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Preface to the Series

Contributions to Mathematical and Computational Sciences

Mathematical theories and methods and effective computational algorithms are
crucial in coping with the challenges arising in the sciences and in many areas of
their application. New concepts and approaches are necessary in order to overcome
the complexity barriers particularly created by nonlinearity, high-dimensionality,
multiple scales and uncertainty. Combining advanced mathematical and computa-
tional methods and computer technology is an essential key to achieving progress,
often even in purely theoretical research.

The term mathematical sciences refers to mathematics and its genuine sub-fields,
as well as to scientific disciplines that are based on mathematical concepts and
methods, including sub-fields of the natural and life sciences, the engineering and
social sciences and recently also of the humanities. It is a major aim of this series to
integrate the different sub-fields within mathematics and the computational sciences
and to build bridges to all academic disciplines, to industry and to other fields of
society, where mathematical and computational methods are necessary tools for
progress. Fundamental and application-oriented research will be covered in proper
balance.

The series will further offer contributions on areas at the frontier of research,
providing both detailed information on topical research and surveys of the state of
the art in a manner not usually possible in standard journal publications. Its volumes
are intended to cover themes involving more than just a single “spectral line” of the
rich spectrum of mathematical and computational research.

The Mathematics Center Heidelberg (MATCH) and the Interdisciplinary Center
for Scientific Computing (IWR) with its Heidelberg Graduate School of Mathemat-
ical and Computational Methods for the Sciences (HGS) are in charge of providing
and preparing the material for publication. A substantial part of the material will be
acquired in workshops and symposia organized by these institutions in topical areas
of research. The resulting volumes should be more than just proceedings collecting
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vi Preface to the Series

papers submitted in advance. The exchange of information and the discussions
during the meetings should also have a substantial influence on the contributions.

Starting this series is a venture posing challenges to all partners involved. A
unique style attracting a larger audience beyond the group experts in the subject
areas of specific volumes will have to be developed.

The first volume covers the mathematics of knots in theory and application, a
field that appears excellently suited for the start of the series. Furthermore, due to
the role that famous mathematicians in Heidelberg like Herbert Seifert (1907–1996)
played in the development of topology in general and knot theory in particular,
Heidelberg seemed a fitting place to host the special activities underlying this
volume.

Springer Verlag deserves our special appreciation for its most efficient support in
structuring and initiating this series.

Heidelberg, Germany Hans Georg Bock
Willi Jäger

Hans Knüpfer
Otmar Venjakob



Preface

The point of origin of this book was an international workshop with the same title
(Multiple Shooting and Time Domain Decomposition Methods—MuSTDD 2013)
that took place at the Interdisciplinary Center of Scientific Computing (IWR) at
Heidelberg University in late spring 2013. Most of the chapters presented here are
based on topics exposed in the talks given during this workshop.

The leading motivation for realizing this book project was its potential to fill
a gap in the existing literature on time domain decomposition methods. So far, in
contrast to domain decomposition methods for the spatial variables, which have
found broad interest in the past two decades, the decomposition of the time domain
still constitutes a niche. There is no comparable compendium on this subject,
although an increasing amount of journal articles proves a growing need for these
methods. Therefore, we firmly believe that this volume provides a useful overview
over the state-of-the-art knowledge on the subject and offers a strong incentive for
further research.

The book at hand is divided into two parts, which roughly reflect a classification
of the articles into theoretical and application-oriented contributions:

• The first part comprises methodical, algorithmic, and implementational aspects
of time domain decomposition methods. Although the context is often given by
optimization problems (optimal control and parameter estimation with nonsta-
tionary differential equations), the covered topics are also accessible and crucial
for researchers who intend to utilize time decomposition in a modeling and
simulation framework. The topics covered in this theoretical part range from
a historical survey of time domain decomposition methods via state-of-the-
art environments for multiple shooting (such as ODE parameter estimation or
DAE problems) up to recent research results, e.g. on different multiple shooting
approaches for PDE, on multiple shooting in the optimal experimental design
(OED) or the nonlinear model predictive control (NMPC) frameworks or on
parareal methods as preconditioners.

• The second part is concerned with applications in different scientific areas
that can potentially benefit from multiple shooting schemes and the related
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viii Preface

parareal methods. In the application fields covered in this volume (amongst them
fluid dynamics, data compression, image processing, computational biology, and
fluid structure interaction problems), the two essential features of time domain
decomposition methods, namely the stabilization of the solution process and its
parallelizability, display their full potential.

Overall, we are convinced that this volume constitutes a unique compilation of
methodical and application-oriented aspects of time domain decomposition useful
for mathematicians, computer scientists, and researchers working in different
application areas. Although it does not claim to be exhaustive, it provides a
comprehensive accumulation of material that can both serve as a starting point for
researchers who are interested in the subject and extend the horizon of experienced
scientists who intend to deepen their knowledge.

We would like to acknowledge the support of several sponsors who made
the MuSTDD workshop possible: the Priority Program 1253 of the German
Research Association (DFG), the Mathematics Center Heidelberg (MATCH), and
the Heidelberg Graduate School of Mathematical and Computational Methods for
the Sciences (HGS MathComp). Furthermore, we thank all the authors for their
precious contributions. The cooperation with Springer, MATCH, and IWR should
not be left unmentioned: it was a pleasure to work with them, and we thank all
the people who rendered this 9th volume of Contributions in Mathematical and
Computational Sciences possible by quietly and efficiently acting behind the scenes.

Heidelberg, Germany Thomas Carraro
Michael Geiger

Stefan Körkel
Rolf Rannacher
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Direct Multiple Shooting and Generalized
Gauss-Newton Method for Parameter
Estimation Problems in ODE Models

Hans Georg Bock, Ekaterina Kostina, and Johannes P. Schlöder

Abstract The paper presents a boundary value problem approach for optimization
problems in nonlinear ordinary differential equations, in particular for parameter
estimation, based on multiple shooting as originally introduced by Bock in the
1970s. A special emphasis is placed on the theoretical analysis including numerical
stability, grid condition and a posteriori error analysis. The paper discusses advan-
tages of multiple shooting versus single shooting which are illustrated by numerical
examples.

1 Introduction

The history of shooting methods for optimization problems in differential equations
goes back to the 1950s when shooting methods were first used to solve two point
boundary value problems (TPBVP) resulting from application of the Pontryagin
maximum principle to optimal control problems, see e.g. [26, 31, 38, 40]. A
first versatile algorithm capable to treat TPBVP with switching points has been
developed by Bulirsch and Stoer [18] giving start to numerous theses in the
Bulirsch group extending optimal control theory and multiple shooting algorithms
for TPBVP. The drawbacks of this “indirect” approach are that the boundary value
problems resulting from the maximum principle for optimal control problems are
difficult to derive, moreover, they are usually ill-conditioned and highly nonlinear
in terms of state and adjoint variables, they have jumps and switching conditions.

Another type of methods for optimal control problems—“direct” single shooting
methods—appeared in the 1960s. Instead of using the maximum principle and
adjoint variables, in these methods the controls were discretized, such that solving
differential equations resulted in finite nonlinear programming problems. Numerous
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2 H.G. Bock et al.

direct algorithms were developed, usually as feasible step gradient type methods,
e.g. [17, 36, 37]. The reason for this was that effective non-feasible step algorithms
for constrained nonlinear optimization emerged only in the 1970s, i.e. SQP [25, 41].

In this paper we consider a “direct” multiple shooting method for optimization
problems with differential equations, also known nowadays as “optimization bound-
ary value problem”, “all-at-once”, or “simultaneous” approaches. This approach is
based on constrained nonlinear optimization instead of the maximum principle,
and the discretized BVP is treated as an equality constraint in the optimization
problem which is then solved by non-feasible step methods. This approach became
a standard tool for solving optimization problems for differential equation models,
see [9, 10, 12, 13].

The multiple shooting combined with the generalized Gauss-Newton is espe-
cially suitable for parameter estimation.

In this paper we focus on the multiple shooting for parameter estimation for
differential equations. A special emphasis is placed on the theoretical analysis
including numerical stability, grid condition and a posteriori error analysis. We
discuss also advantages of multiple shooting versus single shooting which are
illustrated by numerical examples.

2 Parameter Estimation Problem in ODE Systems

We consider parameter estimation problems that are characterized by a system of
ordinary differential equations for state variables x.t/

Px D f .t; x; p/;

the right hand side of which depends on a parameter vector p. Furthermore,
measurements �ij for the state variables or more general for functions in the states
are given

�ij D gij.x.tj/; p/C "ij;

which are collected at measurement times tj; j D 1; : : : ; k;
t0 � t1 < : : : < tk � tf ;

over a period Œt0; tf �; and are assumed to be affected by a measurement error "ij.
The unknown parameters p have to be determined such that the measured

(observed) process is “optimally” reproduced by the model. If the measurement
errors "ij are independent, Gaussian with zero mean value and variances �2ij an
appropriate objective function is given by a weighted l2-norm of the measurement
errors

l2.x; p/ WD
X

i;j

��2ij "
2
ij D

X

i;j

��2ij .�ij � gij.x.tj/; p//
2: (1)
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In this case the minimization of the weighted squared errors provides a maximum-
likelihood estimator for the unknown parameter vector.

In a more general case where the measurement errors are correlated with a
known (positive definite) covariance matrix C, we have to use C�1 as a weight
for the definition of a scalar product replacing (1) to receive a maximum-likelihood
estimator.

In many problems additional (point-wise) equality and/or inequality constraints
on parameters and state variables arise as restrictions onto the model

e.tj; x.tj/; p/ D 0; u.tj; x.tj/; p/ � 0; j D 1; : : : ; k:

For notation simplicity we assume the constraints are stated at the same points as
measurements.

A rather general parameter estimation problem for ordinary differential equations
can be summarized as follows:

Problem [PE1] Find a parameter vector p 2 R
np and a trajectory x W Œt0; tf � !

R
nd , that minimize the objective function (describing a weighted norm of measure-

ment errors)

l2 D kr1.x.t1/; : : : ; x.tk/; p/k2; r1 2 R
n1 ; (2)

where n1 is a number of all measurements. The solution has to satisfy the system of
ordinary differential equations of dimension nd

Px D f .t; x; p/; t 2 Œt0; tf �; (3)

the n2 equality constraints

r2.x.t1/; : : : ; x.tk/; p/ D 0 (4)

and the n3 inequality constraints

r3.x.t1/; : : : ; x.tk/; p/ � 0: (5)

Other functionals than the l2-norm can be used, like the general lq-functional

lq.x; p/ D
X

i;j

ˇ̌
ˇij.�ij � gij.x.tj/; p//

ˇ̌q
; 1 � q <1

with the sum of absolute values of errors for q D 1 as the most significant special
case besides q D 2; and the limit case of the Chebyshev or minimax problem

l1.x; p/ D max
i;j

ˇ̌
��1ij .�ij � gij.x.tj/; p//

ˇ̌
:



4 H.G. Bock et al.

l1- and l1-estimators have some specific properties which make them interesting.
Under certain regularity assumptions l1-optimization leads to a solution in which
exactly nC1 of the weighted measurement errors take the maximum value, whereas
exactly n errors vanish in case of the l1-optimization so that the l1-optimal solution
interpolates n measurement values. Here n D nv � ncon is the number of the
remaining degrees of freedom, where nv D ndCnp counts the differential equations
and parameters, ncon counts the equality and active inequality constraints at the
solution. Hence, the optimal solution is only specified by few “best” .l1/ and “worst”
.l1/ measurement values, respectively. From statistical point of view l1-based
estimator provides a maximum-likelihood estimation for uniformly distributed
errors with maximum �ij, lq-based estimator is related to distributions of the type
˛ij exp.�jˇij"ijjq/. For further discussion see [2, 15, 32].

3 Initial Value Problem Approach

The simplest—and maybe most obvious—approach for the numerical treatment of
parameter estimation problems in differential equations is the repeated solution
of the initial value problem (IVP) for fixed parameter values in framework of
an iterative procedure for refinement of the parameters to improve the parameter
estimates and to fulfill possible constraints on states and parameters. Thus, the
inverse problem is lead back to a sequence of IVPs.

Besides the undeniable advantage of a simple implementability the IVP approach
has two severe fundamental disadvantages which are clearly shown in numerical
practice and are verified by theoretical analysis.

On the one hand the state variables x.t/ are eliminated—by means of differential
equation (3)—in favor of the unknown parameters p by the re-inversion of the
inverse problem. As a consequence any information during the solution process that
is especially characteristic for the inverse problem is disregarded. Consequently, the
structure of the inverse problem is destroyed.

On the other hand the elimination of the state variables can cause a drastical
loss of stability of the numerical procedure. At least for bad initial guesses of the
parameters, which always have to be expected in practice, the (non-linear) initial
value problem can be ill-conditioned and difficult to solve or can be not solvable
at all even if the inverse problem is well-conditioned. As a consequence the IVP
approach places high demands on the used iterative method or on the quality of the
initial values.

Let us illustrate these properties of the IVP approach by two examples.


