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Preface

This collection of research papers provides an overview over some of the progress
that has been made in major areas in Differential Geometry in the past few years.
It is centred around the scientific activities within the Priority Programme “Global
Differential Geometry” supported by the German Research Foundation – Deutsche
Forschungsgemeinschaft (DFG) – from 2003 until 2009. This Priority Programme,
and hence the present volume, covers the following areas as well as their mutual
connections:

• Global Riemannian Geometry
• Geometric Analysis
• Symplectic Geometry

In particular this volume offers the following topics:

The contributions to Global Riemannian Geometry include existence and
obstruction results for metrics with particular properties, such as metrics under
particular curvature and/or holonomy constraints, or metrics of low-dimensional
geometries. Interesting aspects of geometric limits are also included. Some papers
discuss asymptotic geometries, Euclidean buildings or singular spaces.

One of the topics in Geometric Analysis is the spectral geometry of elliptic
operators on Riemannian manifolds, including their applications in differential
topology. Another one is the geometry and analysis of Lorentzian manifolds, as
well as classical and quantum fields on Lorentzian manifolds. Progress on mean
curvature flow and scalar curvature constraints are also discussed.

Finally, the Symplectic Geometry section considers new aspects of Floer
Homology and Contact Structures on odd-dimensional manifolds.

We hope this panoramic collection of papers will be helpful and inspiring.

Potsdam Christian Bär
Münster Joachim Lohkamp
Leipzig Matthias Schwarz
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Part I
Riemannian Geometry



Holonomy Groups and Algebras

Lorenz J. Schwachhöfer

1 Introduction

An affine connection is one of the basic objects of interest in differential geometry.
It provides a simple and invariant way of transferring information from one
point of a connected manifold M to another and, not surprisingly, enjoys lots of
applications in many branches of mathematics, physics and mechanics. Among the
most informative characteristics of an affine connection is its holonomy group which
is defined as the subgroupHolp.M/ � Aut.TpM/ consisting of all automorphisms
of the tangent space TpM at p 2 M induced by parallel translations along p-
based loops.

The notion of holonomy first arose in classical mechanics at the end of the
19th century. It was Heinrich Hertz who used the terms “holonomic” and “non-
holonomic” constraints in his magnum opus Die Prinzipien der Mechanik, in neuen
Zusammenhängen dargestellt (“The principles of mechanics presented in a new
form”) which appeared one year after his death in 1895. For a more detailed
exposition of the early origins of the holonomy problem, see also [21].

The notion of holonomy in the mathematical context seems to have appeared for
the first time in the work of E.Cartan [30, 31, 33]. He considered the Levi-Civita
connection of a Riemannian manifold M , so that the holonomy group is contained
in the orthogonal group. He showed that in this case, the holonomy group is always
connected if M is simply connected. Moreover, he observed that Holp.M/ and
Holq.M/ are conjugate via parallel translation along any path from p to q, hence
the holonomy groupHol.M/ � Gl.n;R/ is well defined up to conjugation.

L. J. Schwachhöfer (�)
Fakultät für Mathematik, Technische Universität Dortmund, Vogelpothsweg 87, 44221
Dortmund, Germany
e-mail: lschwach@math.uni-dortmund.de

C. Bär et al. (eds.), Global Differential Geometry, Springer Proceedings
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4 L. J. Schwachhöfer

Cartan’s interest in holonomy groups was due to his observation that for a
Riemannian symmetric space, the holonomy group and the isotropy group coincide
up to connected components, as long as the symmetric space contains no Euclidean
factor. This insight he used to classify Riemannian symmetric spaces [32].

In the 1950s, the concept of holonomy groups was treated more thoroughly.
In 1952, Borel and Lichnerowicz [16] proved that the holonomy group of a
Riemannian manifold is always a Lie subgroup, possibly with infinitely many
components. In the same year, de Rham [37] proved what is nowadays called the
de Rham Splitting theorem. Namely, if the holonomy of a Riemannian manifold
is reducible, then the metric must be a local product metric; if the manifold is in
addition complete and simply connected, then it must be a Riemannian product
globally. In 1954, Ambrose and Singer proved a result relating the Lie algebra of
the holonomy group and the curvature map of the connection [2].

A further milestone was reached by M.Berger in his doctoral thesis [9]. Based on
the theorem of Ambrose and Singer, he established necessary conditions for a Lie
algebra g � End.V / to be the Lie algebra of the holonomy group of a torsion free
connection, and used it to classify all irreducible non-symmetric holonomy algebras
of Riemannian metrics, i.e., such that g � so.n/. This list is remarkably short.
In fact, it is included in (and almost coincides with) the list of connected linear
groups acting transitively on the unit sphere. This fact was proven later directly
by J.Simons [66] in an algebraic way. Recently, C.Olmos gave a beautiful simple
argument showing this transitivity using elementary arguments from submanifold
theory only [59].

Together with his list of possible Riemannian holonomy groups, Berger also gave
a list of possible irreducible holonomy groups of pseudo-Riemannian manifolds,
i.e., manifolds with a non-degenerate metric which is not necessarily positive
definite. Furthermore, in 1957 he generalized Cartan’s classification of Riemannian
symmetric spaces to the isotropy irreducible ones [10].

In the beginning, it was not clear at all if the entries on Berger’s list occur as
the holonomy group of a Riemannian manifold. In fact, it took several decades until
the last remaining cases were shown to occur by Bryant [16]. As it turns out, the
geometry of manifolds with special holonomy groups are of utmost importance in
many areas of differential geometry, algebraic geometry and mathematical physics,
in particular in string theory. It would lead too far to explain all of these here, but
rather we refer the reader to [11] for an overview of the geometric significance of
these holonomies.

In 1998, S.Merkulov and this author classified all irreducible holonomy groups
of torsion free connections [69]. In the course of this classification, some new
holonomies were discovered which are symplectic, i.e., they are defined on a
symplectic manifold such that the symplectic form is parallel. The first such
symplectic example was found by Bryant [17]; later, in [34, 35] an infinite family
of such connections was given. These symplectic holonomies share some striking
rigidity properties which later were explained on a more conceptual level by
M.Cahen and this author [26], linking them to parabolic contact geometry.
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In this article, we shall put the main emphasis on the investigation of connections
on principal bundles as all other connections can be deduced from these. This allows
us to prove most of the basic results in greater generality than they were originally
stated and proven. Thus, Sect. 2 is devoted to the collection of the basic definitions
and statements, where in most cases, sketches of the proofs are provided. In Sect. 3,
we shall collect the known classification results where we do not say much about
the proofs, and finally, in Sect. 4 we shall describe the link of special symplectic
connections with parabolic contact geometry.

2 Basic Definitions and Results

2.1 Connections on Principal Bundles

Let � W P ! M be a (right)-principalG-bundle, whereM is a connected manifold
and G is a Lie group with Lie algebra g. A principal connection on P may be
defined as a g- valued one-form ! 2 �1.P /˝ g such that:

1. ! is G-equivariant, i.e., r�
g�1.!/ D Adg ı ! for all g 2 G,

2. !.��/ D � for all � 2 g, where ��p WD d
dt jtD0.p �exp.t�// denotes the action field

corresponding to �.

Here, rg W P ! P denotes the right action of G. Alternatively, we may define a
principal connection to be a G-invariant splitting of the tangent bundle

TP D H ˚ V ; where Vp D ker.d�/p D span.f��p j � 2 gg/ for all p 2 P : (1)

In this case, H and V are called the vertical and horizontal space, respectively.
To see that these two definitions are indeed equivalent, note that for a given

connection one-form ! 2 �1.P / ˝ g, we may define H WD ker.!/; conversely,
given the splitting (1), we define ! by !jH � 0 and !.��/ D � for all � 2 g; it is
straightforward to verify that this establishes indeed a one-to-one correspondence.

The curvature form of a principal connection is defined as

� WD d! C 1

2
Œ!; !� 2 �2.P /˝ g: (2)

For its exterior derivative we get

d�C Œ!;�� D 0: (3)

By the Maurer-Cartan equations, it follows from (2) that

�� � D 0 for all � 2 g, and dr�g .�/ D Adg ı�: (4)
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A (piecewise smooth) curve c W Œa; b� ! P is called horizontal if c0.t/ 2 Hc.t/

for all t 2 Œa; b�. Evidently, for every curve c W Œa; b� ! M and p 2 ��1.c.a//,
there is a unique horizontal curve cp W Œa; b� ! P , called horizontal lift of c,
with c D � ı cp and cp.a/ D p. Since by the G-equivariance of H we have
cp�g D rg ı cp , the correspondence

…c W ��1.c.a// �! ��1.c.b//; p 7�! cp.b/

is G-equivariant and is called parallel translation along c. The holonomy at p 2 P
is then defined as

Holp WD fg 2 G j p � g D …c.p/ for c W Œa; b� ! M with c.a/ D c.b/

D �.p/g � G: (5)

Evidently, Holp � G is a subgroup as we can concatenate and invert loops. Also,
the G- equivariance of H implies that

Holp�g D g�1 Holp g: (6)

Moreover, if we pick any path c W Œa; b� ! M then, again by concatenating paths,
we obtain for p 2 ��1.c.a//

Hol…c.p/ D Holp: (7)

Thus, by (6) and (7) it follows that the holonomy groupHol Š Holp � G is well
defined up to conjugation in G, independent of the choice of p 2 P .

We define the equivalence relation � on P by saying that

p � q if p and q can be joined by a horizontal path. (8)

Then definition (5) can be equivalently formulated as

Holp WD fg 2 G j p � g � pg: (9)

Theorem 2.1. (Ambrose-Singer-Holonomy Theorem [2]). Let � W P ! M be
a principal G-bundle with a connection ! 2 �1.P / ˝ g and the corresponding
horizontal distribution H � TP .

1. The smallest involutive distribution on P which contains H is the distribution

OHp WD Hp ˚ f��p j � 2 holpg;

where holp � g is the Lie subalgebra generated by
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holp D hf�.d…c.v/; d…c.w// j v;w 2 TpP; c W Œa; b�
! M any path with c.a/ D �.p/gi: (10)

2. The identity component of .Holp/0 � G is a (possibly non-regular) Lie
subgroup with Lie algebra holp.

Proof. Observe first that the dimension of the right hand side of (10) is independent
of p 2 P . Indeed, from the definition, OHq�g D drg. OHq/, so that this dimension is
independent of the point in the fiber of P ; moreover, if p � q and c W Œa; b� ! M

is a path with horizontal lift joining p and q, then it follows from the very definition
that OHq \ Vq D d…c. OHp \ Vp/, and d…c is an isomorphism.

To see that OH is involutive, let X; Y 2 X .M/ be vector fields and X; Y 2
X .P / be their horizontal lifts. Note that the flows ˆtX and ˆtX relate as

ˆtX D …ct
X
; where ctX W Œ0; t � ! M is a trajectory of X:

Therefore, if we let OVp WD f��p j � 2 holpg, then the definition of holp implies that

ˆtX .
OVp/ D OVq , where q D ˆtX .p/ and thus, ŒX; OVp� � OVp for all horizontal vector

fields X , i.e., ŒH ; OV � � OH .
Next, by (2), ŒX; Y � D ���

�.X;Y /
mod H for all horizontal vector fields X; Y so

that ŒH ;H � � OH ; finally, Œ OV ; OV � � OV as holp is a Lie algebra by definition.

Thus, OH � P is an involutive distribution. Conversely, the above arguments
show that any involutive distribution containing H also contains OH , so that OH is
minimal as asserted.

Let P0 � P be a maximal leaf of OH , let p0 2 P0 and let

H WD fg 2 G j p0 � g 2 P0g � G:

Since H and hence OH isG-invariant, it follows thatH � G is a subgroup. In fact,
H � G is a (possibly non-regular) Lie subgroup since H Š P0 \ ��1.�.p0//. In
fact, the restriction � W P0 ! M is a principalH -bundle.

Standard arguments now show that P0 is indeed a single equivalence class
w.r.t. �, so that H D Holp0

is a Lie subgroup of G with Lie algebra holp . See
e.g. [5] for details. ut
Definition 2.2. LetP ! M be a principalG-bundle, and letH � G be a (possibly
non-regular) Lie subgroup of G. We call a (possibly non-regular) submanifold
P 0� P an H - reduction of P if the restriction � W P 0 ! M is a principal H -
bundle.

In particular, a maximal leaf P0 � P of the distribution OH from Theorem 2.1
is called a holonomy reduction of P which is therefore a reduction with structure
group Hol � G. We denote the restriction of !, � and H to P0 by the same
symbols.


