteristics of SiC particle-reinforced aluminium 
have shown that particle addition usually lowers the fracture toughness [3-5]. Re-
ported fracture toughness’ values for unreinforced aluminium alloys are in the 
range of 25-75 MPa m1/2, while the composites have plane strain toughness values 
of 7-25 MPa m1/2 [6, 7]. Many researchers have shown that the effect of micro-
structure on the fracture toughness is significantly affected by the details of the 
matrix microstructure, interface characteristics, and degree of clustering in the ma-
terials [8-9]. However, SEM fractography has revealed that the fracture surface 
consists of microvoids, corresponding to ductile fracture with dimples [10]. The 
sources of these dimples have been attributed to fracture of SiC particles [11], in-
clusions and precipitates or decohesion from the matrix as well as matrix failure 
[12, 13]. An attempt to explain these special failure characteristics of Al/SiC com-
posite materials, which behave macroscopically brittle, but microscopically duc-
tile, were the main purpose of this work. The fracture toughness tests on the com-
posites were carefully designed with single-edge notched sheet (SENS) [14] 
specimens in the SEM. Both qualitative observations of void nucleation and quan-
titative measurements of crack profiles were made to assess the specific role of the 
particle-reinforcement mechanism in the composites. The microstructure analysis 
is proposed to understand and explain the particle effects during the crack initia-
tion and propagation in these composites. 

1.1.1 Experimental procedure 

The composites used consisted of particle-reinforced aluminium alloy 6061 manu-
factured by extruding mixtures of aluminium powder and SiC particles. The vol-
ume fractions of particles in the composites were 0%, 10% and 20%. The me-
chanical properties of these composites are shown in Table 1.1. Distributions of 
measured SiC particle diameters are shown in Fig. 1.1a and b. 

The SENS sample was designed according to the requirements of the SEM ma-
chine. The dimensions of the sample are shown in Fig. 1.2. The test was carried 
out in a Jeol JSM-35 scanning microscope. The machine automatically records the 
applied load versus displacement curves, and the monitor is used to examine the 
tip of the notch to understand the notch deformation, as well as nucleation, growth 
and coalescence of voids during loading. A record of the process is made by a 
video recorder. 

                                                           
1 Reprinted from X. Ge, S. Schmauder, “Micromechanism of Fracture in Al/SiC Compos-

ites”, J. Mat. Sci. 30, pp. 173-178 (1995) with kind permission from Springer 
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1.1.2 Results of Experiments and Analysis 

Qualitative observations of void nucleation 

General observations were made on the tip and root of the notch during the load-
ing process. Voids nucleated in the middle of the notch root, as observed in the 
SEM, at K0  /K1 equal to 0.68, 0.784, and 0.85 for 0%, 10% and 20% SiC volume 
fraction composites, respectively, where K1, is the stress intensity factor of the 
sample calculated according to Brown and Srawley [15] and K0 is the fracture 
toughness. Measured data of K0 and K1 are shown in Table 1.2. 
 

 
 
 

 
 

Fig. 1.1  Distributions of particle diameters. (a) 10% Al/SiC, (b) 20% Al/SiC (courtesy J. 
Wulf). 


