
Frontiers in Applied Dynamical Systems: 
Reviews and Tutorials 1

Mathematical 
Analysis of 
Complex Cellular 
Activity

Richard Bertram · Joël Tabak
Wondimu Teka · Theodore Vo
Martin Wechselberger
Vivien Kirk · James Sneyd



More information about this series at http://www.springer.com/series/13763

Frontiers in Applied Dynamical Systems:
Reviews and Tutorials

Volume 1

http://www.springer.com/series/13763


Frontiers in Applied Dynamical Systems: Reviews and Tutorials

The Frontiers in Applied Dynamical Systems (FIADS) covers emerging
topics and significant developments in the field of applied dynamical
systems. It is a collection of invited review articles by leading researchers
in dynamical systems, their applications and related areas. Contributions in
this series should be seen as a portal for a broad audience of researchers
in dynamical systems at all levels and can serve as advanced teaching aids
for graduate students. Each contribution provides an informal outline of a
specific area, an interesting application, a recent technique, or a “how-to”
for analytical methods and for computational algorithms, and a list of key
references. All articles will be refereed.

Editors-in-Chief
Christopher K R T Jones, The University of North Carolina, North Carolina, USA

Björn Sandstede, Brown University, Providence, USA

Lai-Sang Young, New York University, New York, USA

Series Editors
Margaret Beck, Boston University, Boston, USA

Henk A. Dijkstra, Utrecht University, Utrecht, The Netherlands

Martin Hairer, University of Warwick, Coventry, UK

Vadim Kaloshin, University of Maryland, College Park, USA

Hiroshi Kokubo, Kyoto University, Kyoto, Japan

Rafael de la Llave, Georgia Institute of Technology, Atlanta, USA

Peter Mucha, University of North Carolina, Chapel Hill, USA

Clarence Rowley, Princeton University, Princeton, USA

Jonathan Rubin, University of Pittsburgh, Pittsburgh, USA

Tim Sauer, George Mason University, Fairfax, USA

James Sneyd, University of Auckland, Auckland, New Zealand

Andrew Stuart, University of Warwick, Coventry, UK

Edriss Titi, Texas A&M University, College Station, USA; Weizmann Institute
of Science, Rehovot, Israel

Thomas Wanner, George Mason University, Fairfax, USA

Martin Wechselberger, University of Sydney, Sydney, Australia

Ruth Williams, University of California, San Diego, USA



123

Richard Bertram • Joël Tabak • Wondimu Teka
Theodore Vo • Martin Wechselberger
Vivien Kirk • James Sneyd

Mathematical Analysis of
Complex Cellular Activity

Review 1: Richard Bertram, Joël Tabak, Wondimu Teka,
Theodore Vo, Martin Wechselberger: Geometric Singular
Perturbation Analysis of Bursting Oscillations in
Pituitary Cells

Review 2: Vivien Kirk, James Sneyd: The Nonlinear
Dynamics of Calcium



Richard Bertram
Department of Mathematics
Florida State University
Tallahasse, FL, USA

Wondimu Teka
Department of Mathematics
Indiana University – Purdue

University Indianapolis
Indianapolis, IN, USA

Martin Wechselberger
Department of Mathematics
University of Sydney
Sydney, NSW, Australia

James Sneyd
Department of Mathematics
University of Auckland
Auckland, New Zealand

Joël Tabak
Department of Mathematics
Florida State University
Tallahassee, FL, USA

Theodore Vo
Department of Mathematics and Statistics
Boston University
Boston, MA, USA

Vivien Kirk
Deparment of Mathematics
The University of Auckland
Auckland, New Zealand

ISSN 2364-4532 ISSN 2364-4931 (electronic)
Frontiers in Applied Dynamical Systems: Reviews and Tutorials
ISBN 978-3-319-18113-4 ISBN 978-3-319-18114-1 (eBook)
DOI 10.1007/978-3-319-18114-1

Library of Congress Control Number: 2015953625

Mathematics Subject Classification (2010): 92C05, 92C30, 92C37, 34C15, 37G15, 37N25

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.
springer.com)

www.springer.com
www.springer.com


Preface to the Series

The subject of dynamical systems has matured over a period of more than a century.
It began with Poincare’s investigation into the motion of the celestial bodies, and he
pioneered a new direction by looking at the equations of motion from a qualitative
viewpoint. For different motivation, statistical physics was being developed and
had led to the idea of ergodic motion. Together, these presaged an area that was
to have significant impact on both pure and applied mathematics. This perspective
of dynamical systems was refined and developed in the second half of the twentieth
century and now provides a commonly accepted way of channeling mathematical
ideas into applications. These applications now reach from biology and social
behavior to optics and microphysics.

There is still a lot we do not understand and the mathematical area of dynamical
systems remains vibrant. This is particularly true as researchers come to grips
with spatially distributed systems and those affected by stochastic effects that
interact with complex deterministic dynamics. Much of current progress is being
driven by questions that come from the applications of dynamical systems. To truly
appreciate and engage in this work then requires us to understand more than just the
mathematical theory of the subject. But to invest the time it takes to learn a new sub-
area of applied dynamics without a guide is often impossible. This is especially true
if the reach of its novelty extends from new mathematical ideas to the motivating
questions and issues of the domain science.

It was from this challenge facing us that the idea for the Frontiers in Applied
Dynamics was born. Our hope is that through the editions of this series, both new
and seasoned dynamicists will be able to get into the applied areas that are defining
modern dynamical systems. Each article will expose an area of current interest and
excitement, and provide a portal for learning and entering the area. Occasionally
we will combine more than one paper in a volume if we see a related audience as
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vi Preface to the Series

we have done in the first few volumes. Any given paper may contain new ideas and
results. But more importantly, the papers will provide a survey of recent activity
and the necessary background to understand its significance, open questions and
mathematical challenges.

Editors-in-Chief
Christopher K R T Jones, Björn Sandstede, Lai-Sang Young



Preface

In the world of cell biology, there is a myriad of oscillatory processes, with
periods ranging from the day of a circadian rhythm to the milliseconds of a
neuronal action potential. To one extent or another they all interact, mostly in
ways that we do not understand at all, and for at least the past 70 years, they
have provided a fertile ground for the joint investigations of theoreticians and
experimentalists. Experimentalists study them because they are physiologically
important, while theoreticians tend to study them, not only for this reason, but also
because such complex dynamic processes provide an opportunity to use, as their
tools of investigation, the methods of mathematical analysis.

In this volume, we are concerned with two of these oscillatory processes: calcium
oscillations and bursting electrical oscillations. These two are not chosen at random.
Not only have they both been studied in depth by modellers and mathematicians,
but we also have a good understanding – although not a complete one – of how
they interact, and how one oscillatory process affects the other. They thus make an
excellent example of how multiple oscillatory processes interact within a cell, and
how mathematical methods can be used to understand such interactions better.

The theoretical study of electrical oscillations in cells began, to all intents and
purposes, with the classic work of Hodgkin and Huxley in the 1950s. In a famous
series of papers they showed how action potentials in neurons arose from the time-
dependent control of the conductance of NaC and KC channels. The model they
wrote down, a system of four coupled nonlinear ordinary differential equations,
became one of the most influential models in all of physiology. It was quickly taken
up by other modellers, who extended the model to study oscillations of electric
potential in neurons, and over the last few decades the theoretical study of neurons
and groups of neurons has expanded to become one of the largest and most active
areas in all of mathematical biology.

More traditional applied mathematicians were also strongly influenced, albeit at
one remove, by the Hodgkin-Huxley equations. The simplification by FitzHugh in
the 1960s led to the FitzHugh-Nagumo model of excitability (Nagumo, a Japanese
engineer, derived the same equation independently at the same time, from entirely
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viii Preface

different first principles) which formed the basis of more theoretical studies of
excitability across many different areas, both inside and outside cell biology.

Oscillations in the cytosolic concentration of free Ca2C (usually simply called
Ca2C oscillations) have a more recent history, not having been discovered until the
development of Ca2C fluorescent dyes in the 1980s allowed the measurement of
intracellular Ca2C concentrations with enough temporal precision. But since then,
the number of theoretical and experimental investigations of Ca2C oscillations has
expanded rapidly. Calcium oscillations are now known to control a wide variety
of cellular functions, including muscular contraction, water transport, gene differ-
entiation, enzyme and neurotransmitter secretion, and cell differentiation. Indeed,
the more we learn about intracellular Ca2C, the more we realize how important
it is for cellular function. Conversely, the intricate spatial and temporal behaviors
exhibited by the intracellular Ca2C concentration, including periodic plane waves,
spiral waves, complex whole-cell oscillations, phase waves, stochastic resonance,
and spiking, have encouraged theoreticians to use their skills, in collaboration with
the experimentalists, to try and understand the dynamics of this ubiquitous ion.

Many cell types, however, contain both a membrane oscillator and a Ca2C
oscillator. The best-known examples of this, and the most widely studied, are the
neuroendocrine cells of the hypothalamus and pituitary, as well as the endocrine
cells of the pancreas, the pancreatic ˇ cells. In these cell types, membrane oscillators
and calcium oscillators are indissolubly linked; fast oscillations of the membrane
potential open voltage-gated Ca2C channels which allow Ca2C to flow into the cell,
which in turn activates the exocytotic machinery to secrete insulin (in the case
of pancreatic ˇ cells) or a variety of hormones (in the case of hypothalamic and
pituitary cells). However, in each of these cell types, cytosolic Ca2C also controls
the conductance of membrane ion channels, particularly Ca2C-sensitive KC and
Cl� channels, which in turn affect the membrane potential oscillations. In these
endocrine cells, it is thus necessary to understand both types of cellular oscillator in
order to understand overall cellular behavior.

Thus, this current volume. In it we first see how the interaction of Ca2C cytosolic
with membrane ion channels can result in the complex patterns of electrical spiking
that we see in cells. We then discuss the basic theory of Ca2C oscillations (common
to almost all cell types), including spatio-temporal behaviors such as waves, and
then review some of the theory of mathematical models of electrical bursting
pituitary cells.

Although our understanding of how cellular oscillators interact remains rudimen-
tary at best, this coupled oscillator system has been instrumental in developing our
understanding of how the cytosol interacts with the membrane to form complex
electrical firing patterns. In addition, from the theoretical point of view it has pro-
vided the motivation for the development and use of a wide range of mathematical
methods, including geometric singular perturbation theory, nonlinear bifurcation
theory, and multiple-time-scale analysis.
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It is thus an excellent example of how mathematics and physiology can learn
from each other, and work jointly towards a better understanding of complex cellular
processes.
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