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Foreword

This book is based on the lecture material for a one-semester senior-year
undergraduate or first-year graduate course in optimal control which I have
taught at the Swiss Federal Institute of Technology (ETH Zurich) for more
than twenty years. The students taking this course are mostly students in
mechanical engineering and electrical engineering taking a major in control.
But there also are students in computer science and mathematics taking this
course for credit.

The only prerequisites for this book are: The reader should be familiar with
dynamics in general and with the state space description of dynamic systems
in particular. Furthermore, the reader should have a fairly sound understand-
ing of differential calculus.

The text mainly covers the design of open-loop optimal controls with the help
of Pontryagin’s Minimum Principle, the conversion of optimal open-loop to
optimal closed-loop controls, and the direct design of optimal closed-loop
optimal controls using the Hamilton-Jacobi-Bellman theory.

In theses areas, the text also covers two special topics which are not usually
found in textbooks: the extension of optimal control theory to matrix-valued
performance criteria and Lukes’ method for the iterative design of approxi-
matively optimal controllers.

Furthermore, an introduction to the phantastic, but incredibly intricate field
of differential games is given. The only reason for doing this lies in the
fact that the differential games theory has (exactly) one simple application,
namely the LQ differential game. It can be solved completely and it has a
very attractive connection to the H∞ method for the design of robust linear
time-invariant controllers for linear time-invariant plants. — This route is
the easiest entry into H∞ theory. And I believe that every student majoring
in control should become an expert in H∞ control design, too.

The book contains a rather large variety of optimal control problems. Many
of these problems are solved completely and in detail in the body of the text.
Additional problems are given as exercises at the end of the chapters. The
solutions to all of these exercises are sketched in the Solution section at the
end of the book.
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1 Introduction

1.1 Problem Statements

In this book, we consider two kinds of dynamic optimization problems: op-
timal control problems and differential game problems.

In an optimal control problem for a dynamic system, the task is finding an
admissible control trajectory u : [ta, tb] → Ω ⊆ Rm generating the corre-
sponding state trajectory x : [ta, tb] → Rn such that the cost functional J(u)
is minimized.

In a zero-sum differential game problem, one player chooses the admissible
control trajectory u : [ta, tb] → Ωu ⊆ Rmu and another player chooses the
admissible control trajectory v : [ta, tb] → Ωv ⊆ Rmv . These choices generate
the corresponding state trajectory x : [ta, tb] → Rn. The player choosing u

wants to minimize the cost functional J(u, v), while the player choosing v

wants to maximize the same cost functional.

1.1.1 The Optimal Control Problem

We only consider optimal control problems where the initial time ta and the
initial state x(ta) = xa are specified. Hence, the most general optimal control
problem can be formulated as follows:

Optimal Control Problem:
Find an admissible optimal control u : [ta, tb] → Ω ⊆ Rm such that the
dynamic system described by the differential equation

ẋ(t) = f(x(t), u(t), t)

is transferred from the initial state

x(ta) = xa

into an admissible final state

x(tb) ∈ S ⊆ Rn ,
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and such that the corresponding state trajectory x(.) satisfies the state con-
straint

x(t) ∈ Ωx(t) ⊆ Rn

at all times t ∈ [ta, tb], and such that the cost functional

J(u) = K(x(tb), tb) +
∫ tb

ta

L(x(t), u(t), t) dt

is minimized.

Remarks:

1) Depending upon the type of the optimal control problem, the final time
tb is fixed or free (i.e., to be optimized).

2) If there is a nontrivial control constraint (i.e., Ω �= Rm), the admissible
set Ω ⊂ Rm is time-invariant, closed, and convex.

3) If there is a nontrivial state constraint (i.e., Ωx(t) �= Rn), the admissible
set Ωx(t) ⊂ Rn is closed and convex at all times t ∈ [ta, tb].

4) Differentiability: The functions f , K, and L are assumed to be at least
once continuously differentiable with respect to all of their arguments.

1.1.2 The Differential Game Problem

We only consider zero-sum differential game problems, where the initial time
ta and the initial state x(ta) = xa are specified and where there is no state
constraint. Hence, the most general zero-sum differential game problem can
be formulated as follows:

Differential Game Problem:
Find admissible optimal controls u : [ta, tb] → Ωu ⊆ Rmu and v : [ta, tb] →
Ωv ⊆ Rmv such that the dynamic system described by the differential equa-
tion

ẋ(t) = f(x(t), u(t), v(t), t)

is transferred from the initial state

x(ta) = xa

to an admissible final state

x(tb) ∈ S ⊆ Rn

and such that the cost functional

J(u) = K(x(tb), tb) +
∫ tb

ta

L(x(t), u(t), v(t), t) dt

is minimized with respect to u and maximized with respect to v.
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Remarks:

1) Depending upon the type of the differential game problem, the final time
tb is fixed or free (i.e., to be optimized).

2) Depending upon the type of the differential game problem, it is specified
whether the players are restricted to open-loop controls u(t) and v(t) or
are allowed to use state-feedback controls u(x(t), t) and v(x(t), t).

3) If there are nontrivial control constraints, the admissible sets Ωu ⊂ Rmu

and Ωv ⊂ Rmv are time-invariant, closed, and convex.

4) Differentiability: The functions f , K, and L are assumed to be at least
once continuously differentiable with respect to all of their arguments.

1.2 Examples

In this section, several optimal control problems and differential game prob-
lems are sketched. The reader is encouraged to wonder about the following
questions for each of the problems:

• Existence: Does the problem have an optimal solution?

• Uniqueness: Is the optimal solution unique?

• What are the main features of the optimal solution?

• Is it possible to obtain the optimal solution in the form of a state feedback
control rather than as an open-loop control?

Problem 1: Time-optimal, friction-less, horizontal motion of a mass point

State variables:
x1 = position
x2 = velocity

control variable:
u = acceleration

subject to the constraint
u ∈ Ω = [−amax, +amax] .

Find a piecewise continuous acceleration u : [0, tb] → Ω, such that the dy-
namic system [

ẋ1(t)
ẋ2(t)

]
=

[
0 1
0 0

][
x1(t)
x2(t)

]
+

[
0
1

]
u(t)

is transferred from the initial state[
x1(0)
x2(0)

]
=

[
sa

va

]


