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Foreword

What is the relevance of temporal signal structure to the brain? We may gain some
insight by comparing the brain to the computer. In the modern computer, signals are
binary (have only two possible values), are made to change as quickly as technol-
ogy permits, and temporal relations between signals are of central importance. The
computer is driven by a clock through a quick succession of globally ordered states,
while great care and effort is expended to make sure that no signal spills over from
one state to the next. Ordered states are defined by commands in a program, each
command specifying the setting of a large number of switches. At one time [1], this
picture of a digital machine was taken seriously as a model for the brain, switches
being identified with neurons. Digital machines are universal, meaning that any con-
ceivable finite process can be realized in them, thus creating the vision that also the
processes of the mind could be realized as processes in a physical machine. At the
time, this idea was taken as the breakdown of the formerly perceived impenetrable
glass wall between mind and matter. Unfortunately, the research program of Arti-
ficial Intelligence, which was built on this vision, has not given us intelligence in
the machine yet. What is wrong with this vision of the brain as a digital machine?
The succession of states in the computer is specified by programs, programs arise in
human brains, and thus processes in the computer are imposed on it from outside.
The big remaining question regarding the brain is that of the origin of its ordered
states and sequences of states.

The role of temporal signal correlations in the brain may well be compared to
that in the computer. The purpose of the brain is to coordinate activity in its vari-
ous parts into ordered states and successions of states, such that things that belong
together and form part of a functional whole are activated together. In this task of
coordination, the brain is essentially out on its own, with very scant external help,
which can in no way be compared to the insight of the computer’s programmer.
Classical artificial neural network models (important examples being the perceptron
and associative memory) tended to grossly underestimate this task of generating and
organizing brain states. In these models, time is paced by the presentation of stimuli,
the network responding to each input pattern by convergence to a stationary state.
This volume concentrates on a different brand of neural network models, in which
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vi Foreword

the generation of temporal patterns is the focus of interest. As these studies in their
turn tend to pay less attention to the solution of functional tasks (beyond the stan-
dard problem of segmentation) and concentrate to a large extent on the modeling
of brain rhythms that are actually found, it may be of interest if I attempt to give a
wider perspective on the functional significance of temporal signal structure.

There are two aspects to the data structure of brain state, that is, to the way neural
activity represents cognitive content. Considering neurons as elementary symbols,
these aspects are (a) which of these symbols are active in a given psychological mo-
ment, and (b) how these symbols are put in relation to each other. If there are several
objects in a scene, for example, each to be described by several attributes, a number
of neurons will be active to represent the objects and the attributes (aspect (a)), but
it is also necessary to represent the information which of the several attributes re-
fer to which of the several objects (aspect (b)). Another example is visual (or more
generally, sensory) segmentation: the problem of expressing the subdivision of the
sensory field into coherent perceptual objects.

This is generally called the binding problem—the problem of representing re-
latedness between the symbols represented by neurons. It is now common lore to
consider neural signal synchrony as solution to the binding problem: sets of neurons
that are relating to each other express this by firing simultaneously. In simple cases,
such as the above examples, this seems a perfect solution, as both generation and
functional exploitation of signal synchrony are natural to neural networks. Signal
synchrony is generated by plausibly existing neural connections. In object-attribute
binding, the branching feed-forward connections from the original stimuli to neu-
rons representing objects and attributes can propagate the same signal fluctuations to
those neurons as signature of common origin and as expression of relations between
attributes and objects, In sensory segmentation, horizontal connections between the
neurons in a sensory field, being shaped by spatial closeness and other Gestalt laws,
tend to run between neurons responding to the same perceptual object, and these
connections thus tend to correlate signals within segments, as has been modelled
many times. Functional exploitation, that is, the read-out of signal synchrony, relies
on the fact that neurons are coincidence detectors, and thus functional interaction is
restricted to sets of signals that are synchronous.

As nice and conceptually coherent the picture engendered by these examples is,
it doesn’t settle the binding issue, for experimental and for theoretical reasons. It
is a disturbing fact that in spite of intensive search and in spite of ample evidence
for neural signal synchrony, especially in the form of gamma rhythms (a frequency
range from about 35 to 90 hertz), the prediction that signals within sensory segments
should be globally correlated has not been confirmed experimentally. This alone
raises the question whether there are other mechanisms than signal synchrony by
which the brain can express binding, and theory is called upon to work out propos-
als. (One such proposal for solving the segmentation problem without using tem-
poral binding is described in [2].) And there is more work to do for theory. The
above binding examples—attribute-object binding and sensory segmentation—are
misleading in their simplicity, reducing the binding issue to the decomposition of the
neural state into a few blocks, a view often defended by reference to our inability to
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keep simultaneously in mind more than a few chunks of a novel scene (the seven-
plus-or-minus-two rule of [3]). On the other hand, we are evidently able to cope
with very complex arrays of binding when representing a complex sentence, which
necessitates to keep track simultaneously of multiple bindings between semantic,
lexical, syntactic and phonetic elements, or when representing a visual scene of fa-
miliar structure, which necessitates the simultaneous handling of numerous relations
between abstract and concrete patterns and their spatial relationships. Testimony to
this complexity are the parsing trees of linguistics or the data structures of computer-
based scene analysis (which themselves are all gross simplifications of the reality
in our brains). Such complex relational patterns cannot be expressed by signal syn-
chrony within realistic reaction times, given the poor temporal resolution of neural
signals (1 to 3 msec, set by response times of neural membranes).

To do justice to the reality of our cognitive apparatus, we need a picture that
lets us understand how the neural machinery in our head (or, for that matter, in a
mouse’s or salamander’s head) is able to represent very intricate relational struc-
tures, and do so within typical reaction times of small fractions of a second. The
called-for mechanisms must not only have high capacity and expressive power, but
must in addition be able to store and retrieve relational structures once they have
been formed. Finally, a clear picture must be developed for how the brain forms its
preferred relational structures and how these preferred structures are to be charac-
terized, for surely they can’t be arbitrary.

A foreword is not the place to come forward with the proposal of a new system,
but let me just remark that it is my conviction that rapid switching of synapses is part
of the mechanism [4], and my laboratory has come to the conclusion that the ma-
chinery for storing and retrieving relational structures has the form of connections
of a second order, of associative connections between switching synapses [5,6]. It is
highly relevant to this book, however, to point out the fundamental significance of
the time domain for these structures and processes, whatever they may be in detail.

To say it briefly, temporal signal structure is essential for expressing novel bind-
ings, for laying down relational structures of growing complexity in memory, for
reviving relational structures from memory (at a decisively reduced cost in terms
of information rate) and for expressing bindings that resist memory storage. The
mechanism for generating neural connectivity patterns, and, I claim, also of rela-
tional structures in memory, is network self-organization: the network creates struc-
tured activity patterns and synapses change in response to signal correlations, thus
altering network and activity patterns. This reactive loop between network and ac-
tivity tends to stabilize certain connectivity patterns, which are characterized by a
close correspondence between signal correlations and connections. Network self-
organization could perhaps be seen as a sequence of steps, each of which consists in
the establishment of a temporal binding pattern followed by plastic change of con-
nections, strengthening those between neurons bound to each other (that is, having
correlated signals) while weakening those between neurons that are active but not
bound to each other. Even if these individual binding patterns consist merely of one
or a few blocks of bound neurons, the result of a sequence of such events can be a
very intricate network of relations.
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So far, network self-organization has been mostly applied to the generation of
static networks, as illustrated by models of the ontogenesis of the visual system with
its retinotopic connection patterns and columnar arrangements of sensory features
(orientation, motion, stereo, color; for an example see [7]). If, however, synapses are
allowed to switch on a fast time scale, a given set of neurons can support a number of
alternate connectivity patterns, to be activated at different times. An important appli-
cation of this could be neighborhood-preserving fiber projections corresponding to
different transformation parameters to solve the problem of, for example, position-
invariant pattern recognition [6]. For a model for how such alternate relational net-
works and their control structures could be generated by network self-organization,
see [8].

Whereas the capacity of short-term memory is severely limited, as by Miller’s
seven-plus-or-minus-two rule, the capacity of long-term memory is generally held
as virtually unlimited. The price to be paid is the laborious process of transferring
short-term memory into long-term memory. Maybe this process is laborious because
it necessitates the establishment of a new permanent relational network with the help
of quite a number of consecutive activity binding patterns, as mentioned above.

Let me come back to our comparison between computer and brain. McCulloch
and Pitts identified neurons with what in modern parlance are the logic gates—
or bistable elements, or bits—of a digital machine. The bits of the computer can
actually play the role of elements of pattern representations, analogous to the in-
terpretation of neurons as elementary symbols. Many of them do, however, control
switches (hence the name gate). Maybe it is time to reinterpret McCulloch and Pitts
networks correspondingly, taking some of the “neurons” as elementary symbols, as
is customary, but taking others as switches that can be opened and closed, an idea
expressed already in [9].

The computer makes extensive use of temporal binding. All the bit settings in a
given state are related to each other in the sense of forming one coherent functional
state as specified in a program command. All signals necessary to constitute a state
must have arrived at their target before the computer clock triggers the next state.
The computer can afford this tight regime as its signals and pathways by now have
a bandwidth of more than a gigahertz. In the brain, where the signal bandwidth is
less than one kilohertz, a state comes into existence as the result of signals arriving
without precise synchronization, so that the transition from one state to the next is a
smooth and gradual affair.

The greatest step to be taken to transition from the computer to the brain is to find
an explanation for the origin of states. As has been said above, whereas in the com-
puter the switch settings essential for state organization are programmer-imposed,
brain states must be self-organized. The gradual affair of brain state establishment
may not just be a weakness but may be essential to this self-organization. If the
brain has mechanisms to assess a state’s level of self-consistency or completeness,
it can iterate as long as it takes to establish a valid state. This complexity is the price
the brain has to pay to be capable of programming itself as it goes along. If the
state leaves behind a permanent trace that makes it easier to establish it, or parts of
it, later again, and this self-programming may, after extensive exercise, install the
equivalent of complex algorithms.
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Unfortunately, our neural models are still very weak relative to this goal of brain
state organization. This may be responsible for one great shortcoming of current
neural network models and of related approaches—their inability to scale up in
terms of numbers of elements or of functional sophistication to anything like the
brains of even small animals. The difficulty is that larger systems cannot be made
to converge to definite structures under the influence of training input. The solution
to this problem must lie in decisive reduction of the systems’ number of internal
degrees of freedom, to be achieved by network self-organization (the one gigabyte
of human genetic information not being enough to code for the petabyte needed to
note down the wiring diagram of the human cortex). As an essential ingredient of
any theory of network self-organization will be a clear understanding of the way in
which temporal signal structure is shaped by a given network, the contents of this
book seems to be highly relevant to neural network models of the coming decade.
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