

Lecture Notes in Computer Science 5812
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Ute Schmid Emanuel Kitzelmann
Rinus Plasmeijer (Eds.)

Approaches and Applications
of Inductive Programming

Third International Workshop, AAIP 2009
Edinburgh, UK, September 4, 2009
Revised Papers

13

Volume Editors

Ute Schmid
Emanuel Kitzelmann
Otto-Friedrich-Universität Bamberg
Fakultät Wirtschaftsinformatik und Angewandte Informatik
96045 Bamberg, Germany
E-mail: {ute.schmid,emanuel.kitzelmann}@uni-bamberg.de

Rinus Plasmeijer
Radboud University Nijmegen
Institute for Computing and Information Sciences
6525AJ Nijmegen, The Netherlands
E-mail: rinus@cs.ru.nl

Library of Congress Control Number: 2010923416

CR Subject Classification (1998): I.2, D.2, F.3, H.3, D.3, F.4.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-11930-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-11930-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2010
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper 06/3180

To Phil Summers
who laid the foundation

Preface

Inductive programming is concerned with the automated construction of declar-
ative – often functional – recursive programs from incomplete specifications such
as input/output examples. The inferred program must be correct with respect
to the provided examples in a generalizing sense: it should be neither equivalent
to it, nor inconsistent. Inductive programming algorithms are guided explicitly
or implicitly by a language bias (the class of programs that can be induced)
and a search bias (determining which generalized program is constructed first).
Induction strategies are either generate-and-test or example-driven. In generate-
and-test approaches, hypotheses about candidate programs are generated inde-
pendently from the given specifications. Program candidates are tested against
the given specification and one or more of the best evaluated candidates are de-
veloped further. In analytical approaches, candidate programs are constructed
in an example-driven way. While generate-and-test approaches can – in princi-
ple – construct any kind of program, analytical approaches have a more limited
scope. On the other hand, efficiency of induction is much higher in analytical
approaches.

Inductive programming is still mainly a topic of basic research, exploring
how the intellectual ability of humans to infer generalized recursive procedures
from incomplete evidence can be captured in the form of synthesis methods.
Intended applications are mainly in the domain of programming assistance –
either to relieve professional programmers from routine tasks or to enable non-
programmers to some limited form of end-user programming. Furthermore, in
future, inductive programming techniques might be applied to further areas such
as support inference of lemmata in theorem proving or learning grammar rules.

Inductive automated program construction has been originally addressed
by researchers in artificial intelligence and machine learning. During the last
few years, some work on exploiting induction techniques has been started also
in the functional programming community. Therefore, the third workshop on
“Approaches and Applications of Inductive Programming” took place for the
first time in conjunction with the ACM SIGPLAN International Conference on
Functional Programming (ICFP 2009). The first and second workshop were as-
sociated with the International Conference on Machine Learning (ICML 2005)
and the European Conference on Machine Learning (ECML 2007).

AAIP 2009 aimed to bring together researchers from the field of inductive
functional programming from the functional programming and the artificial intel-
ligence communities and advance fruitful interactions between these communities
with respect to programming techniques for inductive programming algorithms,
identification of challenge problems and potential applications. Accordingly, the
organizers as well as the Program Committee and the reviewers consisted of
members from both communities.

VIII Preface

The workshop was enriched by three invited talks from members of the func-
tional programming community and we want to thank Lennart Augustsson,
Pieter Koopman and Neil Mitchell for their support. We are very grateful to
Martin Hofmann, who invested much of his time to support the workshop or-
ganization. Furthermore, we want to thank all presenters for submitting their
work to our workshop and all attendants for stimulating discussions.

We are proud that all authors of accepted workshop papers as well as two
of the invited speakers provided revised papers for this proceedings publication.
Thereby we can present a rather representative selection of current research
in the field of inductive programming. For everybody interested in inductive
programming, we recommend visiting the website
www.inductive-programming.org.

December 2009 Ute Schmid
Emanuel Kitzelmann

Rinus Plasmeijer

Organization

Organizing Committee

Ute Schmid University of Bamberg, Germany
Emanuel Kitzelmann University of Bamberg, Germany
Rinus Plasmeijer Radboud University Nijmegen,

The Netherlands
Technical Support Martin Hofmann, University of Bamberg,

Germany

Program Committee

Pierre Flener Uppsala University, Sweden
Lutz Hamel University of Rhode Island, Kingston, USA
Jose Hernandez-Orallo Technical University of Valencia, Spain
Johan Jeuring University of Utrecht, The Netherlands
Susumu Katayama University of Miyazaki, Japan
Pieter Koopman Radboud University Nijmegen,

The Netherlands
Oleg G. Monakhov Russian Academy of Sciences, Siberian

Branch, Russia
Ricardo Aler Mur Universidad Carlos III de Madrid, Spain
Roland Olsson Ostfold College, Norway
Maria José

Ramı́rez Quintana Technical University of Valencia, Spain

Board of Reviewers

All members of the Organizing Committee and of the Program Committee served
as reviewers for the workshop and the proceeding submissions. In addition, we
thank the following external reviewers:

Wolfgang Jeltsch BTU Cottbus, Germany
Janis Voigtländer University of Bonn, Germany

Table of Contents

Invited Papers

Deriving a Relationship from a Single Example . 1
Neil Mitchell

Synthesis of Functions Using Generic Programming 25
Pieter Koopman and Rinus Plasmeijer

Regular Papers

Inductive Programming: A Survey of Program Synthesis Techniques 50
Emanuel Kitzelmann

Incremental Learning in Inductive Programming . 74
Robert Henderson

Enumerating Well-Typed Terms Generically . 93
Alexey Rodriguez Yakushev and Johan Jeuring

Generalisation Operators for Lists Embedded in a Metric Space 117
V. Estruch, C. Ferri, J. Hernández-Orallo, and
M.J. Ramı́rez-Quintana

Porting IgorII from Maude to Haskell . 140
Martin Hofmann, Emanuel Kitzelmann, and Ute Schmid

Automated Method Induction: Functional Goes Object Oriented 159
Thomas Hieber and Martin Hofmann

Recent Improvements of MagicHaskeller . 174
Susumu Katayama

Author Index . 195

Deriving a Relationship from a Single Example

Neil Mitchell

http://community.haskell.org/~ndm

Abstract. Given an appropriate domain specific language (DSL), it is
possible to describe the relationship between Haskell data types and
many generic functions, typically type-class instances. While describing
the relationship is possible, it is not always an easy task. There is an
alternative – simply give one example output for a carefully chosen input,
and have the relationship derived.

When deriving a relationship from only one example, it is important
that the derived relationship is the intended one. We identify general
restrictions on the DSL, and on the provided example, to ensure a level
of predictability. We then apply these restrictions in practice, to derive
the relationship between Haskell data types and generic functions. We
have used our scheme in the Derive tool, where over 60% of type classes
are derived from a single example.

1 Introduction

In Haskell [22], type classes [29] are used to provide similar operations for many
data types. For each data type of interest, a user must define an associated in-
stance. The instance definitions usually follow a highly regular pattern. Many li-
braries define new type classes, for example Trinder et. al. [27] define the NFData
type class, which reduces a value to normal form. As an example, we can define
a data type to describe some computer programming languages, and provide an
NFData instance:

data Language = Haskell [Extension] Compiler
| Whitespace
| Java Version

instance NFData Languge where
rnf (Haskell x1 x2) = rnf x1 `seq̀ rnf x2 `seq̀ ()
rnf (Whitespace) = ()
rnf (Java x1) = rnf x1 `seq̀ ()

We also need to define NFData instances for lists, and each of the data types
Extension, Compiler and Version. Any instance of NFData follows naturally from
the structure of the data type: for each constructor, all fields have seq applied,
before returning ().

Writing an NFData instance for a single simple data type is easy – but for
multiple complex data types the effort can be substantial. The standard solution

U. Schmid, E. Kitzelmann, and R. Plasmeijer (Eds.): AAIP 2009, LNCS 5812, pp. 1–24, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

http://community.haskell.org/~ndm

2 N. Mitchell

is to express the relationship between a data type and it’s instance. In standard
tools, such as DrIFT [30], the person describing a relationship must be familiar
with both the representation of a data type, and various code-generation func-
tions. The result is that specifying a relationship is not as straightforward as one
might hope.

Using the techniques described in this paper, these relationships can often
be automatically inferred from a single example. To define the generation of all
NFData instances, we require an example to be given for the Sample data type:

data Sample α = First
| Second α α
| Third α

instance NFData α ⇒ NFData (Sample α) where
rnf (First) = ()
rnf (Second x1 x2) = rnf x1 `seq̀ rnf x2 `seq̀ ()
rnf (Third x1) = rnf x1 `seq̀ ()

The NFData instance for Sample follows the same pattern as for Language. From
this example, we can infer the general relationship. However, there are many pos-
sible relationships between the Sample data type and the instance above – for
example the relationship might always generate an instance for Sample, regard-
less of the input type. We overcome this problem by requiring the relationship
to be written in a domain specific language (DSL), and that the example has
certain properties (see §2). With these restrictions, we can regain predictability.

1.1 Contributions

This paper makes the following contributions:

– We describe a scheme which allows us to infer predictable and correct rela-
tionships (§2).

– We describe how this scheme is applicable to instance generation (§3).
– We outline a method for deriving a relationship in our DSL, without resorting

to unguided search (§4).
– We give results (§5), including reasons why our inference fails (§5.1). In our

experience, over 60% of Haskell type classes can be derived using our method.

2 Our Derivation Scheme

In this section we define a general scheme for deriving relationships, which we
later use to derive type-class instance generators. In general terms, a function
takes an input to an output. In our case, we restrict ourselves to functions that
can be described by a value of a DSL (domain specific language). The person
defining a derivation scheme is required to define suitable types named Input,
Output and the DSL. To use a value of DSL, we need an apply function to serve
as an interpreter, which takes a DSL value and an input and produces an output:

Deriving a Relationship from a Single Example 3

apply :: DSL→ Input→ Output

Now we turn to the derivation scheme. Given a single result of the Output type,
for a particular sample Input, we wish to derive a suitable DSL. It may not be
possible to derive a suitable DSL, so our derivation function must allow for the
possibility of failure. Instead of producing at most one DSL, we instead produce
a list of DSLs, following the lead of Wadler [28]:

sample :: Input
derive :: Output→ [DSL]

We require instantiations of our scheme to have two properties – correctness (it
works) and predictability (it is what the user intended). We now define both
of these properties more formally, along with restrictions necessary to achieve
them.

2.1 Correctness

The derivation of a particular output is correct if all derived DSLs, when applied
to the sample input, produce the original output:

∀ o ∈ Output • ∀ d ∈ derive o • apply d sample ≡ o

Note that given an incorrect derive function it is possible to create a correct
derive function by simply filtering out the incorrect results – correctness can be
tested inside the derive function.

2.2 Predictability

A derived relationship is predictable if the user can be confident that it matches
their expectations. In particular, we don’t want the user to have to understand
the complex derive function to be confident the relationship matches their in-
tuition. In this section we attempt to simplify the task of defining predictable
derivation schemes.

Before defining predictability, it is useful to define congruence of DSLs. We
define two DSLs to be congruent (∼=), if for every input they produce identical
results – i.e. apply d1 ≡ apply d2.

d1
∼= d2 ⇐⇒∀ i ∈ Input • apply d1 i ≡ apply d2 i

Our derive function returns a list of suitable DSLs. To ensure consistency, it is
important that the DSLs are all congruent – allowing us to choose any DSL as
the answer.

∀ o ∈ Output • ∀ d1, d2 ∈ derive o • d1
∼= d2

This property is dependent on the implementation of the derive function, so is
insufficient for ensuring predictability. To ensure predictability we require that
all results which give the same answer on the sample input are congruent:

4 N. Mitchell

∀ d1, d2 ∈ DSL • apply d1 sample ≡ apply d2 sample⇒ d1
∼= d2

The combination of this predictability property and the correctness property
from §2.1 implies the consistency property. It is important to note that pre-
dictability does not impose conditions on the derive function, only on the DSL,
the apply function and the sample input.

2.3 Scheme Roles

The creation and use of a derivation scheme can be split into separate roles,
perhaps completed by different people, each focusing on only a few aspects of
the scheme.

The scheme creator defines the Input, Output and DSL types, the apply function,
and the sample value of type Input (§3). Their choice must satisfy the predictabil-
ity property (§3.4).

The derivation function author defines the derive function (§4). They may choose
to ensure the correctness property, or filter the results. They do not need to
concern themselves with predictability.

The relationship creator gives an appropriate output based on the previously
defined sample input (§1 and examples throughout). In order to ensure their
relationship matches their intuition, they may wish to familiarise themselves
with some details of the DSL, but hopefully these will not be too onerous.

The relationship user simply gives an input, and receives an output – the output
will always be what the relationship creator intended.

3 Deriving Instances

In this section we apply the scheme from §2 to the problem of deriving type class
instances. We let the output type be Haskell source code and the input type be
a representation of algebraic data types. The DSL contains features such as
list manipulation, constant values, folds and maps. We first describe each type
in detail, then discuss the restrictions necessary to satisfy the predictability
property.

3.1 Output

We wish to generate any sequence of Haskell declarations, where a declaration
is typically a function definition or type class instance. There are several ways
to represent a sequence of declarations:

Deriving a Relationship from a Single Example 5

String. A sequence of Haskell declarations can be represented as the string of
the program text. However, the lack of structure in a string poses several
problems. When constructing strings it is easy to generate invalid programs,
particularly given the indentation and layout requirements of Haskell. It is
also hard to recover structure from the program that is likely to be useful
for deriving relationships.

Pretty printing combinators. Some tools such asDrIFT [30] generate Haskell
code using pretty printing combinators. These combinators supply more
structure than strings, but the structure is linked to the presentation, rather
than the meaning of constructs.

Typed abstract syntax tree (AST). The standard representation of Haskell
source code is a typed AST – an AST where different types of fragment (i.e.
declarations, expressions and patterns) are restricted to different positions
within the tree. The first version of Derive used a typed AST, specifically
Template Haskell [24]. This approach preserves all the structure, and makes
it reasonably easy to ensure the generated program is syntactically correct.
By combining a typed AST with a parser and pretty printer we can convert
between strings as necessary.

Untyped abstract syntax tree (AST). An untyped AST is an AST where all
fragments have the same type, and types do not restrict where a fragment may
be placed. The removal of types increases the number of invalid programs that
can be represented – for example a declaration could occurwhere an expression
was expected. However, by removing types we make it easier to express some
operations that operate on the tree in a uniform manner.

For our purposes, it is clear that both strings and pretty printing combinators are
unsuitable – they lack sufficient structure to implement the derive operation. The
choice between a typed and untyped AST is one of safety vs simplicity. The use of
a typed AST in the first version of Derive caused many complexities – notably
the DSL was hard to represent in a well-typed manner and some functions had
to be duplicated for each type. The loss of safety from using an untyped AST is
not too serious, as both DSLs and ASTs are automatically generated, rather than
being written by hand. Therefore, we chose to use untyped ASTs for the current
version of Derive. We discuss possible changes to regain type safety in §7.

While we work internally with an untyped AST, existing Haskell libraries for
working with ASTs use types. To allow the use of existing libraries we start from
a typed AST and collapse it to a single type, using the Scrap Your Boilerplate
generic programming library [16,17].

The use of Template Haskell in the first version of Derive provided a number
of advantages – it is built in to GHC and can represent a large range of Haskell
programs. Unfortunately, there were also a number of problems:

– Being integrated in to GHC ensures Template Haskell is available every-
where GHC is, but also means that Template Haskell cannot be upgraded
separately. Users of older versions of GHC cannot take advantage of improve-
ments to Template Haskell, and every GHC upgrade requires modifications
to Derive.

6 N. Mitchell

– Template Haskell does not support new GHC extensions – they are often
implemented several years later. For example, Template Haskell does not
yet support view patterns.

– Template Haskell allows generated instances to be used easily by GHC com-
piled programs, but it makes the construction of a standalone preprocessor
harder.

– If Template Haskell is also used to read the input data type (as it was in
the first version of Derive) then only data types contained in compilable
modules can be used. In particular, all necessary libraries must be compiled
before an instance could be generated.

– The API of Template Haskell is relatively complex, and has some inconsis-
tencies. In particular the Q monad caused much frustration.

We have implemented the current version of Derive using the haskell-src-exts
library [2]. The haskell-src-exts library is well maintained, supports most Haskell
extensions1 and operates purely as a library. We convert the typed AST of
haskell-src-exts to a universal data type:

data Output = OString String
| OInt Int
| OList [Output]
| OApp String [Output]

OString and OInt represent strings and integers. The OList constructor generates
a list from a sequence of Output values. The expression OApp c xs represents
the constructor c with fields xs. For example Just [1, 2] would be represented by
the expression OApp "Just" [OList [OInt 1, OInt 2]]. These constructed values
represent the AST defined by haskell-src-exts, so can represent all of Haskell –
e.g. a case expression would be OApp "Case" [on, alts].

Our Output type can represent many impossible values, for example the ex-
pression OApp "Just" [] (wrong number of fields) or OApp "Maybe" [] (not a
constructor). We consider any Output value that does not represent a haskell-
src-exts value to be an error. The root Output value must represent a value of
type [Decl]. We can translate between our Output type and the haskell-src-exts
type [Decl]:

toOutput :: [Decl]→ Output
fromOutput :: Output→ [Decl]

We have implemented these functions using the SYB generics library [17], specif-
ically we have implemented the more general:

toOut :: Data α⇒ α → Output
fromOut :: Data α⇒ Output→ α

These functions are partial – they only succeed if the Output value represents
a well-typed haskell-src-exts value. When operating on the Output type, we are
1 Haskell-src-exts supports even more extensions than GHC!

