ROGER DEBRECENY CARSTEN FELDEN BARTOSZ OCHOCKI MACIEJ PIECHOCKI MICHAL PIECHOCKI

ompany

Securities Regulator

XBRL for Interactive Data

Information

Intermediary

Engineering the Information Value Chain

Internet

XBRL for Interactive Data

Roger Debreceny · Carsten Felden · Bartosz Ochocki · Maciej Piechocki · Michal Piechocki

XBRL for Interactive Data

Engineering the Information Value Chain

Prof. Dr. Roger Debreceny School of Accountancy Shidler College of Business University of Hawai`i at Manoa 2404 Maile Way Honolulu, HI 96822 USA roger@debreceny.com

Bartosz Ochocki Lermontowa 17 60-461 Poznan Poland bartosz.ochocki@br-ag.eu

Michal Piechocki Sloneczna 9 62-064 Plewiska Poland michal.piechocki@br-ag.eu Prof. Dr. Carsten Felden TU Bergakademie Freiberg Wirtschaftswissenschaft Lessingstraße 45 09599 Freiberg Germany carsten.felden@bwl.tu-freiberg.de

Dr. Maciej Piechocki Flat 27, Wheel House 1 Burrells Wharf Square London E14 3TA UK mpiechocki@iasb.org.uk

ISBN 978-3-642-01436-9 e-ISBN 978-3-642-01437-6 DOI 10.1007/978-3-642-01437-6 Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2009928425

© Springer-Verlag Berlin Heidelberg 2009

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Foreword

"The period of promoting XBRL for its potential is over. Promises are being realized"

Olivier Servais, Director of XBRL Activities, International Accounting Standards Committee (IASC) Foundation

With the market turmoil of the early 2000's, perhaps we should look back through history and seek lessons from the past. In 1139, during the Catholic Church's second Council of Lateran, Pope Innocent II advised against the use of crossbows or *ballistas* – a type of medieval catapult – because their arrows and darts were launched so far ahead that the soldiers could not see the consequences of their actions. Investment bankers and others who took excessive risks would do well to remember this basic principle of caution. The good news is that today stakeholders are getting closer to the information they need.

XBRL, or "Interactive Data" plays an important role in this new era of transparency. The period when XBRL was perhaps excessively promoted for its potential benefits – remember the 'better, faster, cheaper' mantra? – is over. Promises are already being realized. I believe that most of the requisite conditions for the efficient implementation of XBRL are now in place: political decisions have been made, taxonomies are available and software solutions, including ERPs, are affordable.

The financial crisis of the early 2000's is playing an ambiguous role. Few people doubt XBRL's potential to improve information exchange and therefore assist in the restoration of market confidence by providing transparency. Yet at the same time few, if not forced, are willing to dedicate the time and money to implement it. This applies to all countries and regions as all are affected, though some have been quicker on the uptake than others. I was highly impressed that XBRL as a concept or idea in Japan is no longer discussed because it is already implemented. It is a similar situation in Belgium, where all non-listed and non-financial companies – approximately 280,000 of them – have been filing in XBRL for some time.

In this sense, XBRL is becoming a non-issue. Why? Commitment and endorsement from high level decision-makers, who want to see XBRL embraced in their markets. As well as Japan and Belgium, there are interesting examples of XBRL adoption in Australia, China, France, India, Italy, Poland, Spain and the US.

As the Director for XBRL Activities at the IASC Foundation – whose standardsetting body the International Accounting Standards Board (IASB), is responsible for developing International Financial Reporting Standards (IFRS) – I am closely involved in the development and implementation of XBRL for international financial reporting. The IASC Foundation is promoting XBRL because we believe in the benefits it offers all stakeholders and end-users such as investors and banks. Our commitment is to provide IFRS in XBRL – the IFRS taxonomy – to the highest quality and at the same time as the IFRS are released. At present, more than 100 countries worldwide are either allowing or mandating IFRS and very few are doing so without also considering XBRL. It is no coincidence that the main expected benefit of Belgium switching to XBRL was to ease the transition to IFRS. The world's financial markets are desperately seeking greater accuracy; in this respect, they have much in common with Pope Innocent II.

An important pre-requisite for success of standards such as XBRL is not only the taxonomies and software tools that I mentioned above, but also knowledge about the standard in the wider community. That is why this book is both timely and valuable. The authors traverse all the key technologies within the XBRL domain. They provide many practical examples that allow the reader to become thoroughly familiar with the design of taxonomies and the production of instance documents within a wide range of settings. So now is the perfect time for the international community to familiarise itself with XBRL and to reap the benefits from it. It is simply time to get to work with XBRL. I wish you a lot of success with this book.

The opinions expressed are those of the author and do not necessarily reflect the views of the IASB or the IASC Foundation.

About the Authors

Prof. Roger Debreceny - Professor, University of Hawai'i at Mānoa

Roger Debreceny is the Shidler College Distinguished Professor of Accounting in the Shidler College of Business at the University of Hawai'i at Mānoa. Dr. Debreceny teaches accounting, auditing and accounting information systems. His research interests are in IT governance; information systems auditing and assurance; XBRL; corporate reporting on the Internet and accounting information systems. He has published widely in professional and academic journals in accounting and information systems. Debreceny holds the degrees of Master of Commerce, Master of Public Policy and PhD and is a FCPA. He previously served on the International Steering Committee of XBRL International. Dr. Debreceny serves as President of the Strategic and Emerging Technologies section of the American Accounting Association.

Prof. Dr. rer. oec. Carsten Felden – Full Professor, University of Technology and Mining of Freiberg (Saxony, Germany)

Prof. Dr. Carsten Felden is a full professor for Management Information Systems in the faculty of business administration at the University of Technology and Mining of Freiberg. Prof. Dr. Felden teaches Information Systems with the focus on business intelligence, predictive analytics, and IT governance. This in respect to his main research topics which are predictive analytics, data warehousing, XBRL, business process intelligence, information systems within the European utility sector and maturity in IT governance. He has published in professional and academic journals and conferences in accounting and information systems. Felden is member of the XBRL Germany strategy advisory board and consults at the Business Intelligence Research Center and The Data Warehouse Institute (TDWI) Germany.

Bartosz Ochocki - CTO, Business Reporting - Advisory Group

Bartosz Ochocki is co-owner and Chief Technology Officer of Business Reporting - Advisory Group (BR-AG). The company's main activities are consulting services, conducting trainings and software development in the area of business reporting solutions utilizing XBRL. As the CTO of BR-AG, Bartosz advises public institutions, regulators, software vendors and reporting entities on implementation of XBRL.

Prior to his work for BR-AG, Bartosz was a member of the XBRL Team at the International Accounting Standards Committee (IASC) Foundation.

Bartosz graduated from the Poznan University of Economics (Management Department with majors in Capital Investments and Corporate Financial Strategies) where he received Master's degree in economics and continues his education as a PhD candidate.

Dr. Maciej Piechocki - XBRL Project Manager, IASC Foundation

Maciej Piechocki is Project Manager for International Accounting Standards Committee Foundation (IASCF) where he is responsible for the IFRS and XBRL related projects. His main areas of activities include technological aspects of the IFRS Taxonomy development.

Maciej Piechocki holds a PhD in Economics (dr. rer. pol.) with major in Management Information Systems and his doctoral dissertation covered the area of "XBRL Financial Reporting Supply Chain Architecture". He was awarded the 2008 Outstanding Dissertation Award from the Strategic Emerging Technologies Section of the American Accounting Association. Maciej Piechocki holds an MSc in Management and Marketing from the University of Economics in Poznan, Poland where he majored in Investment and Corporate Financial Strategy. He also holds an MSc in Business Administration from the Freiberg University of Technology, Germany with majors in Information Technologies and Information Systems, Accounting and Corporate Governance.

Maciej is the author of the insolvency prediction model commonly used by auditors in Poland using the analysis of financial statements and financial ratios. Maciej is an initiator of Polish XBRL Jurisdiction and the founding member of the XBRL Poland Association.

Formerly, he was the Head of the Competence Centre Information Logistics at the Chair of Information Systems at the Freiberg University of Technology. In the industry related projects of the Competence Centre, he was responsible for topics such as data warehouses, business intelligence, ontologies and XBRL concerning the Information Logistics. Maciej was also an advisor to a number of XBRL projects including central and commercial banks, stock exchanges and IT companies.

The views expressed in this book are those of the author and not those of the IASC Foundation.

Michal Piechocki – CEO, Business Reporting – Advisory Group

Michal Piechocki is a Chief Executive of the Business Reporting – Advisory Group (BR-AG) - a leading advisory company helping institutions and companies implement business reporting solutions using XBRL. As a CEO Michal advises international governmental and supervisory institutions on adoption of XBRL. His expertise contributed to projects in Europe, Australia and North and South America. Michal serves also as an At-Large Representative at the XBRL International Steering Committee and a member of the XBRL Quality Review Team at the IASC Foundation. He is also a judge in several Polish and international IFRS and XBRL related competitions. Prior to his leadership of BR-AG Michal worked as a member of the International Accounting Standards Committee (IASC) Foundation XBRL Team developing the International Financial Reporting Standards (IFRS) XBRL taxonomy and related projects.

Michal graduated from the Poznan University of Economics (Management Department with majors in Capital Investments and Corporate Financial Strategies) where he received Master's degree in economics and continues his education as a PhD Candidate at the Technische Universitat Freiberg, Germany. Michal is a speaker at various international IFRS and XBRL conferences.

The authors express our thanks to Stefan Krebs for his invaluable assistance with the production of the manuscript.

Contents

Fi	gures	
Тε	ables	xix
Co	ode Ex	amplesxxi
Ał	bbrevi	ationsxxv
He	ow it a	ll beganxxvii
1	In	troduction1
	1.1	Metadata2
	1.2	Metadata in business reports
	1.3	Use cases for metadata and business reporting
	1.4	Instance documents and taxonomies
	1.5	Multidimensionality
	1.6	What comes next
2	H	andling Semantics in Information Exchange –
	A	n Introduction to XML
	2.1	What is XML?17
	2.2	XML namespaces
	2.3	XML schema
	2.4	XLink
	2.5	Summary
	2.6	Kev terms you should know
	2.7	Case analysis
3	In	troduction to XBRL
	3.1	What is XBRL?
	3.2	The XBRL base specification
	3.3	XBRL financial reporting
	3.4	Open and close XBRL reporting cycles
	3.5	Classifications of XBRL technologies
	3.6	Summary
	3.7	Key terms you should know
	3.8	Case analysis

4	XI	BRL Taxonomies	51
	4.1	Taxonomy schema	53
	4.2	Taxonomy linkbases	58
	4.3	XBRL Global Ledger (GL)	71
	4.4	Summary	77
	4.5	Key terms you should know	78
	4.6	Case analysis	78
5	XI	BRL Taxonomy Extensions	79
-	5.1	Extensibility	80
	5.2	General XBRL extensibility framework	81
	5.3	XBRL taxonomies extensibility methods and approaches	82
	5.4	XBRL taxonomies extensibility technologies	91
	5.5	Summary	99
	5.6	Key terms you should know	100
	5.7	Case analysis	101
	5.8	Referencing taxonomy from instance document	103
	5.9	Reported single and tuple facts	104
	5.10	Context of the reported facts	106
	5.11	Information about units of measure	108
	5.12	Expressing accuracy of reported numbers by means of	
		precision and decimals	109
	5.13	Additional information about reported facts in footnotes	110
	5.14	Summary	110
	5.15	Key terms you should know	111
	5.16	Case analysis	112
6	XI	BRL Taxonomy Engineering	113
	6.1	What is XBRL taxonomy engineering?	115
	6.2	Phases of XBRL taxonomy development	117
	6.2	2.1 Planning and analysis	117
	6.2	2.2 Design	119
	6.2	2.3 Building	120
	6.2	2.4 Testing	121
	6.2	2.5 Publication and recognition	122

6.2.6

6.3 6.4

6.5

6.6

7	\mathbf{N}	Iultid	limensionality in XBRL	
	7.1	Bac	ckground requirements for dimensions	130
	7.2	Din	nensions specification and technical files	134
	7.3	Arc	hitecture and terminology	135
	7.	.3.1	Dimensions application in taxonomies	136
	7.	.3.2	The application of dimensions in instance documents	143
	7.4	Sur	nmary	147
	7.5	Key	y terms you should know	147
	7.6	Cas	e analysis	148
8	X	BRL	Dimensional Engineering	149
	8.1	Mo	dularization of dimensional taxonomies	150
	8.2	Exa	amples of use of dimensions	152
	8	2.1	Explicit dimensions example	
	8	.2.2	Dimension default example	170
	8	.2.3	Empty hypercubes and empty dimensions	174
	8	.2.4	Base taxonomy	177
	8.3	Sur	nmary	
	8.4	Key	y terms you should know	
	8.5	Cas	e analysis	
9	Introduction to Latest XBRL Technologies			
	9.1	Intr	oduction to XBRL Formulas	190
	9.1.1		XBRL formulas framework	193
	9.1.2		Implicit filtering	
	9.	.1.3	Summary	
	9.2	Intr	oduction to XBRL versioning	
	9.3	Intr	oduction to XBRL rendering	
	9.4	Sur	nmary	
	9.5	Key	y terms you should know	
	9.6	Cas	e analysis	
Re	eferer	ices a	nd Recommended Readings	

Figures

Fig. 1.1:	MP3 Metadata at Work on Android Platform	3
Fig. 1.2:	Embedded Metadata in Financial Report	5
Fig. 1.3:	Multi-dimensional information	9
Fig. 1.4:	Information Value Chain	10
Fig. 1.5:	Multi-dimensional information	12
Fig. 1.6:	Multi-dimensional information	13
Fig. 2.1:	XML task, HTML and XML	18
Fig. 2.2:	Tree of an XML document	19
Fig. 2.3:	Construction of an XML document	20
Fig. 2.4:	Syntax of a container element	21
Fig. 2.5:	Attribute example	22
Fig. 2.6:	Namespaces	24
Fig. 2.7:	Simple link	30
Fig. 2.8:	Extended link	31
Fig. 3.1:	Relationships between XML specifications, XBRL specifications,	
	XBRL taxonomies and XBRL instances	39
Fig. 3.2:	XBRL financial reporting framework	42
Fig. 3.3:	XBRL use in the closes reporting cycle	44
Fig. 3.4:	Use of XBRL in the open reporting cycle	45
Fig. 3.5:	XBRL technology stack	46
Fig. 3.6:	Classification of XBRL data models according to their	
	semantic representation	47
Fig. 4.1:	XBRL taxonomy architecture in form of a DTS	53
Fig. 4.2:	Operating mode of relational linkbases	59
Fig. 4.3:	Hierarchical view of presentation linkbase	61
Fig. 4.4:	Operating mode of resource type linkbases	65
Fig. 4.5:	Different sets of relationships in different ELRs	69
Fig. 4.6:	XBRL GL taxonomy framework	72
Fig. 4.7:	Relationships between the XBRL GL and XBRL FR	75
Fig. 5.1:	A roadmap for understanding XBRL extensibility	79
Fig. 5.2:	Extensions and other XBRL components	81

Fig. 5.3:	Example of the redesign of the IFRS taxonomy presentation	
	linkbase	83
Fig. 5.4:	Example of an XBRL extension	84
Fig. 5.5:	Introduction to extension of calculations	86
Fig. 5.6:	Example for the use and priority attributes application	88
Fig. 5.7:	Summary of common XBRL extensibility technologies	91
Fig. 5.8:	Extension strategies and modularization	92
Fig. 5.9:	IFRS 2005 taxonomy architecture diagram	93
Fig. 5.10:	Example of similar-tuples arcrole use	97
Fig. 5.11:	Structure of an instance document	105
Fig. 6.1:	Intersections of software, knowledge and ontology engineering	
	and allocation of taxonomy engineering	116
Fig. 6.2:	Information model for Polish FINREP taxonomy	120
Fig. 6.3:	US GAAP taxonomy visualization	122
Fig. 6.4:	Taxonomy development process model	124
Fig. 7.1:	Architecture and terminology of XBRL dimensions	135
Fig. 7.2:	Model of a hypercube	137
Fig. 7.3:	Example of dimensional information in context in instance	
	document	143
Fig. 7.4:	Example of data model where a measure is reported in two	
	different sets of dimensional breakdowns	144
Fig. 7.5:	Example of taxonomy architecture where a measure is reported	
	in two different sets of dimensional breakdowns	145
Fig. 7.6:	Inheritance of dimensional information	146
Fig. 8.1:	Model approach to modularization of dimensional taxonomies	150
Fig. 8.2:	Example of modularization of dimensional taxonomies	151
Fig. 8.3:	Data model of explicit dimensions example	152
Fig. 8.4:	Graphical diagram of explicit dimension example taxonomy	
	architecture and content	153
Fig. 8.5:	Modularization architecture of the explicit dimension example	154
Fig. 8.6:	Alternative modeling approach to explicit dimensions example	161
Fig. 8.7:	ProfitAndLossStatementPart1 extended link structure	162
Fig. 8.8:	ProfitAndLossStatementPart2 extended link structure	162

Fig. 8.9:	ProfitAndLossStatementPart3 extended link structure	. 163
Fig. 8.10:	Reverse-engineered data model of the alternative modeling	
	approach to explicit dimensions example	. 163
Fig. 8.11:	Data model of typed dimension example	. 166
Fig. 8.12:	Modularization of typed dimensions taxonomy example	. 166
Fig. 8.13:	Diagram of the typed dimension example taxonomy architecture	. 167
Fig. 8.14:	Data model for the dimension default example	. 170
Fig. 8.15:	Graphical diagram of dimension default example	. 171
Fig. 8.16:	Content of context's dimensional container in instance document	
	based on a taxonomy without and with default dimension	
	members definitions	. 174
Fig. 8.17:	Data model for empty hypercube and empty dimension example	. 176
Fig. 8.18:	Presentation linkbases of base and extension primary taxonomies	. 177
Fig. 8.19:	Structure of the definition linkbases content reflecting dimensional	
	table from data model for empty hypercubes and empty dimension	S
	example	. 178
Fig. 8.20:	Indication of non-reportable items	. 180
Fig. 8.21:	Indication of items reportable in base context	. 183
Fig. 8.22:	COREP taxonomy framework in relation to Basel II requirements.	. 186
Fig. 8.23:	FINREP taxonomy in relation to IFRS	. 186
Fig. 8.24:	Example of the data model of the COREP taxonomy	. 187
Fig. 8.25:	Example of data model of FINREP taxonomy	. 188
Fig. 9.1:	Example of cross-context calculation	. 191
Fig. 9.2:	Advanced business rule example	. 192
Fig. 9.3:	General XBRL formula framework	. 196
Fig. 9.4:	Sample XBRL formula	. 197
Fig. 9.5:	Content of the version information item	. 204
Fig. 9.6:	Inline XBRL document set	. 206