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Preface

Multiscale problems naturally pose severe challenges for computational science and
engineering. The smaller scales must be well resolved over the range of the larger
scales. Multiscale objects must therefore typically be described by a very large set
of unknowns. The larger the ranges of scales, the more unknowns are needed and
the higher the computational cost. It has been possible to meet many of these chal-
lenges by the recent progress in multiscale computational techniques coupled to the
capability of the latest generation of computer systems.

This recent progress was presented at the conference Multiscale Methods in Sci-
ence and Engineering, which was held in Uppsala, Sweden on January 26–28, 2004.
More than 55 participants from six countries discussed the issues presented in the
papers of this proceeding. The conference was sponsored by he Swedish Foundation
for Strategic Research (SSF) and by the Swedish Agency for Innovation Systems,
Vinnova via the Parallel and Scientific Computing Institute (PSCI).

Challenging multiscale problems are very common. One example can be aver-
age airflow, which typically depends on the details of small swirling eddies, which
in turn depend on the interaction of molecules on much smaller scales in space and
time. One can go further and see how the forces between the molecules depend on
the electrons. Typically, a narrow range of scales is modeled by effective equations
for that particular range. Turbulence models would then describe the coarsest scales
of the phenomena mentioned above. The finer scales could be approximated by the
Navies–Stokes equations, the Boltzmann equation and the Schrödinger equation re-
spectively.

When such effective equations for a narrow range of scales can be derived the
numerical approximations can be greatly facilitated. These equations should include
the influence from other scales in the original multiscale problem. Techniques of
this type are presented in this proceeding. In the contributions by Berlyand et al.
and Svanstedt and Wellander, new variants of the homogenization technique are
described and analyzed. Stochastic differential equations are increasingly common
models for multiscale phenomena. New adaptive techniques for stochastic equations
are developed by Dzougoutov et al. Stochastic models are also part of the systems
studied by Jourdain et al. Sometimes there exist well performing equations for most



VI Preface

of the computational domain but a small subdomain contains microscales that are
difficult to represent by the numerical method. Special subgrid models need to be
developed. Edelvik derives such models for thin wires and slots in electromagnetic
simulations. Thin filaments or fibers in fluids are approximated in the contribution
by Tornberg. The latter simulations can also be seen as a way of numerically de-
riving effective equations for suspensions of filaments in fluids. The multiscale dis-
continuous Galerkin method studied by Aarnes and Heimsund uses multiscale basis
functions and is based on homogenization theory.

An important preprocessing step for all numerical multiscale computations is the
choice of unknowns. The number of these unknowns should be kept to a minimum.
In the two contributions by Larson and collaborators this is achieved by adaptive
grid generation based on realistic a posteriori estimates. Runborg uses a wavelet like
technique that allows for a hierarchical and efficient representation of geometrical
structures.

Computational multiscale methods are of two types. In the more established class
of methods the full multiscale problem is discretized and highly efficient numerical
methods are then applied to accurately compute the full range of scales. Multigrid,
and the fast multipole method are very successful examples of such technique. These
algorithms rely on special properties of the solution operator in order to achieve
their optimal computational complexity. The smoothing by elliptic operators is one
such example. Eberhard and Wittum presents a multigrid method for flow in het-
erogeneous porous media and a multipole method for electromagnetic scattering is
described by Nilsson and Lötstedt.

In the second and more recent class of computational multiscale methods only
a fraction of the microscale space is included in order to reduce the number of un-
knowns. The microscales and the macroscales are coupled in the same simulation
exploiting special properties in the original problem, for example, scale separation.
The simulation over a wide range of scales can be based on first principles even
if effective equations are not known. The techniques discussed by E and Engquist,
Jourdain et al., Samaey et al. and Sharp et al. in this proceeding are examples of this
type of methods.

There are several active areas of development at the present time for tackling the
multiscale challenge and many of the important ones were presented at this confer-
ence. The progress will have importance on the whole field of computational science
and engineering. Multiscale modeling is emerging as a new computational paradigm.

Stockholm and Uppsala Björn Engquist
April 2005 Per Lötstedt

Olof Runborg
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Multiscale Discontinuous Galerkin Methods for
Elliptic Problems with Multiple Scales

Jørg Aarnes1 and Bjørn–Ove Heimsund2

1 SINTEF Applied Mathematics, PB. 124, 0314 Oslo, Norway.
Jorg.Aarnes@sintef.no

2 University of Bergen, Allégaten 41, 5007 Bergen, Norway.
Bjorn-Ove.Heimsund@cipr.uib.no

Summary. We introduce a new class of discontinuous Galerkin (DG) methods for solving
elliptic problems with multiple scales arising from e.g., composite materials and flows in
porous media. The proposed methods may be seen as a generalization of the multiscale fi-
nite element (FE) methods. In fact, the proposed DG methods are derived by combining the
approximation spaces for the multiscale FE methods and relaxing the continuity constraints
at the inter-element interfaces. We demonstrate the performance of the proposed DG methods
through numerical comparisons with the multiscale FE methods for elliptic problems in two
dimensions.

Key words: multiscale methods, discontinuous Galerkin methods, elliptic partial differential
equations

1 Introduction

We consider solving the second-order elliptic equation⎧⎨⎩
−∇ · (a(x)∇u) = f, in Ω ⊂ Rd,

u = 0, on ΓD ⊂ ∂Ω,
−a(x)∇u · n = 0, on ΓN = ∂Ω\ΓD,

(1)

where Ω is bounded, ∂Ω is Lipschitz, n is the outward unit normal on ∂Ω and
a(x) = (aij(x)) is a symmetric positive definite tensor with uniform upper and
lower bounds:

0 < α|y|2 ≤ yTa(x)y ≤ β|y|2 <∞, ∀x ∈ Ω, ∀y ∈ Rd, y �= 0.

We will interpret the variable u as the (flow) potential and q as the (flow) velocity.
The homogeneous boundary conditions are chosen for presentational brevity. Gen-
eral boundary conditions can be handled without difficulty.

Equation (1) may represent incompressible single-phase porous media flow or
steady state heat conduction through a composite material. In single-phase flow, u
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is the flow potential, q = −a(x)∇u is the Darcy filtration velocity and a(x) is the
(rock) permeability of the porous medium. For heat conduction in composite materi-
als, u, q and a(x) represents temperature, heat flow density, and thermal conductivity
respectively. These are typical examples of problems where a(x) can be highly os-
cillatory and the solution of (1) displays a multiscale structure. This leads to some
fundamental difficulties in the development of robust and reliable numerical models.

In this paper we introduce a new class of DG methods for solving this particu-
lar type of multiscale elliptic problems. Until recently, DG methods have been used
mainly for solving partial differential equations of hyperbolic type, see e.g. [10] for a
comprehensive survey of DG methods for convection dominated problems. Indeed,
whereas DG methods for hyperbolic problems have been subject to active research
since the early seventies, it is only during the last decade or so that DG methods have
been applied to purely elliptic problems, cf. [5] and the references therein. The pri-
mary motivation for applying DG methods to elliptic problems is perhaps their flex-
ibility in approximating rough solutions that may occur in elliptic problems arising
from heterogeneous and anisotropic materials. However, to our knowledge, previous
research on DG methods for elliptic problems has been confined to solving elliptic
partial differential equations with smooth coefficients.

DG methods approximate the solution to partial differential equations in finite
dimensional spaces spanned by piecewise polynomial base functions. As such, they
resemble the FE methods, but, unlike the FE methods, no continuity constraints are
explicitly imposed at the inter-element interfaces. This implies that the weak formu-
lation subject to discretization must include jump terms across interfaces and that
some artificial penalty terms must be added to control the jump terms. On the other
hand, the weak continuity constraints give DG methods a flexibility which allows
a simple treatment of, e.g., unstructured meshes, curved boundaries and h- and p-
adaptivity. Another key feature with DG methods is their natural ability to impose
mass conservation locally. Moreover, the “local” formulation of the discrete equa-
tions allows us us to use grid cells of arbitrary shapes without difficulty. We may
therefore choose the gridlines to be aligned with sharp contrasts in, for instance,
underlying heterogeneous materials.

The multiscale FE methods (MsFEMs) introduced in [9, 12] have been success-
fully applied to multiscale elliptic problems, but their accuracy is to some degree
sensitive to the selection of the boundary conditions that determine the FE base
functions. If, for instance, strong heterogeneous features penetrate the inter-cell in-
terfaces, then simple, e.g. linear, boundary conditions may be inadequate. In such
situations, oversampling strategies or other techniques for the generation of adaptive
boundary conditions must be used to recover the desired order of accuracy. This sen-
sitivity to the selection of boundary conditions is partly due to the strong continuity
requirements at the inter-element interfaces implicit in the FE methods.

Here we propose a class of multiscale DG methods (MsDGMs) for solving el-
liptic problems with multiple scales. One of the primary motives for developing Ms-
DGMs is to generate multiscale methods that are less sensitive to the selection of
boundary conditions for the base functions than is the case for the MsFEMs. An-
other nice feature with MsDGMs is that they produce solutions for both the potential
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variable (e.g. pressure or temperature) and the velocity variable (e.g. phase velocity
or thermal flux density) that reflect important subgrid variations in the elliptic coef-
ficients. We will demonstrate the benefit of using multiscale methods in comparison
with ordinary monoscale numerical methods and perform numerical experiments to
display the performance of the MsDGMs relative to the original and mixed Ms-
FEMs. We therefore attempt to reveal that there is a need for multiscale methods,
and to demonstrate under what circumstances it may be advantageous to relax the
inter-element continuity assumptions implicit in the MsFEMs.

The paper is organized as follows. We give the general mathematical setting for
the DG methods in Sect. 2 and show how they are related to the more familiar FE
methods. In particular we show that both standard and mixed FE methods may be
viewed as special DG methods. This observation allows us to extend this type of
FE methods to corresponding DG methods. In Sect. 3 we outline the MsFEMs in-
troduced in [12] and [9] and exploit the relationship between FE methods and DG
methods to derive a corresponding class of MsDGMs. Finally, Sect. 4 contains the
numerical experiments and we conclude with a discussion of the results in Sect. 5.

2 Mathematical Formulations

In Sect. 2.1 we give the mathematical formulation of the DG methods for (1) and
discuss the selection of the so-called numerical fluxes that are used to force weak
continuity of the solution across inter-element interfaces. In Sect. 2.2 we show how
the conforming and mixed FE methods may be viewed as special DG methods, and
describe how such FE methods can be extended to corresponding DG methods.

2.1 Discontinuous Galerkin Methods

To define the DG methods we split (1) into the first order system,

q = −a(x)∇u, in Ω,
∇ · q = f, in Ω,

u = 0, on ΓD,
q · n = 0, on ΓN.

Furthermore, define the following approximation spaces:

QN = {p ∈ (H1(Ω))d : p · n = 0 on ΓN},
UD = {v ∈ H1(Ω) : v = 0 on ΓD}.

Upon integration by parts, we now deduce the weak formulation: Find q ∈ QN and
u ∈ UD such that ∫

Ω
a−1q · pdx =

∫
Ω
u∇ · pdx ∀p ∈ QN ,∫

Ω
q · ∇v dx = −

∫
Ω
fv dx ∀v ∈ UD.


