Prashant Mhaskar - Jinfeng Liu Panagiotis D. Christofides

Fault-Tolerant Process Control

Methods and Applications

Fault-Tolerant Process Control

Prashant Mhaskar • Jinfeng Liu • Panagiotis D. Christofides

Fault-Tolerant Process Control

Methods and Applications

Prashant Mhaskar Department of Chemical Engineering McMaster University Hamilton, Ontario, Canada

Jinfeng Liu Dept. of Chemical & Mat. Engineering University of Alberta Edmonton, Alberta, Canada Panagiotis D. Christofides Dept. of Chemical & Biomolecular Engin. University of California Los Angeles, CA, USA

ISBN 978-1-4471-4807-4 ISBN DOI 10.1007/978-1-4471-4808-1 Springer London Heidelberg New York Dordrecht

ISBN 978-1-4471-4808-1 (eBook)

Library of Congress Control Number: 2012953998

© Springer-Verlag London 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The chemical industry is a vital sector of the global economy. Increasingly faced with the requirements of safety, environmental sustainability, energy efficiency, and profitability, chemical process operation is relying extensively on automated process control systems involving a large number of control actuators and measurement sensors. While process automation is critical in achieving the above requirements, the increasing reliance on actuators and sensors tends to increase the vulnerability of the process to faults (for example, defects/malfunctions in process equipment, sensors and actuators, failures in the controllers or in the control loops), leading to the failure of the control system and potentially causing a host of economic, environmental, and safety problems that can seriously degrade the operating efficiency of the process. Problems due to faults may include physical damage to the process equipment, raw material and energy waste, increase in process downtime, resulting in significant production losses, and jeopardizing personnel and environmental safety. Management of abnormal situations resulting from actuator and sensor malfunctions is a challenge in the chemical industry since abnormal situations account for tens of billions of dollars in annual lost revenue in the US alone.

The above considerations provide a strong motivation for the development of methods and strategies for the design of advanced fault-tolerant control systems that ensure an efficient and timely response to enhance fault recovery, prevent faults from propagating or developing into total failures, and reduce the risk of safety hazards. To this end, this book presents methods for the design of advanced fault-tolerant control systems for chemical processes which explicitly deal with actuator/controller failures and sensor data losses. Specifically, the book proposes: (i) a fault-detection, isolation, and diagnosis framework for handling actuator and sensor faults for nonlinear systems; (ii) reconfiguration and safe-parking based fault-handling methodologies; (iii) integrated data and model based fault-detection and isolation and fault-tolerant control methods; (iv) methods for handling sensor malfunctions; and (v) methods for monitoring the performance of low-level proportional-integral-derivative (PID) control loops. The proposed methods employ tools ranging from nonlinear systems analysis, Lyapunov techniques, optimization, statistical methods, and hybrid systems theory and are predicated upon the idea of

integrating fault-detection, local feedback control, and supervisory control. The applicability and performance of the proposed methods are demonstrated through a number of chemical process examples.

Application of the proposed fault-tolerant control methods to processes subject to actuator and sensor malfunctions is expected to significantly improve their operation and performance, increase process safety and reliability, and minimize the negative economic impact of failures on overall process operation.

The book requires basic knowledge of differential equations, linear and nonlinear control theory, and optimization methods, and is intended for researchers, graduate students, and process control engineers. Throughout the book, practical implementation issues are discussed to help engineers and researchers understand the application of the methods in greater depth.

Finally, we would like to thank all the people who contributed in some way to this project. In particular, we would like to thank our colleagues at McMaster University, the University of Alberta, and UCLA for creating a pleasant working environment. Last, but not least, we would like to express our deepest gratitude to our families for their dedication, encouragement and support over the course of this project. We dedicate this book to them.

Hamilton, Ontario, Canada Edmonton, Alberta, Canada Los Angeles, CA, USA Prashant Mhaskar Jinfeng Liu Panagiotis D. Christofides

Contents

1	Intro	oduction
	1.1	Motivation
	1.2	Background
	1.3	Objectives and Organization of the Book
2	Back	ground on Nonlinear Systems and Control
	2.1	Notation
	2.2	Nonlinear Systems
	2.3	Stability of Nonlinear Systems 10
		2.3.1 Stability Definitions
		2.3.2 Stability Characterizations Using Function Classes \mathcal{K} ,
		\mathcal{K}_{∞} , and \mathcal{KL}
		2.3.3 Lyapunov's Direct (Second) Method 13
		2.3.4 LaSalle's Invariance Principle
		2.3.5 Lyapunov's Indirect (First) Method
		2.3.6 Input-to-State Stability
	2.4	Stabilization of Nonlinear Systems
	2.5	Feedback Linearization and Zero Dynamics
	2.6	Input Constraints
	2.7	Model Predictive Control
	2.8	Lyapunov-Based MPC
	2.9	Hybrid Systems
	2.10	Conclusions
3	Integ	grated Fault-Detection and Fault-Tolerant Control
	3.1	Introduction
	3.2	Process Description
	3.3	Motivating Example
	3.4	State Feedback Case
		3.4.1 Bounded Lyapunov-Based Control
		3.4.2 State Feedback Fault-Tolerant Control
		3.4.3 Simulation Results

	3.5	Handling Availability of Limited Measurements: The Output Feedback Case	40
		3.5.1 Output Feedback Control	42
		Feedback Control	44
	26	3.5.3 Simulation Results	49
	3.6		54
4	Inte	grated Fault-Detection and Isolation and Fault-Tolerant Control	55
	4.1	Introduction	55
	4.2	Preliminaries	56
	4.3	State-Feedback Fault-Tolerant Control	57
		4.3.1 State-Feedback Fault Detection and Isolation Filter	57
		4.3.2 State-Feedback Fault-Tolerant Controller	59
	4.4	Output-Feedback Fault-Tolerant Control	61
		4.4.1 Output Feedback Controller	61
		4.4.2 Output-Feedback Fault Detection and Isolation Filter	63
		4.4.3 Output-Feedback Fault Detection and Isolation and Fault	~
			64
	4.5	Simulation Examples	66
	4.6	Application to a Reverse Osmosis Desalination Process	76
		4.6.1 Process Description and Modeling	77
		4.6.2 Fault-Detection and Isolation and Fault-Tolerant Control	79
		4.6.3 Simulation Results	82
	4.7	Conclusions	84
5	Safe	-Parking	85
	5.1	Introduction	85
	5.2	System Description	86
		5.2.1 Process Description	86
		5.2.2 Motivating Example	86
		5.2.3 Lyapunov-Based Model Predictive Control	88
	5.3	Safe-Parking of Nonlinear Process Systems	89
		5.3.1 Problem Definition	90
		5.3.2 Safe-Parking to Resume Nominal Operation	90
		5.3.3 Incorporating Performance Considerations in Safe-Parking	94
		5.3.4 Illustrative Simulation Example	97
	5.4	Application to the Styrene Polymerization Process	100
	5.5	Conclusions	103
6	Foul	t Diagnosis and Robust Safa-Parking	105
U	Fau 6 1		105
	6.2	Preliminaries	105
	0.2	6.2.1 System Description	106
		6.2.1 System Description	107
	63	5.2.2 Evapuilov-Dascu Freucuve Collutor	100
	0.5		109

		6.3.1 Fault Diagnosis Under State Feedback Control	109
		6.3.2 Handling State Estimation Errors for Fault Diagnosis	113
	6.4	Robust Safe-Parking for Fault-Tolerant Control	114
	6.5	Simulation Example	116
	6.6	Conclusions	124
7	Utili	zing FDI Insights in Controller Design and PID Monitoring	125
	7.1	Introduction	125
	7.2	Controller Enhanced FDI	128
		7.2.1 Data-Based Fault Detection	131
		7.2.2 Data-Based Isolation Based on a Fault Signature	133
		7.2.3 Controller Enhanced Isolation	137
		7.2.4 Simulation Case Studies	142
	7.3	Using FDI for Controller Performance Monitoring	161
		7.3.1 Monitoring and Retuning of Low-Level PID Loops	163
		7.3.2 Application to a Nonlinear Chemical Process Network	166
	7.4	Conclusion	176
8	Isola	ation and Handling of Sensor Faults	179
	8.1	Introduction	179
	8.2	Preliminaries	180
	8.3	Practical Stability of the Closed-Loop System Under Output	
		Feedback Control	184
	8.4	Fault Isolation and Handling Design	188
	8.5	Application to a Chemical Reactor Example	196
	8.6	Conclusions	203
9	Con	trol and Fault-Handling Subject to Asynchronous	
	Mea	surements	205
	9.1	Introduction	205
	9.2	Handling Sensor Malfunctions in the Control Design	206
		9.2.1 Lyapunov-Based Control	207
		9.2.2 Modeling of Sensor Data Losses	208
		9.2.3 LMPC Formulation with Asynchronous Feedback	208
		9.2.4 Application to a Continuous Crystallizer	215
	9.3	FDI Using Asynchronous Measurements: Problem Formulation	
		and Solution	231
		9.3.1 Class of Nonlinear Systems	231
		9.3.2 Modeling of Asynchronous Measurements	233
		9.3.3 Asynchronous State Observer	234
		9.5.4 Design of Fault-Detection and Isolation Filter	234
	0.4	9.3.5 Application to a Polyethylene Reactor	237
	9.4		250
Ref	erenc	es	253
Ind	ex.		261

List of Figures

Fig. 1.1	A traditional fault-tolerant control structure	2
Fig. 1.2	An active fault tolerant control structure	3
Fig. 3.1	A schematic of the CSTR showing the three candidate control	
	configurations	31
Fig. 3.2	Integrated fault-detection and fault-tolerant control design: state	
	feedback case	36
Fig. 3.3	Evolution of the closed-loop state profiles under the switching rule of Eq. (3.8) subject to failures in control systems 1 and 2	
	(solid line) and under arbitrary switching (dashed line)	39
Fig. 3.4	Evolution of the closed-loop (a) temperature and (b) reactant concentration under the switching rule of Eq. (3.8) subject	
	to failures in control systems 1 and 2 (solid lines) and under	
	arbitrary switching (dashed lines)	39
Fig. 3.5	Evolution of the closed-loop residual under the fault-detection	
	filter for (a) control configuration 1 and (b) control configurations	
	2 and 3 under the switching rule of Eq. (3.8) subject to failures	
	in control systems 1 and 2 (solid lines) and under arbitrary	
	switching (dashed lines)	40
Fig. 3.6	Manipulated input profiles under (a) control configuration 1,	
	(b) control configuration 2, and (c) control configuration 3 under	
	the switching rule of Eq. (3.8) subject to failures in control	
	systems 1 and 2 (solid lines) and under arbitrary switching	
	(dashed lines)	41
Fig. 3.7	Integrated fault-detection and fault-tolerant control design under	
	output feedback	45
Fig. 3.8	Evolution of the closed-loop (a) temperature (<i>solid line</i>), estimate	
	of temperature (<i>dash-dotted line</i>) and the temperature profile	
	generated by the filter (<i>dashed line</i>) and (b) concentration	
	(solid line), estimate of concentration (dash-dotted line) and the	
	concentration profile generated by the filter (<i>dashed line</i>) under	

	control configuration 1 when the fault detection filter is initialized at $t = 0.005$ minutes	50
Fig 30	at $t = 0.005$ minutes	50
11g. J.9	for the first control configuration when the fault detection filter is	
	initialized at $t = 0.005$ minutes	51
Fig 3 10	Evolution of the closed-loop (a) temperature (solid line) estimate	51
115. 5.10	of temperature (<i>dashdotted line</i>) and the temperature profile	
	generated by the filter (<i>dashed line</i>) and (b) concentration	
	(solid line), estimate of concentration (dash-dotted line) and the	
	concentration profile generated by the filter (<i>dashed line</i>) under	
	the switching rule of Eq. (3.22) subject to failures in control	
	systems 1 and 2	51
Fig. 3.11	Evolution of the closed-loop state trajectory under the switching	
C	rule of Eq. (3.22) subject to failures in control systems 1 and 2,	
	using an appropriate fault-detection filter (solid line) and in the	
	absence of a fault-detection filter (dashed line)	52
Fig. 3.12	Evolution of the residual for (a) the first control configuration	
	and (b) the second control configuration \ldots \ldots \ldots \ldots \ldots	52
Fig. 3.13	Evolution of the closed-loop (a) temperature (solid line), estimate	
	of temperature (dash-dotted line) and the temperature profile	
	generated by the filter (dashed line) and (b) concentration	
	(solid line), estimate of concentration (dash-dotted line) and the	
	concentration profile generated by the filter (dashed line) under	
	the switching rule of Eq. (3.22) subject to failures in control	
E : 0.1.1	systems 1 and 2 in the absence of a fault-detection filter	53
Fig. 3.14	Manipulated input profiles under (a) control configuration 1,	
	(b) control configuration 2, and (c) control configuration 3 under the citation is $(\mathbf{c}, \mathbf{c}) = (\mathbf{c}, \mathbf{c})$	
	the switching fulle of Eq. (3.22) subject to failures in control	
	systems 1 and 2 in the presence (<i>solia times</i>) and absence (<i>aashea</i>	53
Fig 11	A schematic of two CSTPs operating in series	55 67
Fig. 4.1 $\operatorname{Fig} 4.2$	Evolution of reactor one closed loop temperature profile under	07
1 1g. 1 .2	the switching rule of Theorem 4.3 (solid line) and in the absence	
	of fault-tolerant control (<i>dashed line</i>) subject to simultaneous	
	failures in both the heating jackets	70
Fig. 4.3	Evolution of reactor two closed-loop temperature profile under	
0	the switching rule of Theorem 4.3 (<i>solid line</i>) and in the absence	
	of fault-tolerant control (<i>dashed line</i>) subject to simultaneous	
	failures in both the heating jackets	70
Fig. 4.4	Evolution of reactor one closed-loop reactant concentration	
	profile under the switching rule of Theorem 4.3 (solid line) and	
	in the absence of fault-tolerant control (dashed line) subject to	
	simultaneous failures in both the heating jackets	71

Fig. 4.5	Evolution of reactor two closed-loop reactant concentration	
	profile under the switching rule of Theorem 4.3 (solid line) and	
	in the absence of fault-tolerant control (dashed line) subject to	
	simultaneous failures in both the heating jackets	71
Fig. 4.6	Evolution of residuals $e_{1,1}$ (solid line) and $e_{2,1}$ (dashed line)	
	corresponding to the manipulated inputs in the first reactor	72
Fig. 4.7	Evolution of residuals $e_{3,1}$ (solid line) and $e_{4,1}$ (dashed line)	
	corresponding to the manipulated inputs in the second reactor	72
Fig. 4.8	Evolution of the closed-loop temperature (solid line), estimate	
	of temperature (dash-dotted line), and the temperature profile	
	generated by the FDI filter (dashed line) with fault-tolerant	
	control in place. Evolution of the temperature (dotted line)	
	without fault-tolerant control in place	73
Fig. 4.9	Evolution of the residual corresponding to Q_1 before switching	
	$(k = 1, solid line)$, and Q_3 after switching $(k = 2, dashed line)$.	
	A fault is declared when $e_{1,1}$ reaches the threshold at 0.1	73
Fig. 4.10	Evolution of the residual corresponding to Q_2 before switching	
	(k = 1, solid line), and after switching $(k = 2, dashed line)$. No	
	fault is declared	74
Fig. 4.11	(a) Temperature profile of reactor two with reconfiguration (<i>solid</i>	
	<i>line</i>) and without reconfiguration (<i>dotted line</i>), (b) Q_1 residual	
	profile, and (c) Q_2 residual profile (note fault detection at time	
	$t = 40.79 \text{ min}) \dots \dots \dots \dots \dots \dots \dots \dots \dots $	75
Fig. 4.12	(a) Temperature profile of reactor two with reconfiguration (<i>solid</i>	
	<i>line</i>) and without reconfiguration (<i>dotted line</i>), (b) Q_1 residual	
	profile, and (c) Q_2 residual profile (note fault detection at time	
	t = 41.33 min)	77
Fig. 4.13	Single membrane unit reverse osmosis desalination process	78
Fig. 4.14	Evolution of the closed-loop state profiles under fault-tolerant	
	control (dashed line) and without fault tolerant-control (solid	
	<i>line</i>). FTC recovers the desired brine flow, v_3	83
Fig. 4.15	Evolution of the closed-loop pressure profile under fault tolerant	
	control (dashed line) and without fault tolerant control (solid	
	<i>line</i>). FTC recovers the desired operating pressure	84
Fig. 5.1	A schematic illustrating the safe-parking framework for a process	
	with two actuators. Ω denotes the stability region under nominal	
	operation. Safe-parking candidates lie on the equilibrium curve	
	corresponding to the fail-safe value of the first actuator, and	
	admissible values of the second actuator. Arbitrarily choosing	
	a safe-park candidate (e.g., safe-parking candidate 2) does not	
	guarantee resumption of nominal operation upon fault-recovery,	
	while choosing safe-park candidate 1 guarantees resumption of	
	nominal operation upon fault-recovery	93

Fig. 5.2	Evolution of closed–loop states for the CSTR example. <i>Dashed</i> <i>line</i> () indicates the case when a safe-park point S_1 is arbitrarily chosen (resulting in the inability to resume nominal operation upon fault-recovery) while the <i>solid line</i> (—) indicates the case when S_2 is chosen according to Theorem 5.2, guaranteeing resumption of nominal operation upon fault-recovery. The <i>dash-dotted lines</i> show the closed-loop response when optimality considerations are included in the choice of the safe-park point and S_2 is chosen	20
Fig. 5.3	Evolution of the closed-loop state (a)–(b) and input (c)–(d) profiles for the CSTR example. <i>Dashed lines</i> () indicate the case when a safe-park point S_1 is arbitrarily chosen (resulting in the inability to resume nominal operation upon fault-recovery) while the <i>solid lines</i> (—) show the case when S_2 is chosen according to Theorem 5.2, guaranteeing resumption of nominal operation upon fault-recovery. The <i>dash-dotted lines</i> show the closed-loop response when optimality considerations are included in the choice of the safe park point and S_2 is chosen	20
Fig. 5.4	Evolution of the state profiles for the styrene polymerization process for an arbitrarily chosen safe-park point (<i>dashed lines</i>) and under the proposed safe-park mechanism (<i>solid lines</i>). Fault occurs at 33.3 min and is rectified at 300 min. The nominal equilibrium point N and the safe-park points S_5 and S_1 are	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Fig. 5.5	denoted by the markers \star , \circ , and $+$, respectively 10 The input profiles for the styrene polymerization process for an arbitrarily chosen safe-park point (<i>dashed lines</i>) and under the proposed safe-park mechanism (<i>solid lines</i>). Fault occurs at 33.3 min, resulting in the coolant flow rate being stuck at the maximum value during this time, and is rectified at 300 min 10	02
Fig. 6.1	Schematic of the integrated fault diagnosis and safe-parking framework	16
Fig. 6.2	Schematic illustrating the choice of a safe-park point. The range $[\bar{u}_{s,i,j} - \delta_s, \bar{u}_{s,i,j} + \delta_s]$ is designed off-line for the actuator position $\bar{u}_{s,i,j}$ with the robustness margin δ_s . The range $[\bar{u}_{i,l}, \bar{u}_{i,u}]$ is identified online, which contains the actual value of the failed actuator position $\bar{u}_{i,s}$.	16
Fig. 6.3	Schematic of the chemical reactor example $\dots \dots \dots$	17
Fig. 6.4	Closed-loop state trajectories for the chemical reactor example where the process starts from O_1 and the cooling valve fails at F_1 . The <i>solid line</i> shows the case where the fault is confirmed at D_1 , the process is stabilized at the safe-park point S_4 , and nominal operation is resumed upon fault repair. The <i>dashed line</i> shows process instability when no fault-handling mechanism is implemented. The <i>arrows</i> show the directions of the trajectories	10
		18

Fig. 6.5	Illustration of the FDD scheme of Theorem 6.2 for the chemical reactor example. The cooling value fails at time 0.05 hr. The fault	
	is first detected and isolated at 0.1 hr and confirmed at 0.175 hr	
	after 4 consecutive alarms. <i>Crosses</i> denote the prescribed inputs.	
	<i>circles</i> denote the implemented inputs, and <i>error bars</i> denote the	
	estimated bounds on the actual inputs for C_{A0} (a). O_{c} (b), and	
	$O_{k}(\mathbf{c})$ 1	20
Fig. 6.6	Binary residuals (a)–(b) defined by Eq. (6.16) and residuals	20
115.0.0	(c) - (d) defined by Eq. (6.9) for manipulated variables C_{A0} and	
	<i>O</i> respectively in the chemical reactor example	21
Fig 67	$(\mathbf{c})_{\mathbf{c}}$, $(c$	-1
1 15. 0.7	chemical reactor example. The safe-parking operation starts from	
	0.175 hr and nominal operation is resumed at 1.5 hr	22
Fig 68	Closed-loop state trajectory for the chemical reactor example	
1 15. 0.0	with asynchronous concentration measurements where the	
	process starts from Q_2 and the cooling valve fails at F_2 . The	
	fault is confirmed at D ₂ the process is stabilized at the safe-nark	
	point S_c and pominal operation is resumed upon fault repair. The	
	arrow shows the direction of the trajectory	22
Fig 69	Illustration of the FDD scheme of Theorem 6.3 for the chemical	
1 15. 0.7	reactor example with asynchronous concentration measurements	
	The cooling valve fails at time 0.05 hr. The fault is first	
	detected and isolated at 0.125 hr and confirmed at 0.2 hr after	
	4 consecutive alarms Crosses denote the prescribed inputs	
	<i>circles</i> denote the implemented inputs, and <i>error bars</i> denote the	
	estimated bounds on the actual inputs for $Q_1(\mathbf{a})$ and $Q_2(\mathbf{b})$	23
Fig 6 10	Closed-loop state (a)–(b) and input (c)–(d) profiles for the	25
115. 0.10	chemical reactor example with asynchronous concentration	
	measurements. The safe-narking operation starts from 0.2 hr and	
	nominal operation is resumed at 1.5 hr	23
Fig 71	(a) (ton) Common methods of fault diagnosis apply the FDI	25
115. / . 1	scheme and feedback control law to the closed-loop system	
	independently from each other (b) (<i>bottom</i>) This work proposes	
	integrating the feedback control law design with the FDI scheme	
	in the closed-loop system	26
Fig 7.2	Closed-loop system with MPC as advanced model-based	20
115.7.2	controller and low-level PID controller implemented to regulate	
	the control actuators	27
Fig 73	Incidence graph and reduced incidence graph for the system of	21
115.7.5	Fig. (7.2)	30
Fig 74	Isolability graph for the system of Eq. (7.2)	34
Fig. 7.5	CSTR example Distribution of normalized fault-free operating	51
115.7.5	data compared with a normal distribution of the same mean and	
	variance 1	44
Fig 76	Isolability graph for the system of Eq. (7.16) $v_1 = \{r_1\}$	т -т
1 15. 7.0	$v_0 = \{c_0\}$ and $v_0 = \{n\}$	45
	$v_2 = (s_2), \text{ and } v_3 = (\eta_1) \cdots (\eta_{n-1})$	ъJ

Fig. 7.7	CSTR example. State trajectories of the closed-loop system	
	under feedback-linearizing (\diamond) and P (\times) control with a fault d_1	
	at $t = 0.5$ hr	147
Fig. 7.8	CSTR example. Closed-loop system under feedback-linearizing	
C	control with sample size $m = 10$. Statistics T^2 , T_1^2 , and T_2^2	
	(solid) with T_{UCL} (dashed) with a failure in d_1 at $t = 0.5$ hr ²	147
Fig. 7.9	CSTR example. Closed-loop system under feedback-linearizing	
0	control with sample size $m = 1$. Statistics T^2 , T_1^2 , and T_2^2 (solid)	
	with T_{UCL} (dashed) with a failure in d_1 at $t = 0.5$ hr	148
Fig 7 10	CSTR example. Closed-loop system under proportional control	110
115. 7.10	with sample size $m = 10$ Statistics T^2 T^2 and T^2 (solid) with	
	There (dashed) with a failure in d, at $t = 0.5$ hr	148
Fig. 7.11	CSTR example Closed-loop system under proportional control	140
11g. 7.11	with sample size $m = 1$. Statistics T^2 , T^2 and T^2 (solid) with	
	with sample size $m = 1$. Statistics T_1 , T_1 , and T_2 (solid) with T_{trans} (dashed) with a failure in d, at $t = 0.5$ hr	1/0
Fig. 7.12	Γ_{UCL} (<i>uashea</i>) with a failure in a_1 at $i = 0.5$ in $\ldots \ldots \ldots$	149
rig. 7.12	control with some la size $m = 1$. Statistics T^2 , T^2 and T^2 (solid)	
	with T_{m} (dashed) with a failure in d at $t = 0.5$ km	140
$E_{12} = 7.12$	with T_{UCL} (<i>aashea</i>) with a familie in a_2 at $t = 0.5$ in	149
Fig. 7.15	USTR example. Closed-loop system under proportional control with some 1. Statistics T^2 , T^2 , and T^2 (solid) with	
	with sample size $m = 1$. Statistics T^2 , T_1^2 , and T_2^2 (solid) with	1.50
F' 714	T_{UCL} (<i>dashed</i>) with a failure in d_2 at $t = 0.5$ hr	150
F1g. /.14	CSTR example. Manipulated input profiles for both the	
	proportional controller (\diamond) and the feedback-linearizing	1.50
D : 7 15	controller (×) with a failure in d_1 at time $t = 0.5$ hr	150
Fig. 7.15	Isolability graph for the system of Eq. (7.18)	155
F1g. 7.16	Polyethylene reactor example. Distribution of normalized,	
	fault-free operating data compared with a normal distribution of	
	the same mean and covariance	156
Fig. 7.17	Polyethylene reactor example. State trajectories of the	
	closed-loop system under decoupling (solid) and PI-only	
	(<i>dashed</i>) controllers with a fault d_2 at $t = 0.5$ hr	157
Fig. 7.18	Polyethylene reactor example. State trajectories of the	
	closed-loop system under the decoupling (solid) and PI-only	
	(<i>dashed</i>) controllers with a fault d_3 at $t = 0.5$ hr	158
Fig. 7.19	Polyethylene reactor example. State trajectories of the	
	closed-loop system under the decoupling (solid) and PI-only	
	(<i>dashed</i>) controllers with a fault d_1 at $t = 0.5$ hr	158
Fig. 7.20	Polyethylene reactor example. Statistics T^2 , T_1^2 , T_2^2 , and T_3^2	
	(solid) with T_{UCL} (dashed) of the closed-loop system under the	
	decoupling controller with a failure in d_2 at $t = 0.5$ hr	159
Fig. 7.21	Polyethylene reactor example. Statistics T^2 , T_1^2 , T_2^2 , and T_3^2	
	(solid) with T_{UCL} (dashed) of the closed-loop system under the	
	decoupling controller with a failure in d_3 at $t = 0.5$ hr	159
Fig. 7.22	Polyethylene reactor example. Statistics T^2 , T_1^2 , T_2^2 , and T_3^2	
	(solid) with T_{UCL} (dashed) of the closed-loop system under the	
	decoupling controller with a failure in d_1 at $t = 0.5$ hr	160