Iris Reinhartz-Berger - Arnon Sturm
Tony Clark - Sholom Cohen
Jorn Bettin Editors

Domain
Engineering
Product Lines,

Languages, and
Conceptual Models

@ Springer



ris Reinhartz-Berger - Arnon Sturm
Tony Clark - Sholom Cohen
Jorn Bettin Editors

\ Domain
Engineering

Product Lines,
Languages, and
Conceptual Models

@ Springer



Domain Engineering






Iris Reinhartz-Berger « Arnon Sturm e

Tony Clark « Sholom Cohen « Jorn Bettin
Editors

Domain Engineering

Product Lines, Languages,
and Conceptual Models

@ Springer



Editors

Iris Reinhartz-Berger Arnon Sturm

Dept. Information Systems Dept. Information Systems Engineering
University of Haifa Ben-Gurion University of the Negev
Haifa Beer-Sheva

Israel Israel

Tony Clark Sholom Cohen

Business Information Systems Software Engineering Institute
Middlesex University Pittsburgh

London Pennsylvania

United Kingdom USA

Jorn Bettin

S23M

Melbourne

Australia

ISBN 978-3-642-36653-6 ISBN 978-3-642-36654-3 (eBook)

DOI 10.1007/978-3-642-36654-3
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013942395
ACM Computing Classification: D.2, 1.6

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)


www.springer.com

Preface: Introduction to Domain Engineering:

Product Lines, Languages, and Conceptual
Models

A domain is an area of knowledge that uses common concepts for describing phe-
nomena, requirements, problems, capabilities, and solutions. A domain is usually
associated with well-defined or partially defined terminology. This terminology
refers to the basic concepts in that domain, their definitions (i.e., their semantic
meanings), and their relationships. It may also refer to behaviors that are desired,
forbidden, or perceived within the domain. Domain engineering is a set of activities
that aim to develop, maintain, and manage the creation and evolution of domains.

Domain engineering has become of special interest to the information systems
and software engineering communities for several reasons. These reasons include,
in particular, the need to maintain and use existing knowledge, the need to manage
increasing requirements for variability of information and software systems, and the
need to obtain, formalize, and share expertise in different, evolving domains.

Domain engineering as a discipline has practical significance as it can provide
methods and techniques that may help reduce time-to-market, development cost, and
projects risks, on the one hand, and help improve product quality and performance
on a consistent basis, on the other hand. It is used, researched, and studied in various
fields, predominantly: software product line engineering (SPLE), domain-specific
language engineering (DSLE), and conceptual modeling.

This book presents a collection of state-of-the-art research studies in
the domain engineering field. About half of the chapters in this collection
originated from a series of workshops, named domain engineering, which were
associated with the Conference of Advanced Information Systems Engineering
(CAiSE) during the years 2009-2011 and with the international confer-
ence on conceptual modeling (also known as the ER conference) in 2010.
The authors of the other chapters were personally invited to contribute to this
book. The chapters are organized in three parts. The first part includes research
studies that deal with domain engineering in SPLE. The second part refers to
domain engineering as a research topic within the field of DSLE. Finally, the third
part presents research studies that deal with domain engineering within the field of
conceptual modeling.



vi Preface: Introduction to Domain Engineering: Product Lines, Languages,...
Part I: Software Product Line Engineering

A software product line is a set of software-intensive systems that share a common,
managed set of features satisfying the specific needs of a particular market segment
or mission and that are developed from a common set of core assets in a prescribed
way [1, 8]. While reuse has always made sense as a means to take advantage of the
commonality across systems, most reuse strategies fail to have any real technical
or economic impact. SPLE is a discipline that addresses technical and economic
benefit and achieves strategic reuse of software across the product line through:
(1) capturing common features and factoring the variations across the domain or
domains of a product line; (2) developing core assets used in constructing the
systems of the product line; (3) promulgating and enforcing a prescribed way for
building software product line assets and systems; and (4) evolving both core assets
and products in the product line to sustain their applicability.

Although SPLE has been a recognized discipline within the software engi-
neering community for two decades, the practice of SPLE in industry still faces
significant challenges in achieving strategic reuse. Challenges are seen in each
of the four areas mentioned above. Specific examples include: (1) capturing
commonality—modeling and representation approaches, tools, and analysis for
variation and variation management; (2) developing assets—architecture design
approaches including real-time embedded, design patterns, automatic generation
of software, and design approaches including aspect-orientation; and (3) building
software—implementation of software assets for reuse, composition techniques, and
use of domain-specific languages (DSLs) for software construction. In addition,
there is a need to deal with the evolution of the core assets and the product line
systems and a need for specific tools to assist the coevolution of product line core
assets and dependent systems.

In the field of SPLE, domain engineering deals with specifying, designing,
implementing, and managing reusable assets, such as specification sets, patterns,
and components, that may be suitable, after customization, adaptation, or even
extension, to families of software products. The focus of domain engineering in
this field is on conducting commonality and variability analysis and representing
the results of this analysis in a comprehensible way. Commonly, feature-oriented
methods and UML profiles are used for this purpose.

The chapters in this part of the book deal with application of domain engineering
to address some of the aforementioned challenges. Two chapters deal with domain
engineering to capture commonality and manage variation across a software product
line:

» “Separating concerns in feature models: Retrospective and support for multi-
views” by Mathieu Acher, Arnaud Hubaux, Patrick Heymans, Thein Than Tun,
Philippe Lahire, and Philippe Collet looks at managing common features and
their variants in software product lines with thousands of features. This chapter
describes the separation of concerns, that can be applied to partition the feature
space.



Preface: Introduction to Domain Engineering: Product Lines, Languages,... vii

* “A survey of feature location techniques” by Julia Rubin and Marsha Chechik
examines over 20 techniques that offer automated or semi-automated approaches
to isolate features from existing software. This chapter provides a description of
the overarching technology for isolating features for software code and analyzes
the potential that each of the 20+ techniques offers. The chapter also provides
guidance in selecting the appropriate technique.

One chapter deals with architecture and design for software product lines,
specifically those software product lines that are real-time (RT) embedded:

* “Modeling real-time design patterns with the UML-RTDP profile” by Saoussen
Rekhis, Nadia Bouassida, Rafik Bouaziz, Claude Duvallet, and Bruno Sadeg
applies domain engineering to design RT patterns for capturing commonality
and managing variation across the software product line. This chapter introduces
UML-based models that represent the static and dynamic patterns of a software
product line architecture for RT systems. It describes the application of these
models in an example of an RT control system.

The two remaining chapters in this part apply domain engineering to develop
techniques for building core assets and systems in the software product line:

* “When aspect-orientation meets software product line engineering” by Iris
Reinhartz-Berger discusses an approach that melds aspect-oriented and SPLE
methods through domain engineering. The approach uses the Application-based
DOmain Modeling (ADOM) method to support families of aspects and weave
them to families of software products. Reuse is enhanced through the three levels
addressed by ADOM: language, domain, and application.

e “Utilizing application frameworks: a domain engineering approach” by Arnon
Sturm and Oded Kramer also uses ADOM. In this chapter, the modeling
approach supports specification and use of frameworks as a construct to support
reuse across the software product line. ADOM also contributes to domain-
specific languages to reduce the development effort and increase their reusability
and code quality.

Part II: Domain-Specific Language Engineering

DSLs are specification or programming languages tailored to specific domains [6,
7]. These languages are developed in a domain engineering process and are later
used to develop and maintain solutions (i.e., software systems) in the specific
domains. The focus on a specific domain is achieved by abstracting from general
programming language implementation details such as variable locations and
control structures. The resulting DSL features correspond to domain elements and
are often referred to as declarative (as opposed to imperative) because they focus
on expressing desirable states of the problem domain rather than computations in
the solution domain. The benefits of adopting DSLs include increased productivity,



viii Preface: Introduction to Domain Engineering: Product Lines, Languages,...

improved quality, reuse of experts’ knowledge, and, perhaps most importantly,
better maintainability [6, 7].

Conceptually, a DSL is a formal language that is expected to be understood by
domain experts and that can be interpreted by domain-specific software tools to
produce lower level specifications. Practically, a DSL is a preferably small language
that focuses on a particular aspect of software systems (e.g., [3]) and that is used by
domain-specific software tools to generate code in a general purpose programming
language or other lower level formal specification languages, e.g., [7]. Examples of
domain-specific programming approaches are elaborated in [4, 5].

Domain-specific language engineering (DSLE) is concerned with methods and
tools for specifying and utilizing such languages. This includes the identification
of relevant language concepts and their relationships, the determination of the most
appropriate level of abstraction for the envisaged users of the language, and the
specification of all required transformations.

Although the practice of DSLE has evolved considerably in the last two decades,
a number of challenges remain. There is a need to study the ways in which people
use DSLs and to what extent. In line with the increasing popularity of DSLs,
there is a need to evaluate the ways in which DSLs are composed, to examine
maintainability and interoperability, and to devise mechanisms that enable end users
to extend DSLs. The trade-offs between using general purpose languages and DSLs
also merit further discussion. From an engineering perspective, there is a need
to explore how DSL elements can be reused, which types of transformation are
required, what best practices can be distilled from detailed case studies, how to
define and evolve the semantics of a DSL, and how to evaluate the design and
implementation of a DSL.

In this part of the book, we have gathered five chapters that address some of the
challenges mentioned above.

The first chapter discusses the notion of domain-specific languages:

* “Domain-specific modeling languages—requirement analysis and design guide-
lines” by Ulrich Frank attempts to provide instructions for developing a domain-
specific modeling language. In particular, this chapter introduces a set of
guidelines, which consist of requirements for the meta-modeling language, as
well as a detailed process description of the stages to devise a new DSL.

The following two chapters discuss the design process of domain-specific
languages. Designing a DSL involves the creation of a new formal language, and
therefore it is important to investigate the emergence of new languages as well as
their engineering:

* “DSLs and standardization: Friends or foes?” by @ystein Haugen argues that
creating a good language requires knowledge not only of the domain but also
of the language design process. This chapter discusses the tension between
DSLs and standardization efforts, demonstrates how DSLs can benefit from
standardization, and provides a comprehensive example of language evolution
and standardization.



Preface: Introduction to Domain Engineering: Product Lines, Languages,... ix

e “Domain engineering for software tools” by Tony Clark and Balbir Barn
proposes a language-driven approach that elaborates the notion of domain-
specific tool chains and related tool interoperability challenges. The approach
presented in the chapter views domains as languages and emphasizes the need for
modularity, in particular the need for modular composition of domains and tool
chains. The suggested approach for tool design involves a model of the semantic
domain, a model of the abstract syntax, a model of the concrete syntax, as well
as a model of the relationships between the semantic domain and the abstract
syntax.

A key motivation for developing one or more DSLs for the same domain is the
desire to capture all the meta-data that is needed to automate the production of
detailed artifacts (such as code) from the abstract concepts supported by the DSLs.
A common way of producing derived artifacts is through model transformation.
Although a large number of model transformation languages have been developed,
there are only few heuristics for engineering model transformation languages. The
fourth chapter in this part tackles this issue:

* “Modeling a model transformation language” by Eugene Syriani, Jeff Gray, and
Hans Vangheluwe introduces a technique for developing model transformation
languages that refers to each language as a DSL and that includes a model of all
domain concepts at the appropriate level of abstraction.

As developing a DSL is a complex task that involves stakeholders from different
disciplines, a cooperative environment that supports cross-disciplinary collaboration
is required. The fifth and last chapter in this part addresses this challenge:

* “A Reconciliation framework to support cooperative work with DSM” by
Amanuel Alemayehu Koshima, Vincent Englebert, and Philippe Thiran proposes
a communication framework that links the changes made by the language
engineers and their effects on DSL users. This framework is concerned with the
effects of language evolution and the propagation of changes in tool chains and
across the stakeholders and the language user community.

Part III: Conceptual Modeling

Before any system can be collaboratively developed, used, and maintained, it is
necessary to study and understand the domain of discourse. This is commonly done
by developing a conceptual model. The main purposes of conceptual models are: (1)
supporting communications between different types of stakeholders and especially
between developers and users; (2) helping analysts understand the domain of
interest, its terminology, and rules; (3) providing input for the next development
phases, namely top level and detailed design; and (4) documenting the requirements
that originate from the real world for maintenance purposes and future reference.



X Preface: Introduction to Domain Engineering: Product Lines, Languages,...

The process of building conceptual models, conceptual modeling, involves devel-
oping and maintaining representations of selected phenomena in the application
domain [12]. These representations, the conceptual models, are usually developed
during the requirements analysis phase of software or information systems devel-
opment. Such models aim to capture the essential features of systems in terms of
the different categories of entity, their properties, relationships, and their meaning.
They are used for representing both structural and dynamic phenomena, usually in
a graphic way. Once a conceptual model is constructed and agreed on, it forms a
foundational basis for subsequent engineering activities.

Although research in conceptual modeling has existed for many years, its
boundaries are quite vague. In particular, conceptual modeling has significant
overlap with the field of knowledge engineering [9]. Many of the features of
modern notations for conceptual modeling can be traced to examples in both early
system design notations and knowledge representation notations, such as conceptual
structures [10]. Conceptual modeling also has a strong relationship to ontologies
[11], and the question whether conceptual models and ontologies are alternatives
of each other is open. Clearly, Conceptual modeling is also related to model-
driven architecture (MDA), which has become a significant research topic in recent
years. MDA promotes the idea that systems should be modeled at a high level of
abstraction and then systems are partially or completely generated from the models.

In light of technology improvements, many challenges that concern domain
engineering in the context of conceptual modeling arise. In particular, how can
the real world be modeled to better support the development, implementation, use,
and maintenance of systems? [1] Conceptual modeling applies to many different
application domains which raises the question of how to support the representational
needs of each domain. Should there be a single universal language for conceptual
modeling or several different languages? Do methods that apply to one type of
application (finance for example) also apply in another (for example an embedded
system)? The representational issue is often addressed using meta-techniques that
allow the conceptual modeler to use a standard notation to design a bespoke notation
that is used to express the conceptual model. While the best meta-technology is an
open question, UML provides profiles that allow the UML standard to be tailored in
a number of ways to support new concepts in terms of abstract modeling elements
and the ways they are represented on diagrams. Also, following the evolvement
of the MDA approach, it is interesting to examine how conceptual models fit into
various MDA technologies and processes. Finally, the management of conceptual
models is also a challenge, especially those that involve meta-technologies [2]. In
addition to the usual problems related to distributed multi-person development, a
conceptual model written using a notation that has been specifically defined for this
purpose requires care when the meta-model is evolved, otherwise the conceptual
model becomes meaningless.

The chapters in this part of the book address some of the challenges mentioned
above. The first chapter in this part suggests using domain engineering for formal-
izing the knowledge of domain experts.



Preface: Introduction to Domain Engineering: Product Lines, Languages,... xi

“Model oriented domain analysis and engineering” by Jorn Bettin presents a
model-oriented domain analysis and engineering methodology. This methodol-
ogy, whose roots are in both SPLE and conceptual modeling, can be used to
uncover and formalize the knowledge that is inherent in any software-intensive
business or any scientific discipline.

The second chapter analyzes the relationships between different abstraction

levels of modeling in order to support the definition of domain-specific modeling
languages.

“Multi-level meta-modeling to underpin the abstract and concrete syntax for
domain-specific modelling languages” by Brian Henderson-Sellers and Cesar
Gonzalez-Perez discusses the relationships between models, meta-models, mod-
eling languages, and ontologies. They further provide a theoretical foundation
for the construction of domain-specific modeling languages, exemplifying this
foundation on two languages: ISO/IEC 24744 that can be used to define software-
intensive development methods and FAML that can be used for the specification
of agent-oriented software systems.

The third chapter discusses an ontology-based framework for evaluating and

designing conceptual modeling languages.

“Ontology-based evaluation and design of visual conceptual modeling lan-
guages” by Giancarlo Guizzardi addresses another methodological issue and
focuses on the evaluation of the suitability of a language to model a set of real-
world phenomena in a given domain. In the proposed approach, the suitability can
be systematically evaluated by comparing the level of homomorphism between a
concrete representation of the worldview underlying the language and an explicit
and formal representation of a conceptualization of that domain (represented as
a reference ontology).

The fourth chapter addresses the challenge of managing conceptual models in

distributed multi-person development.

“Automating the interoperability of conceptual models in specific development
domains” by Oscar Pastor, Giovanni Giachetti, Beatriz Marin, and Francisco
Valverde discusses the model management, interoperability, and reuse. In par-
ticular, it discusses the problems related to conceptual interoperability across
applications in a domain. This chapter introduces a framework for describing
levels of conceptual interoperability and the challenges that must be overcome
to achieve the various levels and then outlines a process for achieving and
automating interoperability through the integration of modeling languages.

As mentioned before, MDA promotes the idea that systems should be modeled

at a high level of abstraction and then systems are partially or completely generated
from the models. The benefits that are claimed for this approach are that it shields
the developer from constantly changing technology platforms, increases quality, and



xii Preface: Introduction to Domain Engineering: Product Lines, Languages,...

makes change easier to manage. The last chapter exemplifies this notion for the
domain of geographic databases.

e “Domain and model-driven geographic database design” by Jugurta Lisboa-
Filho, Filipe Ribeiro Nalon, Douglas Alves Peixoto, Gustavo Breder Sampaio,
and Karla Albuquerque de Vasconcelos Borges describes the use of the MDA
approach in the design of databases in the geographical domain. In particular, a
UML Profile, called GeoProfile, is proposed and is aligned with international
standards of the ISO 191xx series. This chapter also shows that with the
automatic transformation of models it is possible to achieve the generation of
scripts for spatial databases from a conceptual data schema in a high level of
abstraction.

Concluding and Further Remarks

As elaborated above, domain engineering is closely related to several fields,
primarily SPLE, DSLE, and conceptual modeling. This book provides a collection
of research studies that are related to these three fields. The fields promote domain
engineering differently; however, they do have significant overlap. In particular,
some of the studies could pertain to more than one field. Therefore, we confirmed
our classification with the authors in these cases. Moreover, as the studies are very
diverse, they address a variety of important topics related to domain engineering,
stressing the importance of this field, providing solutions, and further clarifying
existing related challenges.

We believe that the chapters in this book are of interest to researchers, practition-
ers, and students of domain engineering in general and of the fields of SPLE, DSLE,
and conceptual modeling in particular. Furthermore, given the exponential growth
of data on the Web and the growth of the “Internet of Things,” Domain Engineering
research may be relevant to other disciplines as well. For example, the emergence
of deep chains of Web services highlights that the service concept is relative. A
set of Web services developed and operated by one organization can be utilized as
part of a platform by another organization. This calls for appropriate conceptual
models as well as for DSLs that together facilitate the design of service-oriented
architectures. Furthermore, as services may be used in different contexts and hence
require different configurations, inspiration to their design as families of services
can be taken from the field of SPLE.

Another new opportunity for research is related to the Big Data domain. Big Data
is characterized by the “three Vs”: volume, variety, and velocity (rate of change).
The ability to process such data depends on understanding and manipulating
the information. Conceptual models can be of great help since they capture the
semantics of the information which is important for making matches in the presence
of incomplete and noisy input. Furthermore, meta-processing, such as dependency
analysis, model transformations, model merge, and slicing, can be used to address



Preface: Introduction to Domain Engineering: Product Lines, Languages,... xiii

multiple data sources. DSLs can be used to develop languages that express
domain-specific data patterns and SPLE can be utilized to help address the need
to modify the patterns on a regular basis.

Lastly, we would like to thank the authors for their contribution to this book and
to wish the readers enjoyable and fruitful reading.

References

1. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns, 3rd
edn. Addison-Wesley Professional, Boston (2001)

2. Di Ruscio, D., Iovino, L., Pierantonio, A.: What is needed for managing co-
evolution in MDE? In: Proceedings of the 2nd International Workshop on
Model Comparison in Practice TWMCP ‘11), pp. 30-38 (2011)

3. Fowler, M.: Domain-Specific Languages. Addison-Wesley Professional,
Boston (2010)

4. Freemanand, S., Pryce, N.: Evolving an embedded domain-specific language
in Java. In: Companion to the 21st ACM SIGPLAN Symposium on Object-
Oriented Programming Systems, Languages, and Applications, pp. 855-865
(2006)

5. Kabanov, J., Raudjérv, R.: Embedded type safe domain specific languages for
Java. In: Proceedings of the 6th International Symposium on Principles and
Practice of Programming in Java, pp. 189-197 (2008)

6. Kelly, S., Tolvanen, J-P.: Domain-Specific Modeling: Enabling Full Code
Generation. Wiley, Hoboken (2008)

7. Mernik, M., Heering, J., Sloane, A. M.: When and how to develop domain-
specific languages. ACM Comput. Surv. 37(4), 316-344 (2005)

8. Pohl, K., Bockle, G., van der Linden, F.: Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer, Heidelberg (2005)

9. Schreiber, G. T., Akkermans, H.: Knowledge Engineering and Management:
The Common KADS Methodology. MIT Press, Cambridge (2000)

10. Sowa, J.: Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley Longman Publishing, Boston (1984)

11. Sugumarana, V., Storeyb, V.C.: Ontologies for conceptual modeling: their
creation, use, and management. Data Knowl. Eng. 42(3), 251-271 (2002)

12. Wand, Y., Weber, R.: Research commentary: information systems and concep-
tual modeling—a research agenda. Inf. Syst. Res. 13(4), 363-376 (2002)

Haifa, Israel Iris Reinhartz-Berger
Beer-Sheva, Israel Arnon Sturm
Hendon, London Tony Clark
Pittsburgh, PA Sholom Cohen

Mordialloc, Australia Jorn Bettin



