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Preface

To predict loading limits for structures and structural elements is one of
the oldest and most important tasks of engineers. Among the theoretical and
numerical methods available for this purpose, so-called “Direct Methods”, em-
bracing Limit- and Shakedown Analysis, play an eminent role due to the fact
that they allow rapid access to the requested information in mathematically
constructive manners.

The collection of papers in this book is the outcome of a workshop held
at Aachen University of Technology in November 2007. The individual con-
tributions stem in particular from the areas of new numerical developments
rendering the methods more attractive for industrial design, extensions of the
general methodology to new horizons of application, probabilistic approaches
and concrete technological applications.

The papers are arranged according to the order of the presentations in the
workshop and give an excellent insight into state-of-the-art developments in
this broad and growing field of research.

The editors warmly thank all the scientists, who have contributed by their
outstanding papers to the quality of this edition. Special thanks go to Jaan
Simon for his great help in putting together the manuscript to its final shape.
We hope you may enjoy reading it!

Aachen and Leicester, Dieter Weichert
September 2008 Alan Ponter
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The Linear Matching Method
for Limit Loads, Shakedown
Limits and Ratchet Limits

A.R.S. Ponter

Abstract The paper describes the application of the Linear Matching
Method to the direct evaluation of limits associated with an elastic-perfectly
plastic body subjected to cyclic loading. Methods for limit load and shake-
down limit are followed by ratchet limits. The method is distinguished from
other programming methods by ensuring that equilibrium and compatibility
are satisfied at each stage. The method has been extended beyond the range of
most other direct methods by including ratchet limits and high temperature
material behaviour. Implementation is possible within the user routines of
commercial finite element codes. The paper emphasise the theoretical char-
acteristics of the method and discusses significant aspects of convergence,
both theoretical and numerical. The application of the method to industrial
Life Assessment problems and to geotechnical problems is summarized.

1 Introduction

Classically, numerical methods for Direct Method have relied upon the appli-
cation of mathematical programming methods to limit load and shakedown
limit theorems of plasticity and this is strongly reflected in other papers in
this volume. Either upper or lower bound methods are possible depending
on whether the approximating continuum descriptions correspond to equilib-
rium stress fields or compatible strain fields. The objective function, a load
parameter, is then either maximized or minimized according the upper and
lower bounds of classical plasticity.

This approach has both advantages and disadvantages. Mathematical pro-
gramming procedures have progressed significantly in recent years and highly

Alan R.S. Ponter
Department of Engineering, University of Leicester, Leicester, UK
e-mail: asp@le.ac.uk

D. Weichert, A. Ponter (eds.), Limit States of Materials and Structures, 1
DOI 10.1007/978-1-4020-9634-1_1, c© Springer Science+Business Media B.V. 2009



2 A.R.S. Ponter

efficient solution methods are widely available producing fast and reliable
solution methods. However, the general methodology relies upon the classi-
cal theorems of plasticity and extensions do not exist to behaviour outside
shakedown or to other material behaviour, time dependent creep behaviour
in particular. For this reason, alternative approaches have been considered
that provide a more flexible approach to the formulation of direct meth-
ods. A number of methods discussed within the design community [6, 13,21]
have proved to have a common theme, the representation of stress and strain
fields through linear problems with spatially varying moduli. This first oc-
curred through Marriot’s [21] observation that very good lower bound limit
loads could be found by systematically decreasing the Young’s modulus in
regions of high stress in a standard linear elastic solution. This has the effect
of reducing the maximum stress and hence increasing the load at which all
stresses lie within yield. This simple procedure can be very successful in com-
puting safe lower bounds but, to the present time, has not been developed
into a method for evaluation the maximum lower bound, i.e. the limit load.

The Linear Matching Method [8, 23, 25, 26, 28] adopts the basic assump-
tion that limit state solutions may be developed from linear solutions with
spatially varying moduli and builds it into a programming method. In this
paper, the method is described for an elastic-perfectly plastic body for the
evaluation of all the possible limits; limit load, shakedown limit and ratchet
limit. It is shown for shakedown that the method becomes a convergent up-
per bound method. Each iteration provides both a kinematically admissible
strain rate history and an equilibrium distribution of residual stress (in the
Galerkin sense), both upper and lower bounds are generated that become
equal to the minimum upper bound at convergence. This lower bound gener-
ally does not monotonically increase. A dual method, based upon equilibrium
stresses and the lower bound theorem also exists but appears not to converge
for perfect plasticity [23].

The extension of the method to the ratchet limit is then discussed, based
upon a general minimum theorem for perfect plasticity [14, 25]. This is fol-
lowed by a summary of various applications to industrial problems.

2 Definition of the Problem

2.1 External Loads

We consider the problem of a body with volume V subjected to a cyclic
history of load λPi(xi, t) over part, namely ST , of the surface S, and a cyclic
history of temperature λθ(xi, t) within V. On the remainder of S, namely
SU , the displacement rate u̇i = 0. Both load and temperature history have
the same cycle time Δt and, in the following, we are concerned with the
behaviour of the body in a typical cycle 0 ≤ t ≤ Δt in a cyclic state. The
(positive) load parameter λ allows us to consider a class of loading histories.
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2.2 Material Behaviour

Consider such a body composed of a solid under conditions of small strains
where the total strain is the sum of a linearly elastic and perfectly plastic
component,

ε̇ij = ε̇e
ij + ε̇p

ij , (1)

where the plastic strains are associated with a strictly convex yield condition
f(σij) = 0

ε̇p
ij = 0, f < 0,

ε̇p
ij = α̇

∂f

∂σij
, f = 0. (2)

The elastic moduli are assumed to be independent of temperature.

2.3 Structure of the Asymptotic Cyclic Solution

For the problem defined above the stresses and strain rates will asymptote
to a cyclic state, where

σij(t) = σij(t+ Δt), ε̇ij(t) = ε̇ij(t+ Δt). (3)

In the following we are concerned with the properties of this asymptotic
solution.

Consider a typical cycle, 0 ≤ t ≤ Δt. The cyclic solution may be expressed
in terms of three components, the elastic solution, a transient solution accu-
mulated up to the beginning of the cycle and a residual solution that repre-
sents the remaining changes within the cycle. The linear elastic solution (i.e.
ε̇p

ij = 0) is denoted by λσ̂ij and λε̂ij . The general form of the stress solution
is given by

σij(xi, t) = λσ̂ij(xi, t) + ρ̄ij(xi) + ρr
ij(xi, t), (4)

where ρ̄ij denotes a constant residual stress field in equilibrium with zero
surface traction on ST and corresponds to the residual state of stress at the
beginning and end of the cycle. The history ρr

ij is the change in the residual
stress during the cycle and satisfies

ρr
ij(xi, 0) = ρr

ij(xi,Δt) = 0. (5)

The total plastic strain is similarly subdivided into two parts

εp
ij = εpT

ij (xi) + εpr
ij (xi, t), (6)
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where εpT
ij denotes the accumulation of plastic strain at the beginning of the

cycle and εpr
ij denotes the additional plastic strain during the cycle.

The relationship between the transient and residual quantities is given by

εT
ij = Cijklρ̄ij + εpT

ij , (7)

εr
ij = Cijklρ

r
ij + εpr

ij , (8)

where both εT
ij and εr

ij are compatible strain fields. Cijkl denotes the linear
elastic compliance tensor. The cyclic solution is always non-unique to the ex-
tent that the transient plastic strain εpT

ij may contain an arbitrary additional
compatible component. Note that

εpr
ij (xi,Δt) − εpr

ij (xi, 0) = Δεpr
ij =

Δt∫

0

εpr
ij dt (9)

the accumulated plastic strain during a cycle which, for consistency may be
added to εT

ij . Hence as both εT
ij and εT

ij+Δεpr
ij are compatible then Δεpr

ij is also
compatible with a displacement field Δui, the accumulation of displacement
per cycle.

This argument emphasises the crucial role of the residual plastic strain
rate history ε̇pr

ij in defining the cyclic state. If ε̇pr
ij were known for 0 ≤ t ≤ Δt

then ρr
ij(xi, t) is uniquely defined by the solution of the initial strain rate

problem defined by the time derivative of (8),

ε̇r
ij = Cijklρ̇

r
ij + ε̇pr

ij (10)

and the initial condition (5). The cyclic stress history (4) is then known
except for ρ̄ij . However the additional requirement of the compatibility of
Δεpr

ij is sufficient to define ρ̄ij and hence the entire history of stress in the
cycle is known and the final condition of (5) is always satisfied. It is natural,
therefore, to concentrate on a class of inelastic strain rate histories that have
the same properties as the solution ε̇pr

ij . We will refer to all strain rate histories
as ε̇c

ij that accumulate over a cycle to a compatible strain increment Δεc
ij as

kinematically admissible (ka).

3 Shakedown Theorems

In this section we consider the case of shakedown. The shakedown limit can be
seen to be that range of load multiplier λ ≤ λs for which the changing residual
stress ρr

ij is zero, where λs is the shakedown limit. In the following we state
the shakedown theorems and then convert the upper bound theorem into a
form naturally aligned to the subsequent discussion of the Linear Matching
Method.


