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dedicated to Zbyněk and Jaroslava, my parents



Preface

The purpose of these lecture notes is to briefly describe some of the basic con-

cepts interlacing discrete mathematics, statistical physics and knot theory. I

tried to emphasize a ’combinatorial common sense’ as the main method. No

attempt of completeness was made. The book should be accessible to the stu-

dents of both mathematics and physics. I profited from previous books and

expositions on discrete mathematics, statistical physics, knot theory and others,

namely [B1], [BRJ], [BB], [J1], [KG], [LL], [MN], [MJ], [MT], [S0], [S3], [SM],

[WFY], [WD], [KSV]. Most of the material contained in the book is introduc-

tory and appears without a reference to the original source. This book has been

an idea of my editor Martin Aigner. I would like to thank to him for his support

and help. Many other colleagues helped me with the book. Mihyun Kang, Jirka

Matoušek, Iain Moffatt, Jarik Nešetřil, Dominic Welsh and Christian Kratten-

thaler read earlier versions, and without their extensive comments the book

would probably not exist. I had enlightening discussions on several topics dis-

cussed in the book, in particular with Martin Klazar, Roman Kotecký, Ondřej

Pangrác, Gregor Masbaum, Xavier Viennot and Uli Wagner. Marcos Kiwi saved

the whole project by gently teaching me how to draw pictures amd Winfried

Hochstaettler drew one; I am sure you will be able to detect it. Large part of

the book was written during my visit, in the whole year 2006, at the School of

Mathematics and the Centro Modelamiento Matematico, Universidad de Chile.

I want to thank my colleagues there for wonderful hospitality, and gratefully

acknowledge the support of CONICYT via project Anillo en Redes, ACT-08.

But of course, the seminal ingredient in the process of making the book was the

creative environment of my home department of applied mathematics and the

institute of theoretical computer science at the Charles University, Prague.

Some theorems and observations in the book appear without a proof. Usually

a pointer is given to a book (preferentially) or to a paper where a proof can be

found. If no pointer is given, then I believe (possibly mistakenly) that it should

be possible to prove the statement in an elementary and not very complicated

way. The reader is encouraged to write down such proofs as exercises. The first

five chapters concentrate on the introductory discrete mathematics. Chapters

six and seven are devoted to the partition functions, and chapter eight is an in-

troduction to the theory of knots. The last chapter describes two combinatorial

technics which solve the 2D Ising and dimer problems.

Prague, September 2009

Martin Loebl
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Chapter 1

Basic concepts

In this introductory chapter we first present some very basic mathematical for-

malism. Then we introduce algorithms and complexity. The chapter ends with

basic tools of discrete calculations.

1.1 Sets, functions, structures

We will use symbols N, Z, P, Q, R, and C to denote the sets of the natural,

integer, positive integer, rational, real, and complex numbers. If not specified

otherwise then i, j, k, m, n are non-negative integers. We sometimes denote by
[n] the set {1, . . . , n}. We denote by |X | the cardinality of a set X . A function

f from a set X to a set Y is called one-to-one or injective if for x, y ∈ X x �= y
implies f(x) �= f(y), it is surjective or onto if for each y ∈ Y there is x ∈ X
such that f(x) = y, and it is a bijection if it is both one-to-one and onto. If
X, Y are finite then a bijection is also called a permutation. Let |X | = n and
|Y | = m. There are n! = n(n − 1)(n − 2) · · · 1 permutations of X ; n! is the
factorial function. The number of all functions from X to Y is mn and the

number of one-to-one functions from X to Y is m(m− 1) · · · (m− n+ 1). The
number of surjective functions does not have such a nice formula, it may be

written with the help of the principle of inclusion and exclusion as

m∑
i=0

(−1)i
(

m

i

)
(m− i)n. (1.1)

The Kronecker delta function is defined by δ(x, y) = 1 if x = y, and zero
otherwise. If X is a set, then we denote by 2X the set of all the subsets of X ;
|2X | = 2n. We further denote by

(
X
k

)
the set of all subsets of X of cardinality

k. We have ∣∣∣∣
(

X

k

)∣∣∣∣ =
(

n

k

)
=

n!

k!(n− k)!
.
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The binomial theorem says that

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k.

The symbol
(
n
k

)
is called the binomial coefficient. The multinomial coefficient

is defined by (
n

k1, · · · , km

)
=

n!

k1! · · ·km!

and the multinomial theorem says that

(x1 + · · ·+ xm)
n =

∑
k1+···+km=n

(
n

k1, · · · , km

)
xk1

1 · · ·xkm
m .

A very good estimate of the factorial function n! is given by Stirling’s formula
which approximates n! by (2πn)1/2(n

e )
n.

If Y ⊂ X , then the incidence vector of Y will be denoted by i(Y ); i(Y ) is the
0, 1 vector indexed by the elements of X , where [i(Y )]z = 1 if and only if z ∈ Y .
We will sometimes not distinguish between a set and its incidence vector.

An ordered pair is usually denoted by (x, y) where x is the first element of the
pair. A binary relation on X is any subset of X ×X = {(x, x′);x ∈ X, x′ ∈ X}.
Any function X → X is a binary relation on X . A partially ordered set, or
poset for short, is a pair (X,�), where X is a set and � is a binary relation

on X that is reflexive (x � x), transitive (x � y and y � z imply x � z), and
(weakly) antisymmetric (x � y and y � x imply x = y). The binary relation �
is itself called a partial ordering. A partial ordering where any pair of elements
is comparable is called a linear ordering. An important example of a linear

ordering is the lexicographic ordering. Let a = (a1, . . . , an) and b = (b1, . . . , bm)

be two strings of integers. We say that a is lexicographically smaller than b if a
is an initial segment of b or aj < bj for the smallest index j such that aj �= bj .

Let (X,�) be a poset and Y ⊂ X . We say that Y is a chain if the induced

ordering (Y,�) is linear.
The symbol F will denote a field; F will usually be equal to R or C, or to the

finite 2-element field GF (2) = ({0, 1},+,×) with addition and multiplication
modulo 2. The symbol Fd denotes the vector space of dimension d over F. The

elements of Fd are called vectors; for x ∈ Fd we write x = (x1, · · · , xd). We

will understand vectors as both row and column vectors. The scalar product

of two vectors x, y is xy = x1y1 + · · · + xdyd. A set {x1, · · · , xk} of vectors of
Fd is linearly independent if, whenever

∑k
i=1 aix

i = 0 and each ai ∈ F, then

a1 = a2 = · · · = ak = 0. The dimension dim({x1, · · · , xk}) of a set of vec-
tors {x1, · · · , xk} is the maximum number of linearly independent elements in

{x1, · · · , xk}. A subspace of a vector space Fd is any subset of Fd which is closed

under addition, and multiplication by an element of F. Two subspaces X, Y are

isomorphic if there is a bijection f : X → Y such that for each a, b ∈ X and

c ∈ F, f(a + b) = f(a) + f(b) and f(ca) = cf(a). The orthogonal complement
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of a subspace X ⊂ Fd is the subspace {y ∈ Fd;xy = 0 for each x ∈ X}.
Let A = (aij) be a matrix of n rows and m columns, with entries from field

F. We say that A is an n × m matrix. If n = m then A is a square ma-
trix. The determinant of a square n × n matrix A is defined by det(A) =∑

π(−1)sign(π)
∏n

i=1 aπ(i)i, where the sum is over all permutations π of 1, · · · , n
and sign(π) = |{i < j;π(i) > π(j)}|. The determinant characterizes linearly
independent vectors. A set of n vectors of length n is linearly independent if

and only if det(A) �= 0, where A is the matrix whose set of columns (or rows)

is formed by the vectors. The determinant of a matrix may be calculated ef-

ficiently by the Gaussian elimination. The permanent of matrix A is defined

analogously as the determinant, but the (−1)sign(π) term is omited from each

summand. Hence, Per(A) =
∑

π

∏n
i=1 aπ(i)i. There is no efficient algorithm to

calculate the permanent. The identity matrix is the square matrix A such that

aii = 1 and aij = 0 for i �= j. The trace of a square matrix A, denoted by tr(A),
is defined by tr(A) =

∑
i aii.

The symbol Rd also denotes the Euclidean space of dimension d. A curve in Rd is

the image of a continuous function f : [0, 1]→ Rd. A curve is simple if it is one-
to-one, and it connects its endpoints f(0), f(1). A curve is closed if f(0) = f(1).
The Euclidean norm of x ∈ Rd is ||x|| = (xx)1/2. A set {x0, x1, · · · , xk} of
vectors of Rd is affinely independent if, whenever

∑k
i=0 aix

i = 0,
∑k

i=0 ai = 0

and each ai ∈ R, then a0 = a1 = · · · = ak = 0. For two points x0, x1 affine inde-

pendence means x0 �= x1; for three points it means that x0, x1, x2 do not lie on

a common line; for four points it means that they do not lie on a common plane;

and so on. The rank of a set of points of Rd, denoted by rank({x0, · · · , xk}), is
the maximum number of affinely independent elements in {x0, · · · , xk}.
There is a simple relation between linear and affine independence: x0, · · · , xk are

affinely independent if and only if x1−x0, · · · , xk−x0 are linearly independent.

This happens if and only if the (d+1)-dimensional vectors (1, x0), . . . , (1, xk) are

linearly independent. An affine subspace is any subset A ⊂ Rd which contains,

for each pair of its elements x, y, the line through x, y. A hyperplane in Rd is

a (d − 1)-dimensional affine subspace, i.e., a set of the form {x ∈ Rd : ax = b}
for some nonzero a ∈ Rd and b ∈ R. A (closed) half-space has the form
{x ∈ Rd : ax ≤ b} for some nonzero a ∈ Rd and b ∈ R.

A set C ⊂ Rd is convex if for every x, y ∈ C, the segment {ax+(1−a)y : 0 ≤ a ≤
1} between x and y is contained in C. The convex hull of a set X ⊂ Rd is the

intersection of all convex sets containing X , and it is denoted by conv(X). Each
x ∈ conv(X) may be written as a convex combination of elements of X : there

are x1, · · · , xk ∈ X and real numbers a1, · · · , ak ≥ 0 such that
∑k

i=1 ai = 1 and

x =
∑k

i=1 aix
i.

A convex polytope is the convex hull of a finite subset of Rd. Each convex

polytope can be expressed as the intersection of finitely many half-spaces. Con-

versely, by the Minkowski-Weyl theorem, if an intersection of finitely many

half-spaces is bounded, then it is a convex polytope. A face of a convex poly-
tope P is P itself or a non-empty intersection of P with a hyperplane that does

not dissect P (i.e., not both of the open half-spaces defined by the hyperplane
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intersect P in a non-empty set).

1.2 Algorithms and Complexity

Algorithmic considerations are important for many concepts of both discrete

mathematics and statistical physics. We make only basic algorithmic remarks

in this book, and therefore the following exposition on algorithms and complex-

ity is very brief.

Informally, an algorithm is a set of instructions to be carried out mechanically.

Applying an algorithm to its input we get some output, provided that the se-
quence of the instructions prescribed by applying the algorithm terminates. The

application of an algorithm is often called a computation. Usually inputs and
outputs are strings (words, finite sequences) from a finite alphabet; a basic ex-

ample are binary words, i.e., finite sequences of 0, 1. The notion of an algorithm
is usually formalized by the definition of a Turing machine.

A Turing machine consists of the following components:

• a finite set S called the alphabet,

• an element b ∈ S called the blank symbol,

• a subset A ⊂ S called the external alphabet; we assume b /∈ A,

• a finite set Q whose elements are called states of the Turing machine,

• an initial state s ∈ Q,

• a transition function, i.e., a function

t : Q× S → Q× S × {−1, 0, 1}.

A Turing machine has a tape that is divided into cells. Each cell carries one
symbol from S. We assume that the tape is infinite, thus the content of the
tape is an infinite sequence s = s0, s1, · · · of elements of S.
A Turing machine also has a read-write head that moves along the tape and
changes symbols. If the head is in position p along the tape, it can read symbol
sp and write another symbol in its place.

The behaviour of a Turing machine is determined by a control device. At each

step of the computation, this device is in some state q ∈ Q. The state q and
the symbol sp under the head determine the action performed by the Turing

machine: the value of the transition function, t(q, sp) = (q
′, s′, p′), contains the

new state q′, the new symbol s′ to be written in the place of sp, and the shift

p′ ∈ {−1, 0, 1} of the position of the head. If the head bumps into the left
boundary of the tape (that happens when p + p′ < 0), then the computation

stops.
Next we describe the input given to the Turing machine, and how the output is

obtained. Let A∗ denote the set of all the strings (finite sequences) of elements
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of A. Inputs and outputs to the Turing machine with the external alphabet A
are strings from A∗. An input string I is written on the tape and followed by
the blank symbol b. Initially, the head is at the beginning (left end) of I. If
the Turing machine stops (by bumping into the left boundary of the tape), we

read the tape from left to right starting from the left end until we reach some

symbol that does not belong to A. The initial segment of the tape until that
symbol will be the output of the Turing machine.

Every Turing machine computes a function from a subset of A∗ to A∗. There are
functions that are not computable. A Turing machine is obviously an algorithm
in the informal sense. The converse assertion is called the

Church-Turing thesis: Any algorithm can be realised by a Turing machine.

Note that the Church-Turing thesis is not a mathematical theorem, but rather

a statement about our understanding of the informal notion of algorithm.

Complexity classes. The computability of a function does not guarantee

that we can compute it in practice since an algorithm may require too much

time. The idea of an effective algorithm is usually formalized by the notion

of polynomial algorithms. We say that a function T on the positive integers

is of polynomial growth if T (n) ≤ cnd for all n and some constants c, d. We
say that a function f defined on the binary strings of {0, 1}∗ is computable in
polynomial time if there exists a Turing machine that computes f in time T (n)
of polynomial growth, where n is the length of the input. Such a Turing machine
is called a polynomial algorithm. Polynomial time encoding plays a crucial role.
For instance, if the input is an integer N in the unary representation then the
input size is |N | but if the representation is binary, the input size is only log(|N |).
The class of all functions computable in polynomial time is denoted by P . We
should remark here that computability in polynomial time does not guarantee

practical computability either, but it is a good indication for it.

A special class of algorithmic problems are the decision problems. In a decision
problem, we want the answer to be yes or no. This clearly may be modeled as a
function from a subset of A∗ to {0, 1} where 0 encodes no and 1 encodes yes. It
is customary to call such functions predicates. One can think about predicates
as about properties: the predicate indicates for each string whether it has the

property (yes) or does not have the property (not). Hence the algorithmic

problem to compute a predicate may be formulated as the algorithmic problem

to test the corresponding property.

Another basic complexity class, the class NP , is usually defined only for the
predicates. We say that a predicate R(x, y), where x and y are binary strings,
is polynomially decidable if there is a Turing machine that computes it in time
of polynomial growth (the size of the input is |x|+ |y|).
The class NP is the class of all predicates f for which there is a polynomial

growth function T (n) and a polynomially decidable predicate R of two variables

so that f(x) = 1 if and only if there is y such that |y| < T (|x|) and R(x, y) = 1.
Informally, NP is the class of the predicates (i.e., properties), for which there

is a certificate (coded by y) that can be checked in polynomial time. Most of
the properties discussed in this book belong to NP .
Clearly P ⊂ NP . Over the past 30 years intensive research has been directed
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towards proving that the inclusion is strict. The question whether P �= NP
is today one of the fundamental problems of both mathematics and computer

science.

Reducibility. When can we say that one problem is algorithmically at least

as hard as another problem? We model the efficiency by the polynomial time

complexity, and so the answer is naturally given by the following notion of poly-
nomial reducibility: we say that a predicate f1 is polynomially reducible to a
predicate f2 if there exists a function g ∈ P so that f1(x) = f2(g(x)), for each
input string x.
A predicate f ∈ NP is called NP -complete if any predicate in NP is polynomi-

ally reducible to it. The predicates that are NP -complete are the most difficult
predicates of NP : if some NP -complete predicate is in P then P = NP . It
is customary to speak about NP -complete problems rather than NP -complete
predicates. The existence of an efficient algorithm to solve an NP -complete
problem is considered to be very unlikely.

A seminal result in algorithmic complexity is that NP -complete predicates
(problems) exist. This was proved independently by Cook and Levin. Many

natural NP -complete problems are known, see [GJ].

1.3 Generating functions

A useful way of counting is provided by generating functions. If f is a func-

tion from the non-negative integers, we can consider its (ordinary) generating
function

∑
n≥0 f(n)xn and its exponential generating function

∑
n≥0 f(n)xn/n!.

The generating functions are formal power series, since we are not concerned
with letting x take particular values, and we ignore questions of convergence.
This formalism is convenient since we can perform various operations on the

formal power series, for instance⎛
⎝∑

n≥0

anxn

⎞
⎠+

⎛
⎝∑

n≥0

bnxn

⎞
⎠ =

∑
n≥0

(an + bn)x
n,

⎛
⎝∑

n≥0

anxn/n!

⎞
⎠+

⎛
⎝∑

n≥0

bnxn/n!

⎞
⎠ =

∑
n≥0

(an + bn)x
n/n!

and ⎛
⎝∑

n≥0

anxn

⎞
⎠
⎛
⎝∑

n≥0

bnxn

⎞
⎠ =

∑
n≥0

cnxn

⎛
⎝∑

n≥0

anxn/n!

⎞
⎠
⎛
⎝∑

n≥0

bnxn/n!

⎞
⎠ =

∑
n≥0

dnxn/n!

where cn =
∑n

i=0 aibn−i and dn =
∑n

i=0

(
n
i

)
aibn−i.

These operations coincide with the addition and multiplication of functions
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when the power series converge for some values of x. Let us denote by C[[x]] the
set of all formal power series

∑
n≥0 anxn with complex coefficients. Addition and

multiplication in C[[x]] are clearly commutative, associative and distributive,
thus C[[x]] forms a commutative ring where 1 is the unity. Formal power series
with the coefficients in a non-commutative ring (like the square matrices of the

same size) are also extensively considered; they form a non-commutative ring

with unity.

If F (x) and G(x) are elements of C[[x]] satisfying F (x)G(x) = 1 then we

write G(x) = F (x)−1. It is easy to see that F (x)−1 exists if and only if

a0 = F (0) �= 0. If F (x)−1 exists then it is uniquely determined. We have

((F (x)−1)−1 = F (x).

Example 1.3.1. Let a �= 0 and (
∑

n≥0 anxn)(1 − ax) =
∑

n≥0 cnxn, where a is
a non-zero complex number. Then from the definition of multiplication we get

c0 = 1 and cn = 0 for n > 0. Hence we may write∑
n≥0

anxn = (1− ax)−1.

The identity may be derived in the same way in every ring of formal power series

over a (not necessarily commutative) ring with unity. Hence, for instance, for

square complex matrices it can be written as∑
n≥0

Anxn = (I −Ax)−1.

This is of course just the formula for summing a geometric series. Informally

speaking, if we have an identity involving power series that is valid when the

power series are regarded as functions (when the variables are sufficiently small

complex numbers), then the identity remains valid when regarded as an identity

among formal power series. Formal power series may naturally have more than

one variable.

1.4 Principle of inclusion and exclusion

Let us start with the introduction of a paper of Whitney, which appeared in

Annals of Mathematics in August 1932:

”Suppose we have a finite set of objects (for instance books on a table), each

of which either has or has not a certain given propertyA (say of being red). Let n
be the total number of objects, n(A) the number with the property A, and n(Ā)
the number without the propertyA. Then obviously n(Ā) = n−n(A). Similarly,
if n(AB) denotes the number with both properties A and B, and n(ĀB̄) the
number with neither property, then n(ĀB̄) = n− n(A)− n(B) + n(AB), which
is easily seen to be true. The extension of these formulas to the general case

where any number of properties is considered is quite simple, and is well known

to logicians. It should be better known to mathematicians also; we give in this

paper several applications which show its usefulness.”

It is known today, under the name principle of inclusion and exclusion (PIE).


