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Preface

The chemical industry is a vital sector of the global economy. Increasingly faced
with the requirements of safety, environmental sustainability, energy efficiency, and
profitability, chemical process operation is relying extensively on automated process
control systems involving a large number of control actuators and measurement sen-
sors. While process automation is critical in achieving the above requirements, the
increasing reliance on actuators and sensors tends to increase the vulnerability of
the process to faults (for example, defects/malfunctions in process equipment, sen-
sors and actuators, failures in the controllers or in the control loops), leading to the
failure of the control system and potentially causing a host of economic, environ-
mental, and safety problems that can seriously degrade the operating efficiency of
the process. Problems due to faults may include physical damage to the process
equipment, raw material and energy waste, increase in process downtime, result-
ing in significant production losses, and jeopardizing personnel and environmental
safety. Management of abnormal situations resulting from actuator and sensor mal-
functions is a challenge in the chemical industry since abnormal situations account
for tens of billions of dollars in annual lost revenue in the US alone.

The above considerations provide a strong motivation for the development of
methods and strategies for the design of advanced fault-tolerant control systems
that ensure an efficient and timely response to enhance fault recovery, prevent
faults from propagating or developing into total failures, and reduce the risk of
safety hazards. To this end, this book presents methods for the design of advanced
fault-tolerant control systems for chemical processes which explicitly deal with ac-
tuator/controller failures and sensor data losses. Specifically, the book proposes:
(i) a fault-detection, isolation, and diagnosis framework for handling actuator and
sensor faults for nonlinear systems; (ii) reconfiguration and safe-parking based
fault-handling methodologies; (iii) integrated data and model based fault-detection
and isolation and fault-tolerant control methods; (iv) methods for handling sen-
sor malfunctions; and (v) methods for monitoring the performance of low-level
proportional-integral-derivative (PID) control loops. The proposed methods employ
tools ranging from nonlinear systems analysis, Lyapunov techniques, optimization,
statistical methods, and hybrid systems theory and are predicated upon the idea of
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vi Preface

integrating fault-detection, local feedback control, and supervisory control. The ap-
plicability and performance of the proposed methods are demonstrated through a
number of chemical process examples.

Application of the proposed fault-tolerant control methods to processes subject to
actuator and sensor malfunctions is expected to significantly improve their operation
and performance, increase process safety and reliability, and minimize the negative
economic impact of failures on overall process operation.

The book requires basic knowledge of differential equations, linear and nonlinear
control theory, and optimization methods, and is intended for researchers, graduate
students, and process control engineers. Throughout the book, practical implemen-
tation issues are discussed to help engineers and researchers understand the appli-
cation of the methods in greater depth.

Finally, we would like to thank all the people who contributed in some way to this
project. In particular, we would like to thank our colleagues at McMaster University,
the University of Alberta, and UCLA for creating a pleasant working environment.
Last, but not least, we would like to express our deepest gratitude to our families
for their dedication, encouragement and support over the course of this project. We
dedicate this book to them.

Prashant Mhaskar
Jinfeng Liu

Panagiotis D. Christofides

Hamilton, Ontario, Canada
Edmonton, Alberta, Canada
Los Angeles, CA, USA
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[ūi,l , ūi,u] is identified online, which contains the actual value of
the failed actuator position ūi,f . . . . . . . . . . . . . . . . . . . 116

Fig. 6.3 Schematic of the chemical reactor example . . . . . . . . . . . . 117
Fig. 6.4 Closed-loop state trajectories for the chemical reactor example

where the process starts from O1 and the cooling valve fails
at F1. The solid line shows the case where the fault is confirmed
at D1, the process is stabilized at the safe-park point S4, and
nominal operation is resumed upon fault repair. The dashed line
shows process instability when no fault-handling mechanism is
implemented. The arrows show the directions of the
trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118



List of Figures xv

Fig. 6.5 Illustration of the FDD scheme of Theorem 6.2 for the chemical
reactor example. The cooling valve fails at time 0.05 hr. The fault
is first detected and isolated at 0.1 hr and confirmed at 0.175 hr
after 4 consecutive alarms. Crosses denote the prescribed inputs,
circles denote the implemented inputs, and error bars denote the
estimated bounds on the actual inputs for CA0 (a), Qc (b), and
Qh (c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Fig. 6.6 Binary residuals (a)–(b) defined by Eq. (6.16) and residuals
(c)–(d) defined by Eq. (6.9) for manipulated variables CA0 and
Q, respectively, in the chemical reactor example . . . . . . . . . . 121

Fig. 6.7 Closed-loop state (a)–(b) and input (c)–(d) profiles for the
chemical reactor example. The safe-parking operation starts from
0.175 hr, and nominal operation is resumed at 1.5 hr . . . . . . . . 122

Fig. 6.8 Closed-loop state trajectory for the chemical reactor example
with asynchronous concentration measurements where the
process starts from O2 and the cooling valve fails at F2. The
fault is confirmed at D2, the process is stabilized at the safe-park
point S6, and nominal operation is resumed upon fault repair. The
arrow shows the direction of the trajectory . . . . . . . . . . . . . 122

Fig. 6.9 Illustration of the FDD scheme of Theorem 6.3 for the chemical
reactor example with asynchronous concentration measurements.
The cooling valve fails at time 0.05 hr. The fault is first
detected and isolated at 0.125 hr and confirmed at 0.2 hr after
4 consecutive alarms. Crosses denote the prescribed inputs,
circles denote the implemented inputs, and error bars denote the
estimated bounds on the actual inputs for Qc (a) and Qh (b) . . . 123

Fig. 6.10 Closed-loop state (a)–(b) and input (c)–(d) profiles for the
chemical reactor example with asynchronous concentration
measurements. The safe-parking operation starts from 0.2 hr, and
nominal operation is resumed at 1.5 hr . . . . . . . . . . . . . . . 123

Fig. 7.1 (a) (top) Common methods of fault diagnosis apply the FDI
scheme and feedback control law to the closed-loop system
independently from each other. (b) (bottom) This work proposes
integrating the feedback control law design with the FDI scheme
in the closed-loop system . . . . . . . . . . . . . . . . . . . . . . 126

Fig. 7.2 Closed-loop system with MPC as advanced model-based
controller and low-level PID controller implemented to regulate
the control actuators . . . . . . . . . . . . . . . . . . . . . . . . . 127

Fig. 7.3 Incidence graph and reduced incidence graph for the system of
Eq. (7.2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Fig. 7.4 Isolability graph for the system of Eq. (7.2) . . . . . . . . . . . . 134
Fig. 7.5 CSTR example. Distribution of normalized, fault-free operating

data compared with a normal distribution of the same mean and
variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Fig. 7.6 Isolability graph for the system of Eq. (7.16). v1 = {ζ1},
v2 = {ζ2}, and v3 = {η} . . . . . . . . . . . . . . . . . . . . . . . 145



xvi List of Figures

Fig. 7.7 CSTR example. State trajectories of the closed-loop system
under feedback-linearizing (�) and P (×) control with a fault d1
at t = 0.5 hr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Fig. 7.8 CSTR example. Closed-loop system under feedback-linearizing
control with sample size m = 10. Statistics T 2, T 2

1 , and T 2
2

(solid) with TUCL (dashed) with a failure in d1 at t = 0.5 hr . . . . 147
Fig. 7.9 CSTR example. Closed-loop system under feedback-linearizing

control with sample size m = 1. Statistics T 2, T 2
1 , and T 2

2 (solid)
with TUCL (dashed) with a failure in d1 at t = 0.5 hr . . . . . . . . 148

Fig. 7.10 CSTR example. Closed-loop system under proportional control
with sample size m = 10. Statistics T 2, T 2

1 , and T 2
2 (solid) with

TUCL (dashed) with a failure in d1 at t = 0.5 hr . . . . . . . . . . 148
Fig. 7.11 CSTR example. Closed-loop system under proportional control

with sample size m = 1. Statistics T 2, T 2
1 , and T 2

2 (solid) with
TUCL (dashed) with a failure in d1 at t = 0.5 hr . . . . . . . . . . 149

Fig. 7.12 CSTR example. Closed-loop system under feedback-linearizing
control with sample size m = 1. Statistics T 2, T 2

1 , and T 2
2 (solid)

with TUCL (dashed) with a failure in d2 at t = 0.5 hr . . . . . . . . 149
Fig. 7.13 CSTR example. Closed-loop system under proportional control

with sample size m = 1. Statistics T 2, T 2
1 , and T 2

2 (solid) with
TUCL (dashed) with a failure in d2 at t = 0.5 hr . . . . . . . . . . 150

Fig. 7.14 CSTR example. Manipulated input profiles for both the
proportional controller (�) and the feedback-linearizing
controller (×) with a failure in d1 at time t = 0.5 hr . . . . . . . . 150

Fig. 7.15 Isolability graph for the system of Eq. (7.18) . . . . . . . . . . . . 155
Fig. 7.16 Polyethylene reactor example. Distribution of normalized,

fault-free operating data compared with a normal distribution of
the same mean and covariance . . . . . . . . . . . . . . . . . . . 156

Fig. 7.17 Polyethylene reactor example. State trajectories of the
closed-loop system under decoupling (solid) and PI-only
(dashed) controllers with a fault d2 at t = 0.5 hr . . . . . . . . . . 157

Fig. 7.18 Polyethylene reactor example. State trajectories of the
closed-loop system under the decoupling (solid) and PI-only
(dashed) controllers with a fault d3 at t = 0.5 hr . . . . . . . . . . 158

Fig. 7.19 Polyethylene reactor example. State trajectories of the
closed-loop system under the decoupling (solid) and PI-only
(dashed) controllers with a fault d1 at t = 0.5 hr . . . . . . . . . . 158

Fig. 7.20 Polyethylene reactor example. Statistics T 2, T 2
1 , T 2

2 , and T 2
3

(solid) with TUCL (dashed) of the closed-loop system under the
decoupling controller with a failure in d2 at t = 0.5 hr . . . . . . . 159

Fig. 7.21 Polyethylene reactor example. Statistics T 2, T 2
1 , T 2

2 , and T 2
3

(solid) with TUCL (dashed) of the closed-loop system under the
decoupling controller with a failure in d3 at t = 0.5 hr . . . . . . . 159

Fig. 7.22 Polyethylene reactor example. Statistics T 2, T 2
1 , T 2

2 , and T 2
3

(solid) with TUCL (dashed) of the closed-loop system under the
decoupling controller with a failure in d1 at t = 0.5 hr . . . . . . . 160


