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Preface

The idea of modeling the behaviour of phenomena at multiple scales
has become a useful tool in both pure and applied mathematics.
Fractal-based techniques lie at the heart of this area, as fractals are
inherently multiscale objects. Fractals have increasingly become a use-
ful tool in real applications; they very often describe such phenomena
better than traditional mathematical models.

Fractal-Based Methods in Analysis draws together, for the first time
in book form, methods and results from almost 20 years of research on
this topic, including new viewpoints and results in many of the chap-
ters. For each topic, the theoretical framework is carefully explained.
Numerous examples and applications are presented.

The central themes are self-similarity across scales (exact or ap-
proximate) and contractivity. In applications, this involves introduc-
ing an appropriate space for contractive operators and approximating
the “target” mathematical object by the fixed point of one of these
contractions. Under fairly general conditions, this approximation can
be extremely good. This idea emerged from fractal image compression,
where an image is encoded by the parameters of a contractive transfor-
mation (see Sect. 3.1 and Figs. 3.3 and 3.4). The first step in extending
this methodology is to construct interesting contractive operators on
many different types of spaces. After this theoretical framework has
been established, the next step is to apply the methodology in practi-
cal problems. In this book, we present extensive examples of both of
these steps.

We originally conceived a document that we could give to our stu-
dents to help them learn the background for their research. This doc-
ument would contain an introduction to fractals via iterated function
systems (IFSs) and some of the important subsequent developments,
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viii Preface

all from this IFS viewpoint. This document has since taken on a life of
its own that has resulted in this book. The original goal is reflected in
the second chapter, which is designed to serve as the basis for a course.

In the first chapter, we give a “bird’s-eye” overview of the area,
painting with broad brushstrokes to give the reader the feel and phi-
losophy of the approach. We touch on many of the topics and appli-
cations, hoping to share our amazement at the breadth of interesting
mathematics and applications and to entice the reader into learning
more.

In Chapter 2, we present a brief course on the classical topics in the
iterated function systems viewpoint on fractals. In order to help the
reader who might be seeing the material for the first time, we have
included many exercises in this chapter. This is in keeping with our
own desire to use this particular chapter as the basis for a course on
IFS fractals.

In Chapters 3–5 we carefully develop the IFS framework in a large
variety of settings. In particular, in Chapter 3 we develop a theory of
IFSs on various spaces of functions, including the interaction of IFSs
with integral transforms and IFSs on wavelet spaces. IFSs on spaces
of transforms have been used in mathematical imaging, with IFSs on
Fourier transforms having applications in magnetic resonance imaging
(MRI). Chapter 4 extends this to IFSs on multifunctions (set-valued
functions) and measure-valued functions. Again, the primary motiva-
tion and application for this framework is in mathematical imaging.
Chapter 5 proceeds to a careful construction of the framework in var-
ious spaces of measures, with many new results. We consider signed
measures, vector measures, and multimeasures (set-valued measures).
Furthermore, there is a discussion of “generalized” measures as dual
objects to Lipschitz spaces. This is a very useful class of “measures”
for many purposes.

In Chapter 6, we turn to another classical topic in IFS fractals, that
of ergodic theory and the “chaos game.” An IFS defines a dynamical
system, which in turn generates an invariant measure. Chapter 6 ex-
tends the “chaos game” to IFSs on various function spaces, including
random algorithms for generating wavelet analysis and wavelet syn-
thesis.

Chapters 7 and 8 present an extensive range of applications of
fractal-based methods to inverse problems. The models that we dis-
cuss span the range from ordinary differential equations (ODEs), par-
tial differential equations (PDEs), and random differential equations
to stochastic differential equations (SDEs) and more. The range of ap-
plication topics presented is equally broad, from models in physics to
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biological, population, and economic models. These two chapters are
just the start of the possible application areas and serve to illustrate
the power of fractal-based methods.

The preface of a book is also the customary place for acknowledg-
ments and expressions of thanks to appropriate people – collaborators,
students, and individuals who have, in whatever way, helped the au-
thors with their work or understanding of the subject material. In
our case, the list of such people is quite long and the risk of omission
quite large, so we shall keep our acknowledgments rather brief. First
of all (and in a somewhat chronological order), Ed Vrscay would like
to thank Michael F. Barnsley who, while at Georgia Tech, introduced
him to the fields of fractal geometry and fractal image compression.
He would also like to thank Jacques Lévy-Véhel, Dietmar Saupe and
Claude Tricot for invaluable discussions, collaborations and assistance
that began in the late-1980s and led to the formation of the “Waterloo
Fractal Coding and Analysis Project.” It was the attraction of Bruno
Forte, former Chair of Applied Mathematics, University of Waterloo,
to the “Waterloo Project” that contributed to its significant initial
growth, in particular the mathematical formulation of generalized frac-
tal transforms and associated inverse problems. Further growth of the
project was made possible with the arrival of Franklin Mendivil. After
retiring from Waterloo in 1995, Bruno would return to Italy to assume
Emeritus Professorships, first at the University of Bari and then at
the University of Verona. Here, he would eventually supervise Davide
La Torre’s Master’s thesis on inverse problem for fractal transforms.
Davide La Torre would like to thank Vincenzo Capasso and Bruno
Forte for addressing him in these topics and for the suggestions, the
inspiration, and the support that they have given him during his aca-
demic career. Bruno Forte was the first professor Herb Kunze met in
the classroom while and undergraduate at the University of Water-
loo. A few years later, Herb worked repeatedly as Bruno’s teaching
assistant for the same advanced Calculus course. Herb Kunze wishes
to acknowledge the influential impact that Bruno had on his early
academic life.

For these reasons we are dedicating this book to him.
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