
CHAPTER 2

The Equations of Motion
for Extensible Strings

1. Introduction
The main purpose of this chapter is to give a derivation, which is mathe-

matically precise, physically natural, and conceptually simple, of the quasi-
linear system of partial differential equations governing the large motion
of nonlinearly elastic and viscoelastic strings. This derivation, just like all
our subsequent derivations of equations governing the behavior of rods,
shells, and 3-dimensional bodies, is broken down into the description of
(i) the kinematics of deformation, (ii) fundamental mechanical laws (such
as the generalization of Newton’s Second Law to continua), and (iii) mate-
rial properties by means of constitutive equations. This scheme separates
the treatment of geometry and mechanics in steps (i) and (ii), which are
regarded as universally valid, from the treatment of constitutive equations,
which vary with the material. Since this derivation serves as a model for
all subsequent derivations, we examine each aspect of it with great care.
We pay special attention to the Principle of Virtual Power and the equiv-
alent Impulse-Momentum Law, which are physically and mathematically
important generalizations of the governing equations of motion and which
play essential roles in the treatments of initial and boundary conditions,
jump conditions, variational formulations, and approximation methods. In
this chapter we begin the study of simple concrete problems, deferring to
Chaps. 3 and 6 the treatment of more challenging problems.

The exact equations for the large planar motion of a string were derived by Euler
(1751) in 1744 and those for the large spatial motion by Lagrange (1762). By some
unfortunate analog of Gresham’s law, the simple and elegant derivation of Euler (1771),
which is based on Euler’s (1752) straightforward combination of geometry with mechan-
ical principles, has been driven out of circulation and supplanted with baser derivations,
relying on ad hoc geometrical and mechanical assumptions. (Evidence for this state-
ment can be found in numerous introductory texts on partial differential equations and
on mathematical physics. Rare exceptions to this unhappy tradition are the texts of
Bouligand (1954) and Weinberger (1965).) A goal of this chapter is to show that it is
easy to derive the equations correctly, much easier than following many modern exposi-
tions, which ask the reader to emulate the Red Queen by believing six impossible things
before breakfast.

The correct derivation is simple because Euler made it so. Modern authors should be
faulted not merely for doing poorly what Euler did well, but also for failing to copy from
the master. A typical ad hoc assumption found in the textbook literature is that the
motion of each material point is confined to the plane through its equilibrium position
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14 2. THE EQUATIONS OF MOTION FOR EXTENSIBLE STRINGS

perpendicular to the line joining the ends of the string. In Sec. 7 we show that scarcely
any elastic strings can execute such a motion. Most derivations suppress the role of
material properties and even the extensibility of the string by assuming that the tension
is approximately constant for all small motions. Were it exactly constant, then no
segment of a uniform string could change its length, and if the ends of such a string
were held at a separation equal to the length of the string, then the string could not
move. (One author of a research monograph on 1-dimensional wave propagation derived
the wave equation governing the motion of an inextensible string. Realizing that an
inextensible string with its ends separated by its natural length could not move, however
pretty its governing equations, he assumed that one end of the string was joined to a
fixed point by a spring.) One can make sense out of such assumptions as those of purely
transverse motion and of the constancy of tension by deriving them as consequences of
a systematic perturbation scheme applied to the exact equations, as we do in Sec. 8.

Parts of Secs. 1–4, 6, 8 of this chapter are adapted from Antman (1980b) with the
kind permission of the Mathematical Association of America.

2. The Classical Equations of Motion
In this section we derive the classical form of the equations for the large

motion of strings of various materials. A classical solution of these equa-
tions has the defining property that all its derivatives appearing in the
equations are continuous on the interiors of their domains of definition.
To effect our derivation, we accordingly impose corresponding regularity
restrictions on the geometrical and mechanical variables. Since it is well
known on both physical and mathematical grounds that solutions of these
equations need not be classical, we undertake in Secs. 3 and 4 a more pro-
found study of their derivation, which dispenses with simplified regularity
assumptions.

Kinematics of deformation. Let {i, j,k} be a fixed right-handed or-
thonormal basis for the Euclidean 3-space E

3. A configuration of a string
is defined to be a curve in E

3. A string itself is defined to be a set of ele-
ments called material points (or particles) having the geometrical property
that it can occupy curves in E

3 and having the mechanical property that
it is ‘perfectly flexible’. The definition of perfect flexibility is given below.

We refrain from requiring that the configurations of a string be simple (noninter-
secting) curves for several practical reasons: (i) Adjoining the global requirement that
configurations be simple curves to the local requirement that configurations satisfy a sys-
tem of differential equations can lead to severe analytical difficulties. (ii) If two different
parts of a string come into contact, then the nature of the resulting mechanical interac-
tion must be carefully specified. (iii) A configuration with self-intersections may serve
as a particularly convenient model for a configuration in which distinct parts of a string
are close, but fail to touch. (iv) It is possible to show that configurations corresponding
to solutions of certain problems must be simple (see, e.g., Chap. 3).

We distinguish a configuration s �→ sk, in which the string lies along an
interval in the k-direction, as the reference configuration. We identify each
material point in the string by its coordinate s in this reference configura-
tion. If the domain of definition of the reference configuration is a bounded
interval, then, without loss of generality, we scale the length variable s to lie
in the unit interval [0, 1]. If this domain is semi-infinite or doubly infinite,
then we respectively scale s to lie in [0,∞) or (−∞,∞). In our ensuing
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development of the theory, we just treat the case in which this domain is
[0, 1]; adjustments for the other two cases are straightforward. (If the string
is a closed loop, we could take a circle as its reference configuration, but
there is no need to do this because the reference configuration need not
be one that can be continuously deformed from topologically admissible
configurations; the main purpose of the reference configuration is to name
material points.)

For a string undergoing some motion, let r(s, t) denote the position
of the material point (with coordinate) s at time t. For the purpose of
studying initial-boundary-value problems, we take the domain of r to be
[0, 1] × [0,∞). The function r(·, t) defines the configuration of the string
at time t. In this section we adopt the convention that every function of
s and t, such as r, whose values are exhibited here is ipso facto assumed
to be continuous on the interior of its domain. (We critically examine this
assumption in the next two sections.) The vector rs(s, t) is tangent to the
curve r(·, t) at r(s, t). (By our convention, rs is assumed to be continuous
on (0, 1) × (0,∞).) Note that we do not parametrize the curve r(·, t) with
its arc length. The parameter s, which identifies material points, is far
more convenient on mathematical and physical grounds.

The length of the material segment (s1, s2) in the configuration at time
t is the integral

∫ s2

s1
|rs(s, t)| ds. The stretch ν(s, t) of the string at (s, t) is

(2.1) ν(s, t) := |rs(s, t)|.
(It is the local ratio at s of the deformed to reference length, i.e., it is the
limit of

∫ s2

s1
|rs(s, t)| ds/(s2 − s1) as the material segment (s1, s2) shrinks

down to the material point s.) An attribute of a ‘regular’ motion is that
this length ratio never be reduced to zero:

(2.2) ν(s, t) > 0 ∀ (s, t) ∈ [0, 1] × [0,∞).

Provided that the reference configuration is natural, which means that there
is zero contact force acting across every material point in this configuration
(see the discussion of mechanics below), the string is said to be elongated
where ν(s, t) > 1, and to be compressed where ν(s, t) < 1. (The difficulty
one encounters in compressing a real string is a consequence of an instability
due to its great flexibility.)

To be specific, we assume that the ends s = 0 and s = 1 of the string are
fixed at the points o and Lk where L is a given positive number. In the
optimistic spirit that led us to assume that r is continuous on (0, 1)×(0,∞),
we further suppose that r(·, t) is continuous on [0, 1] for all t > 0. In this
case, our prescription of r at s = 0 and at s = 1 leads to boundary
conditions expressed by the following pointwise limits:

(2.3a) lim
s↘0

r(s, t) = o, lim
s↗1

r(s, t) = Lk for t > 0,

which imply that r(·, t) is continuous up to the ends of its interval of defi-
nition. These conditions are conventionally denoted by

(2.3b) r(0, t) = o, r(1, t) = Lk.
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We assume that the string is released from configuration s �→ u(s) with
velocity field s �→ v(s) at time t = 0. If rt(s, ·) is assumed to be continuous
on [0,∞) for each s ∈ (0, 1), then these initial conditions have the pointwise
interpretations

(2.4a) lim
t↘0

r(s, t) = u(s), lim
t↘0

rt(s, t) = v(s) for s ∈ (0, 1),

which are conventionally written as

(2.4b) r(s, 0) = u(s), rt(s, 0) = v(s).

The requirement that the data given on the boundary of [0, 1] × [0,∞)
by (2.3) and (2.4) be continuous, so that rt could be continuous on its
domain, is expressed by the compatibility conditions

(2.5) u(0) = o, u(1) = Lk, v(0) = o, v(1) = o.

Mechanics. Let 0 < a < b < 1. We assume that the forces acting on (the
material of) (a, b) in configuration r(·, t) consist of a contact force n+(b, t)
exerted on (a, b) by [b, 1], a contact force −n−(a, t) exerted on (a, b) by [0, a],
and a body force exerted on (a, b) by all other agents. We assume that the
body force has the form

∫ b

a
f(s, t) ds. The contact force n+(b, t) has the

defining property that it is the same as the force exerted on (c, b) by [b, d]
for each c and d satisfying 0 < c < b < d < 1. Analogous remarks apply
to −n−. Thus n±(·, t) are defined on an interval (0, 1) of real numbers, as
indicated (and not on a collection of pairs of disjoint intervals). We shall
see that the distinction between open and closed sets in the definitions of
contact forces will evaporate (for the problems we treat; this distinction
can play a critical role when the string is in contact with another body).
The minus sign before n−(a, t) is introduced for mathematical convenience.
(It corresponds to the sign convention of structural mechanics.)

Let (ρA)(s) denote the mass density per unit length at s in the reference
configuration. This rather clumsy notation, using two symbols for one
function, is employed because it is traditional and because it suggests that
the density per unit reference length at s in a real 3-dimensional string is the
integral of the density per unit reference volume, traditionally denoted by ρ,
over the cross section at s with area A(s). It is important to note, however,
that the notion of a cross-sectional area never arises in our idealized model
of a string. We assume that ρA is everywhere positive on (0, 1) and that it
is bounded on [0, 1].

The integrand f(s, t) of the body force is the body force per unit reference
length at s, t. The most common example of the body force on a segment
is the weight of the segment, in which case f(s, t) = −(ρA)(s)ge where
g is the acceleration of gravity and e is the unit vector pointing in the
vertical direction. f(s, t) could depend on r in quite complicated ways.
For example, f could have the composite form

(2.6) f(s, t) = g
(
r(s, t), rt(s, t), s, t

)
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where g is a prescribed function, which describes the effects of the envi-
ronment. The dependence of g on the velocity rt could account for air
resistance and its dependence upon the position r could account for vari-
able gravitational attraction.

The requirement that at typical time t the resultant force on the typical
material segment (a, s) ⊂ (0, 1) equal the time derivative of the linear mo-
mentum

∫ s

a
(ρA)(ξ)rt(ξ, t) dξ of that segment yields the following integral

form of the equation of motion

(2.7)
n+(s, t) − n−(a, t) +

∫ s

a

f(ξ, t) dξ

=
d

dt

∫ s

a

(ρA)(ξ)rt(ξ, t) dξ =
∫ s

a

(ρA)(ξ)rtt(ξ, t) dξ.

This equation is to hold for all (a, s) ⊂ (0, 1) and all t > 0.
The continuity of n+ implies that n+(a, t) = lims→a n+(s, t). Since f

and rtt are continuous, we let s → a in (2.7) to obtain

(2.8) n+(a, t) = n−(a, t) ∀ a ∈ (0, 1).

Since the superscripts ± on n are thus superfluous, we drop them. We
differentiate (2.7) with respect to s to obtain the classical form of the
equations of motion:

(2.9) ns(s, t) + f(s, t) = (ρA)(s) rtt(s, t) for s ∈ (0, 1), t > 0.

Students of mechanics know that the motion of bodies is governed not
only by a linear momentum principle like (2.7), but also by an angular mo-
mentum principle. We shall shortly explain how the assumption of perfect
flexibility together with two additional assumptions ensure that the angular
momentum principle is identically satisfied. Under these conditions, (2.9)
represents the culmination of the basic mechanical principles for strings.

Constitutive equations. We describe those material properties of a string
that are relevant to mechanics by specifying how the contact force n is re-
lated to the change of shape suffered by the string in every motion r. Such
a specification, called a constitutive relation, must distinguish the material
response of a rubber band, a steel band, a cotton thread, and a filament of
chewing gum. The system consisting of (2.9) and the constitutive equation
is formally determinate: It has as many equations as unknowns.

A defining property of a string is its perfect flexibility, which is expressed
mathematically by the requirement that n(s, t) be tangent to the curve
r(·, t) at r(s, t) for each s, t:

(2.10a) rs(s, t) × n(s, t) = o ∀ s, t

or, equivalently, that there exist a scalar-valued function N such that

(2.10b) n(s, t) = N(s, t)
rs(s, t)
|rs(s, t)|

.
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(Note that (2.2) ensures that rs(s, t) �= o for each s, t.) Why (2.10) should
express perfect flexibility is not obvious from the information at hand. One
motivation for this condition could come from experiment. The best mo-
tivation for this tangency condition comes from outside our self-consistent
theory of strings, namely, from the theory of rods, which is developed in
Chaps. 4 and 8. The motion of a rod is governed by (2.9) and a companion
equation expressing the equality of the resultant torque on any segment of
the rod with the time derivative of the angular momentum for that seg-
ment. In the degenerate case that the rod offers no resistance to bending,
has no angular momentum, and is not subjected to a body couple, this sec-
ond equation reduces to (2.10a) (and the rod theory reduces to the string
theory).

The force (component) N(s, t) is the tension at (s, t). It may be of either
sign. Where N is positive it is said to be tensile and the string is said to
be under tension; where N is negative it is said to be compressive and the
string is said to be under compression. (This terminology is typical of the
inhospitability of the English language to algebraic concepts.)

From primitive experiments, we might conclude that the tension N(s, t)
at (s, t) in a rubber band depends only on the stretch ν(s, t) at (s, t) and
on the material point s. Such experiments might not suggest that this
tension depends on the rate at which the deformation is occurring, on the
past history of the deformation, or on the temperature. Thus we might
be led to assume that the string is elastic, i.e., that there is a constitutive
function (0,∞) × [0, 1] � (ν, s) �→ N̂(ν, s) ∈ R such that

(2.11) N(s, t) = N̂
(
ν(s, t), s

)
.

Note that (2.11) does not allow N(s, t) to depend upon r(s, t) through
N̂ . Were there such a dependence, then we could change the material prop-
erties of the string simply by translating it from one position to another. (In
this case, it would be impossible to use springs to measure the acceleration
of gravity at different places, as Hooke did, by measuring the elongation
produced in a given spring by the suspension of a given mass.) Similarly,
(2.11) does not allow N(s, t) to depend upon all of rs(s, t), but only on its
magnitude, the stretch ν(s, t). A dependence on rs(s, t) would mean that
we could change the material response of the string by merely changing its
orientation. Finally, (2.11) does not allow N(s, t) to depend explicitly on
absolute time t (i.e., N̂ has no slot for the argument t alone). At first sight,
this omission seems like an unwarranted restriction of generality, because
a real rubber band becomes more brittle with the passage of time. But
a careful consideration of this question suggests that the degradation of a
rubber band depends on the time elapsed since its manufacture, rather than
on the absolute time. Were the constitutive function to depend explicitly
on t, then the outcome of an experiment performed today on a material
manufactured yesterday would differ from the outcome of the same experi-
ment performed tomorrow on the same material manufactured today. This
dependence on time lapse can be generalized by allowing N(s, t) to depend
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on the past history of the deformation at (s, t). We shall soon show how
to account for this dependence. In using (2.11) one chooses to ignore such
effects. That the material response should be unaffected by rigid motions
and by time translations is called the Principle of Frame-Indifference (or
the Principle of Objectivity).

Let us sketch how the use of this principle leads to a systematic method
for reducing a constitutive equation in a general form such as

(2.12a) N(s, t) = N0
(
r(s, t), rs(s, t), s, t

)

to a very restricted form such as (2.11). (In Chaps. 8 and 12, we give
major generalizations of this procedure.) A motion differing from r by a
rigid motion has values of the form c(t) + Q(t) · r(s, t) where c is an arbi-
trary vector-valued function and where Q is an arbitrary proper-orthogonal
tensor-valued function. (A full discussion of these tensors is given in Chap.
11.) Then N0 is invariant under rigid motions and time translations if and
only if

(2.12b) N0
(
r, rs, s, t

)
= N0

(
c(t) + Q(t) · r,Q(t) · rs, s, t + a

)

for all vector-valued functions c, for all proper-orthogonal tensor-valued
functions Q, and for all real numbers a. First we take c = o, Q = I. Then
(2.12b) implies that N0 is independent of its last argument t. Next we take
Q = I and let c be arbitrary. Then (2.12b) implies that N0 is independent
of its first argument r. Finally we let Q be arbitrary. We write rs = νe
where e is a unit vector. Then (2.12b) reduces to

(2.12c) N0
(
νe, s

)
= N0

(
νQ(t) · e, s

)
.

We regard the N0 of (2.12c) as a function of the three arguments ν ∈ (0,∞),
the unit vector e, and s. But (2.12c) says that (2.12c) is unaffected by the
replacement of e with any unit vector, so that N0 must be independent of
e, i.e., (2.12a) must have the form (2.11).

There is no physical principle preventing the constitutive function from
depending in a frame-indifferent way on higher s-derivatives of r. Such a
dependence arises in certain more refined models for strings that account
for thickness changes. For example, to obtain a refined model for a rubber
band, one might wish to exploit the fact that rubber is nearly incompress-
ible, so that the volume of any piece of rubber is essentially constant.
Within a theory of strings, this constraint can be modelled by taking the
thickness to be determined by the stretch, with the consequence that higher
derivatives enter the constitutive equations and the inertia terms. (See the
discussion in Sec. 16.12.) Similar effects arise in string models for com-
pressible materials (cf. Sec. 8.9. These can be interpreted as describing an
internal surface tension, which seems to be of limited physical importance
except for problems of shock structure and phase changes where its role
can be critical. See Carr, Gurtin, & Slemrod (1984), Hagan & Slemrod
(1983)), and the references cited in item (iv) Sec. 14.16.
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Anyone who rapidly deforms a rubber band feels an appreciable increase
in temperature θ. One can also observe that the mechanical response of the
band is influenced by its temperature. To account for these effects we may
replace (2.11) with the mechanical constitutive equation for a thermoelastic
string:

(2.13) N(s, t) = N̂00
(
ν(s, t), θ(s, t), s

)
.

When this equation is used, the equation of motion must be supplemented
with the energy equation, and the new variables entering the energy equa-
tion must be related by constitutive equations.

The motion of a rubber band fixed at its ends and subject to zero body
force is seen to die down in a short time, even if the motion occurs in
a vacuum. The chief source of this decay is internal friction, which is
intimately associated with thermal effects. The simplest model for this
friction, which ignores thermal effects, is obtained by assuming that the
tension N(s, t) depends on the stretch ν(s, t), the rate of stretch νt(s, t),
and the material point s; that is, there is a function (0,∞) × R × [0, 1] �
(ν, ν̇, s) �→ N̂1(ν, ν̇, s) ∈ R such that

(2.14) N(s, t) = N̂1
(
ν(s, t), νt(s, t), s

)
.

(Note that in general νt ≡ |rs|t is not equal to |rst|. In the argument
ν̇ of N̂1, the superposed dot has no operational significance: ν̇ is just a
symbol for a real variable, in whose slot, however, the time derivative νt

appears in (2.14).) When (2.14) holds, the string may be called viscoelastic
of strain-rate type with complexity 1. (Some authors refer to such materials
as being of rate type, while others refer to them as being of differential
type, reserving rate type for an entirely different class.) It is clear that
(2.14) ensures that the material response is unaffected by rigid motions
and translations of time:

2.15. Exercise. Prove that a frame-indifferent version of the constitutive equation
N(s, t) = N̂1(rs(s, t), rst(s, t), s) must have the form (2.14).

The form of (2.14) suggests the generalization in which N(s, t) depends upon the first
k t-derivatives of ν(s, t) and on s. (Such a string is termed viscoelastic of strain-rate
type with complexity k.) This generalization is but a special case of that in which N(s, t)
depends upon the past history of ν(s, ·) and upon s. To express the constitutive equation
for such a material, we define the history νt(s, ·) of ν(s, ·) up to time t on [0, ∞) by

(2.16a) νt(s, τ) := ν(s, t − τ) for τ ≥ 0.

Then the most general constitutive equation of the class we are considering has the form

(2.16b) N(s, t) = N̂∞
(
νt(s, ·), s

)
.

The domain of N̂∞(·, s) is a class of positive-valued functions. A material described by
(2.16) (that does not degenerate to (2.11)) and that is dissipative may be called viscoelas-
tic. This term is rather imprecise; in modern continuum mechanics it is occasionally
used as the negation of elastic and is thus synonymous with inelastic.
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Note that (2.14) reduces to (2.11) where the string is in equilibrium. Similarly, if the
string with constitutive equation (2.16b) has been in equilibrium for all time before t

(or, more generally, for all such times t − τ for which ν(s, t − τ) influences N̂∞), then
(2.16b) also reduces to (2.11). Thus “the equilibrium response of all strings (in a purely
mechanical theory) is elastic.” We shall pay scant attention to constitutive equations of
the form (2.16b) more general than (2.14). There is a fairly new and challenging math-
ematical theory for such materials with nonlinear constitutive equations; see Renardy,
Hrusa, & Nohel (1987).

A string is said to be uniform if ρA is constant and if its constitutive
function N̂ , N̂1, . . . does not depend explicitly on s. A real (3-dimensional)
string fails to be uniform when its material properties vary along its length
or, more commonly, when its cross section varies along its length. If only
the latter occurs, we can denote the cross-sectional area at s by A(s). Then
(ρA)(s) reduces to ρ A(s) where ρ is the given constant mass density per
reference volume. In this case, the constitutive function N̂ might well have
the form N̂(ν, s) = A(s)N(ν), etc.

Not every choice of the constitutive functions N̂ , etc., is physically rea-
sonable: We do not expect a string to shorten when we pull on it and we
do not expect friction to speed up its motion. We can ensure that an in-
crease in tension accompany an increase in stretch for an elastic string by
assuming that ν �→ N̂(ν, s) is (strictly) increasing, i.e., N̂(ν2, s) > N̂(ν1, s)
if and only if ν2 > ν1. This condition can be expressed more symmetrically
by

(2.17a) [N̂(ν2, s) − N̂(ν1, s)][ν2 − ν1] > 0 if and only if ν2 �= ν1.

Our statement that (2.17a) is physically reasonable does not imply that
constitutive functions violating (2.17a) are unreasonable. Indeed, models
satisfying (2.17a) except for ν in a small interval have been used to describe
instabilities associated with phase transitions (see Ericksen (1975, 1977b),
James (1979, 1980), Magnus & Poston (1979), and Carr, Gurtin, & Slemrod
(1984) and the references cited in item (iv) of Sec. 14.16).

A stronger condition, which is physically reasonable but not essential
for many problems, is that ν �→ N̂(ν, s) be uniformly increasing, i.e., that
there be a positive number c such that

(2.17b) [N̂(ν2, s) − N̂(ν1, s)][ν2 − ν1] > c[ν2 − ν1]2.

If N̂(·, s) is differentiable, then (2.17b) is equivalent to

(2.17c) N̂ν ≥ c everywhere.

If N̂(·, s) is differentiable, then a condition intermediate to (2.17a) and
(2.17c) is that

(2.17d) N̂ν > 0 everywhere.

Conditions (2.17a,b) could be equivalently expressed as inequalities for difference
quotients, but such inequalities do not naturally generalize to the case (treated exten-
sively in later chapters) in which N̂ is replaced with a vector-valued function. Note that
there is not a perfect correspondence between our conditions on differences and those
on derivatives.
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One can impose hypotheses on N̂ short of differentiability that ensure that ν̂ has
properties somewhat better than mere continuity (and weaker than (2.17b): Suppose
that N̂ is continuous and further that there is a function f on [0, ∞) with x �→ f(x)/x

strictly increasing from 0 to ∞ such that

(2.17e) [N̂(ν1, s) − N̂(ν2, s)](ν1 − ν2) ≥ f(|ν1 − ν2|).

This condition strengthens (2.17a).

Since ν �→ N̂1(ν, 0, s) describes elastic response, we could require it to
satisfy (2.17a). A stronger, though reasonable, restriction on N̂1 is that:

(2.18) ν �→ N̂1(ν, ν̇, s) is strictly increasing.

Similar restrictions could be placed on other constitutive functions.

The discussion of armchair experiments in the preceding paragraph is intentionally
superficial. If we pull on a real string, we prescribe either its total length or the tensile
forces at its ends. But in pulling the string we may produce a stretch that varies from
point to point; the integral of the stretch is the total actual length. In typical experi-
ments, one measures the tensile force at the ends when the total length is prescribed,
and one measures the total length when the tensile force at the ends is prescribed. These
experimental measurements of global quantities correspond to information coming from
the solution of a boundary-value problem. It is in general a very difficult matter to
determine the constitutive function, which has a local significance and which determines
the governing equations, from a family of solutions.

For an elastic string the requirements that an infinite tensile force must
accompany an infinite stretch and that an infinite compressive force must
accompany a total compression to zero stretch are embodied in

(2.19a,b) N̂(ν, s) → ∞ as ν → ∞, N̂(ν, s) → −∞ as ν → 0.

The reference configuration is natural if the tension vanishes in it. Thus
for elastic strings this property is ensured by the constitutive restriction

(2.20) N̂(1, s) = 0.

It is easy to express assumptions corresponding to those of this paragraph
for other materials.

That (2.14) describes a material with a true internal friction, i.e., a
material for which energy is dissipated in every motion, is ensured by the
requirement that

(2.21) [N̂1(ν, ν̇, s) − N̂1(ν, 0, s)] ν̇ > 0 for ν̇ �= 0.

A proof that (2.21) ensures that (2.14) is ‘dissipative’ is given in Ex. 2.29.
A stronger restriction, which ensures that the frictional force increases with
the rate of stretch, is that

(2.22a) ν̇ �→ N̂1(ν, ν̇, s) is strictly increasing.
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Clearly, (2.22a) implies (2.21). The function N̂1(ν, ·, s) can be classified just
as in (2.17). Condition (2.22a) is mathematically far more tractable than
(2.21), but much of modern analysis requires the yet stronger condition

(2.22b) ν̇ �→ N̂1(ν, ν̇, s) is uniformly increasing.

There are a variety of mathematically useful consequences of the con-
stitutive restrictions we have imposed. In particular, hypothesis (2.19)
and the continuity of N̂ enable us to deduce from the Intermediate-Value
Theorem that for each given s ∈ [0, 1] and N ∈ R there is a ν satisfying
N̂(ν, s) = N . Hypothesis (2.17a) implies that this solution is unique. We
denote it by ν̂(N, s). Thus ν̂(·, t) is the inverse of N̂(·, t), and (2.11) is
equivalent to

(2.23) ν(s, t) = ν̂
(
N(s, t), s

)
.

If N̂ is continuously differentiable and satisfies the stronger hypothesis
(2.17d), then the classical Local Implicit-Function Theorem implies that
ν̂ is continuously differentiable because N̂ is. These results constitute a
simple example of a global implicit function theorem. We shall employ a
variety of generalizations of it throughout this book.

Let g be the inverse of x �→ f(x)/x where f is given in (2.17e). Then (2.17e)
immediately implies that

|ν̂(N1, s) − ν̂(N2, s)| ≤ g (|N1 − N2|) ,

which implies that ν̂ is continuous and gives a modulus of continuity for it.

We substitute (2.11) or (2.14) into (2.10b) and then substitute the re-
sulting expression into (2.9). We thus obtain a quasilinear system of partial
differential equations for the components of r. The full initial-boundary-
value problem for elastic strings consists of (2.3), (2.4), (2.9), (2.10b), and
(2.11). That for the viscoelastic string of strain-rate type is obtained by
replacing (2.11) with (2.14). If we use (2.16b), then in place of a partial
differential equation we obtain a partial functional-differential equation,
for which we must supplement the initial conditions (2.4) by specifying the
history of r up to time 0.

It proves mathematically convenient to recast these initial-boundary-
value problems in an entirely different form, called the weak form of the
equations by mathematicians and the Principle of Virtual Power (or the
Principle of Virtual Work) by physicists and engineers. The traditional
derivation of this formulation from (2.9) is particularly simple: We intro-
duce the class of functions y ∈ C1([0, 1] × [0,∞)) such that y(0, t) = o =
y(1, t) (for all t ≥ 0) and such that y(s, t) = o for all t sufficiently large.
These functions are termed test functions by mathematicians and virtual
velocities (or virtual displacements) by physicists and engineers. We take
the dot product of (2.9) with a test function y and integrate the resulting
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expression by parts over [0, 1] × [0,∞). Using (2.4) and the properties of
y we obtain

(2.24)
∫ ∞

0

∫ 1

0
[n(s, t) · ys(s, t) − f(s, t) · y(s, t)] ds dt

=
∫ ∞

0

∫ 1

0
(ρA)(s)[rt(s, t)−v(s)]·yt(s, t) ds dt for all test functions y.

Equation (2.24) expresses a version of the Principle of Virtual Power for
any material. We can substitute our constitutive equations into it to get a
version of this principle suitable for specific materials.

Under the smoothness assumptions in force in this section, we have
shown that (2.7) and (2.4) imply (2.24). An equally simple procedure
(relying on the Fundamental Lemma of the Calculus of Variations) shows
that the converse is true.
2.25. Exercise. Derive (2.24) from (2.9) and (2.4) and then derive (2.9) and (2.4)
from (2.24). The Fundamental Lemma of the Calculus of Variations states that if f is
integrable on a measurable set E of R

n and if
∫

E fg dv = 0 for all continuous g, then
f = 0 (a.e.). Here dv is the differential volume of R

n.

Equation (2.9) is immediately integrated to yield (2.7) with n+ = n− =
n. Then the integral form (2.7), the classical form (2.9), and the weak
form (2.24) of the equations of motion are equivalent under our smooth-
ness assumptions. In Sec. 4 we critically reexamine this equivalence in the
absence of such smoothness.
2.26. Exercise. When undergoing a steady whirling motion about the k-axis, a string
lies in a plane rotating about k with constant angular velocity ω and does not move
relative to the rotating plane. Let f(s, t) = g(s)k, where g is prescribed. Let (2.3)
hold. Find a boundary-value problem for a system of ordinary differential equations,
independent of t, governing the steady whirling motion of an elastic string under these
conditions. Show that the steady whirling of a viscoelastic string described by (2.14)
is governed by the same boundary-value problem. How is this result influenced by the
frame-indifference of (2.14)? (Suppose that N were to depend on rs and rst.)

2.27. Exercise. For an elastic string, let W (ν, s) :=
∫ ν
1 N̂(ν̄, s) dν̄. Suppose that f has

the form f(s, t) = g(r(s, t), s) where g(·, s) is the Fréchet derivative (gradient) of the
scalar-valued function −ω(·, s), i.e., g(r, s) = −ωr(r, s), where ω is prescribed. (Thus f

is conservative.) W is the stored-energy or strain-energy function for the elastic string
and ω is the potential-energy density function for the body force f . Show that the
integration by parts of the dot product of (2.9) with rt over [0, 1] × [0, τ) and the use of
(2.3) and (2.4) yield the conservation of energy:

(2.28)
∫ 1

0

[
W

(
ν(s, τ), s

)
+ ω

(
r(s, τ), s

)
+ 1

2 (ρA)(s)|rt(s, τ)|2
]

ds

=
∫ 1

0

[
W

(
|us(s)|, s

)
+ ω

(
u(s), s

)
+ 1

2 (ρA)(s)|v(s)|2
]

ds.

(This process parallels that by which (2.24) is obtained from (2.9) and (2.4).) Show
that (2.28) can be obtained directly from (2.24) and (2.3) by choosing y(s, t) in (2.24)
to equal rt(s, t)χ(t, τ, ε) where

χ(t, τ, ε) :=






1 for 0 ≤ t ≤ τ,

1 + (τ − t)/ε for τ ≤ t ≤ τ + ε,

0 for τ + ε ≤ t,
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and then taking the limit of the resulting version of (2.24) as ε → 0. See Sec. 10 for
further material on energy.

2.29. Exercise. Let (2.14) hold and set N̂(ν, s) = N̂1(ν, 0, s). Define W as in Ex. 2.27.
Let f have the conservative form shown in Ex. 2.26. Define the total energy of the
string at time τ to be the left-hand side of (2.28). Form the dot product of (2.9) with
rt, integrate the resulting expression with respect to s over [0, 1], and use (2.3) to obtain
an expression for the time derivative of the total energy at time t. This formula gives a
precise meaning to the remarks surrounding (2.21).

2.30. Exercise. Formulate the boundary conditions in which the end s = 1 is con-
strained to move along a frictionless continuously differentiable curve in space. Let this
curve be given parametrically by a �→ r̄(a). (Locate the end at time t with the parameter
a(t).) A mechanical boundary condition is also needed.

2.31. Exercise. Formulate a suitable Principle of Virtual Power for the initial-
boundary-value problem of this section modified by the replacement of the boundary
condition at s = 1 with that of Ex. 2.30. The mechanical boundary condition at s = 1
should be incorporated into the principle.

The first effective steps toward correctly formulated equations for the vibrating string
were made by Taylor (1713) and Joh. Bernoulli (1729). D’Alembert (1743) derived the
first explicit partial differential equation for the small motion of a heavy string. The
correct equations for the large vibrations of a string in a plane, equivalent to the planar
version of (2.9), (2.10b), were derived by Euler (1751) in 1744 by taking the limit of
the equations of motion for a finite collection of beads joined by massless elastic springs
as the number of beads approaches infinity while their total mass remains fixed. The
correct linear equation for the small planar transverse motion of an elastic string, which
is just the wave equation, was obtained and beautifully analyzed by d’Alembert (1747).
Euler (1752) stated ‘Newton’s equations of motion’ and in his notebooks used them to
derive the planar equations of motion for a string in a manner like the one just presented.
A clear exposition of this derivation together with a proof that n+ = n− was given by
Euler (1771). Lagrange (1762) used the bead model to derive the spatial equations of
motion for an elastic string. The Principle of Virtual Power in the form commonly
used today was laid down by Lagrange (1788). A critical historical appraisal of these
pioneering researches is given by Truesdell (1960), upon whose work this paragraph is
based.

We note that the quasilinear system (2.9), (2.10b), (2.11) arising from the concep-
tually simple field of classical continuum mechanics is generally much harder to analyze
than semilinear equations of the form utt − uss = f(u, us), which arise in conceptually
difficult fields of modern physics.

3. The Linear Impulse-Momentum Law
The partial differential equations for the longitudinal motion of an elas-

tic string are the same as those for the longitudinal motion of a naturally
straight elastic rod (for which compressive states are observed). It has long
been known that solutions of these equations can exhibit shocks, i.e., dis-
continuities in rs or rt. (See the discussion and references in Chap. 18.)
Shocks can also arise in strings with constitutive equations of the form
(2.16b) (see Renardy, Hrusa, & Nohel (1987)). On the other hand, An-
drews (1980), Andrews & Ball (1982), Antman & Seidman (1996), Dafer-
mos (1969), Greenberg, MacCamy, & Mizel (1968), Kanel’ (1969), and
MacCamy (1970), among many others, have shown that the longitudi-
nal motions of nonlinearly viscoelastic strings (or rods) for special cases
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of (2.14) satisfying a uniform version of (2.22) do not exhibit shocks. The
burden of these remarks is that the smoothness assumptions made in Sec. 2
are completely unwarranted for nonlinearly elastic strings and for certain
kinds of nonlinearly viscoelastic strings.

It is clear that the integral form (2.7) of the equations of motion makes
sense under smoothness assumptions weaker than those used to derive (2.9).
In this section we study natural generalizations of (2.3), (2.4), (2.7), and
(2.8) under such weaker assumptions. In the next section we demonstrate
the equivalence of these generalizations with a precisely formulated version
of the Principle of Virtual Power.

We formally integrate (2.7) with respect to t over [0, τ ] and take account
of (2.4) to obtain the Linear Impulse-Momentum Law:

(3.1)

∫ τ

0

[

n+(s, t)−n−(a, t)
]

dt +
∫ τ

0

∫ s

a

f(ξ, t) dξ dt

=
∫ s

a

(ρA)(ξ)[rt(ξ, τ) − v(ξ)] dξ,

which is to hold for (almost) all a, s, τ . The left-hand side of (3.1) is
the linear impulse of the force system {n±,f} and the right-hand side is
the change in linear momentum for the material segment (a, s) over the
time interval (0, τ). We regard (3.1) as the natural generalization of the
equations of motion (2.7).

We now state virtually the weakest possible conditions on the functions
entering (3.1) for its integrals to make sense as Lebesgue integrals and
for our boundary and initial conditions to have consistent generalizations.
These generalizations are the highlights of the ensuing development, the
details of which can be omitted by the reader unfamiliar with real analysis.

We assume that there are numbers σ− and σ+ such that

(3.2) 0 < σ− ≤ (ρA)(s) ≤ σ+ < ∞ ∀ s ∈ [0, 1].

We assume that rs and rt are locally integrable on [0, 1] × [0, ∞), that r satisfies the
boundary conditions (2.3) in the sense of trace (see Adams (1975), Nečas (1967)), i.e.,
that

(3.3) lim
s↘0

∫ t2

t1

r(s, t) dt = o, lim
s↗1

∫ t2

t1

[r(s, t) − Lk] dt = o ∀ (t1, t2) ⊂ [0, ∞),

that u is integrable on [0, 1], that the first initial condition of (2.4) is assumed in the
sense of trace:

(3.4) lim
t↘0

∫ b

a
(ρA)(s)[r(s, t) − u(s)] ds = o ∀ [a, b] ⊂ [0, 1],

and that v is integrable on [0, 1]. Conditions (3.3) and (3.4) are consistent with the
local integrability of rs and rt (see Adams (1975), Nečas (1967)). We do not prescribe
a generalization of the second initial condition of (2.4) because we shall show that it is
inherent in (3.1), as the presence there of v suggests. We finally assume that n± and f

are locally integrable on [0, 1] × [0, ∞).
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Since we are merely assuming that our variables are integrable over compact subsets
of [0, 1]× [0, ∞), we must show that the single integrals in (3.1) make sense: By Fubini’s
Theorem, the local integrability of n+ implies that for each τ ∈ (0, ∞) there is a set
A+(τ) ⊂ [0, 1] with Lebesgue measure |A+(τ)| = 1 such that n+(s, ·) is integrable
over [0, τ ] for s ∈ A+(τ). Moreover, the Lebesgue Differentiation Theorem implies
that there is a subset A+

0 (τ) of A+(τ) with |A+
0 (τ)| = 1 such that for s ∈ A+

0 (τ), the
integral

∫ τ
0 n+(s, t) dt has the ‘right’ value in the sense that it is the limit of its averages

over intervals centered at s. The corresponding statements obtained by replacing the
superscript ‘+’ by ‘−’ are likewise true. Let A(τ) := A+

0 (τ) ∩ A−
0 (τ). (Thus |A(τ)| = 1

for each τ .) Let B be the set of t ≥ 0 for which (ρA)(·)rt(·, t) is integrable over [0, 1] and
for which

∫ 1
0 (ρA)(s)rt(s, t) ds has the ‘right’ value. (Fubini’s Theorem and Lebesgue’s

Differentiation Theorem imply that |B ∩ [0, T ]| = T for all T ≥ 0.) Thus each term in
(3.1) is well-defined for each τ ∈ B and for each a and s in A(τ) with a ≤ s. Hence (3.1)
holds a.e.

We now derive some important consequences from (3.1). Since Fubini’s Theorem
allows us to interchange the order of integration in the double integral, we can represent
the the first integral on the left-hand side of (3.1) as an integral over (a, s) of an integrable
function of ξ for τ ∈ B. Thus for each τ ∈ B, the function s �→

∫ τ
0 n+(s, t) dt is absolutely

continuous, not merely on A(τ), but on all of [0, 1]. Consequently,

(3.5)
∫ τ

0
n+(a, t) dt = lim

s→a

∫ τ

0
n+(s, t) dt ∀ τ ∈ B.

Then (3.1) implies that

(3.6)
∫ τ

0
n+(a, t) dt =

∫ τ

0
n−(a, t) dt ∀ τ ∈ B.

Thus the superscripts ‘+’ and ‘−’ are superfluous even in this more general setting and
will accordingly be dropped.

The properties of the Lebesgue integral imply that if a, s ∈ A(T ), then a, s ∈ A(τ)
for all τ ∈ [0, T ]. Let us fix T > 0. Let a, s ∈ A(T ). Since left-hand side of (3.1) is an
integral over (0, τ) of an integrable function of t, the right-hand side of (3.1) defines an
absolutely continuous function of τ for a, s ∈ A(T ). Thus

(3.7) lim
τ↘0

∫ s

a
(ρA)(ξ)[rt(ξ, τ) − v(ξ)] dξ = o ∀ a, s ∈ A(T ).

This generalization of the second initial condition of (2.4), which has the same form as
(3.4), is thus implicit in (3.1).

It is important to note that the generalizations (3.3), (3.4), (3.7) of the boundary and
initial conditions (2.3) and (3.3) represent averages of the classical pointwise conditions.
As such, the limiting processes they embody correspond precisely to the way they could
be tested experimentally.

Our basic smoothness assumption underlying the development of this section is the
local integrability of rs, rt, and n. Since n is to be given as a constitutive function of
the stretch and possibly other kinematic variables, the local integrability of n imposes
restrictions on the class of suitable constitutive functions.

In the modern study of shocks, physically realistic solutions r are sought in larger
classes of functions, such as functions of bounded variation, which need not have locally
integrable derivatives. Thus there is a need for mathematically sound and physically re-
alistic generalizations of the development of this and the next section. (See the refernces
cited at the end of Sec. 12.9.)

3.8. Exercise. Repeat Ex. 2.26, but now obtain the same equations for the steady
whirling of the string directly from (3.1) and (3.6). This derivation can easily be per-
formed with complete mathematical rigor.
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4. The Equivalence of the
Linear Impulse-Momentum Law

with the Principle of Virtual Power

In this section we prove that the Linear Impulse-Momentum Law for-
mulated in Sec. 3 is equivalent to a generalized version of the Principle of
Virtual Power stated in (2.24). Our proof is completely rigorous and tech-
nically simple. Although we couch our presentation in the language of real
analysis to ensure complete precision, all the steps have straightforward
interpretations in terms of elementary calculus.

The demonstration of equivalence given at the end of Sec. 2, which is
universally propounded by mathematicians and physicists alike, pivots on
the classical form (2.9) of the equations of motion. But this form is devoid
of meaning in the very instances when the Linear Impulse-Momentum Law
and the Principle of Virtual Power are essential, i.e., when there need not
be classical solutions. In our approach given below, Eq. (2.9) never appears.

Since (2.9) never appears, it is therefore never exposed to abuse. The
most dangerous sort of abuse would consist in multiplying (2.9) by a
positive-valued function depending on the unknowns appearing in (2.9),
thereby converting (2.9) to an equivalent classical form. But its corre-
sponding weak form, obtained by the procedure leading to (2.24), would
not be equivalent to (2.24), because the integration by parts would pro-
duce additional terms caused by the presence of the multiplicative factor.
Consequently, the corresponding jump conditions at discontinuities (see
Sec. 5) would have forms we deem wrong because they are incompatible
with the jump conditions coming from the generalization of (2.24). This
generalization is deemed correct because, as we shall show, it is equivalent
to the Linear Impulse-Momentum Law, which we regard as a fundamental
principle of mechanics.

Note that the Principle of Virtual Power as stated in (2.24) makes sense
when the smoothness restrictions imposed on r and n in Sec. 2 are replaced
by the much weaker conditions of Sec. 3. The resulting form of (2.24) can
be further extended to apply to all test functions y that have essentially
bounded generalized derivatives, that vanish for large t, and that vanish in
the sense of trace on the boundaries s = 0 and s = 1. (These functions
form a subspace of the Sobolev space W 1

∞([0, 1]× [0,∞)).) The smoothness
assumptions on the variables entering these formulations are the weakest
that allow all the integrals to make sense as Lebesgue integrals. We refer to
the resulting version of (2.24) as the generalized Principle of Virtual Power.

We now derive this principle from the Linear Impulse-Momentum Law
under the assumptions of Sec. 3. Let φ be a polygonal (piecewise affine)
function of s with support in (a, b) ⊂ [0, 1] and let ψ be a polygonal function
of t with support in [0, τ). (The support of a function is the closure of the
set on which it is not zero.) Note that the support of ψ is contained in a
half-closed interval. Let e be a fixed but arbitrary constant unit vector.
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Then (3.1) implies that

(4.1)
∫ τ

0

∫ b

a

φs(s)ψt(t)
{∫ t

0
e · [n(s, t̄ ) − n(a, t̄ )] dt̄

+
∫ t

0

∫ s

a

e · f(s̄, t̄ ) ds̄ dt̄

}

ds dt

=
∫ τ

0

∫ b

a

φs(s)ψt(t)
∫ s

a

(ρA)(s̄)e · [rt(s̄, t) − v(s̄)] ds̄ ds dt.

Since ψ and φ are absolutely continuous, we can integrate the triple integral
on the left-hand side of (4.1) by parts with respect to t, we can integrate
the quadruple integral on the left-hand side of (4.1) by parts with respect
to t and s, and we can integrate the right-hand side of (4.1) by parts with
respect to s. Since ψ(τ) = 0, φ(a) = 0 = φ(b), we thereby convert (4.1) to

(4.2)
∫ τ

0

∫ b

a

φs(s)ψ(t)e · n(s, t) ds dt −
∫ τ

0

∫ b

a

φ(s)ψ(t)e · f(s, t) ds dt

=
∫ τ

0

∫ b

a

φ(s)ψt(t)e · (ρA)(s)[rt(s, t) − v(s)] ds dt.

Let us set

(4.3) y(s, t) = φ(s)ψ(t)e.

Since this y has support in (a, b) × [0, τ), we can write (4.2) in the form
(2.24) for all y’s of the form (4.3). More generally, (2.24) holds for all y’s
in the space that is the completion in the norm of W 1

∞([0, 1] × [0,∞)) of
finite linear combinations of functions of the form (4.3). (Some properties
of this space are discussed by Antman & Osborn (1979).)

Equation (2.24) for this large class of y’s expresses the generalized Prin-
ciple of Virtual Power or the Weak Form of (2.9), (2.3), and (2.4). We
henceforth omit the adjective generalized. (If we allow n and f to be
smoother, we can allow the y’s to be rougher.) The Weak Form of the
Initial-Boundary Value Problem for elastic strings is obtained by inserting
(2.10b) and (2.11) into (2.24) and appending (3.3) and (3.4). Analogous
definitions hold for other materials.

Without making unwarranted smoothness assumptions, we have thus
shown that the Linear Impulse-Momentum Law implies the Principle of
Virtual Power. Conversely, we can likewise recover (3.1) (without the su-
perscripts ‘±’) from (2.24) by taking ε to be a small positive number, taking
y to have the form (4.3) (which reduces (2.24) to (2.42)), taking φ and ψ
to have the forms

(4.4a) φ(s̄) =






0 for 0 ≤ s̄ ≤ a,
s̄−a

ε for a ≤ s̄ ≤ a + ε,

1 for a + ε ≤ s̄ ≤ s − ε,
s−s̄

ε for s − ε ≤ s̄ ≤ s,

0 for s ≤ s̄ ≤ 1,
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(4.4b) ψ(t) =






1 for 0 ≤ t ≤ τ,

1 − t−τ
ε for τ ≤ t ≤ τ + ε,

0 for τ + ε ≤ t,

and then letting ε → 0. (The functions of (4.4) should be sketched. If H is
the Heaviside function, then φ is a Lipschitz continuous approximation to
s̄ �→ H(s̄− a)−H(s̄− s) and ψ is a Lipschitz continuous approximation to
t �→ 1−H(t− τ).) In this process, we must evaluate the typical expression

(4.5) lim
ε→0

∫ τ+ε

0

1
ε

∫ a+ε

a

n(s, t) · eψ(t) ds dt,

which Fubini’s Theorem and (4.4b) allow us to rewrite as

(4.6) lim
ε→0

1
ε

∫ a+ε

a

∫ τ+ε

0
n(s, t) · e dt ds

− lim
ε→0

{

ε

[
1
ε2

∫ a+ε

a

∫ τ+ε

τ

n(s, t) · e
t − τ

ε
dt ds

]}

.

The Lebesgue Differentiation Theorem implies that the first term in (4.6)
is

(4.7)
∫ τ

0
n(a, t) · e dt

for almost all a in (0, 1) and that the supremum of the absolute value of the
bracketed expression in the second term of (4.6) is finite for almost all a in
(0, 1) and τ in (0,∞). (Note that |(t − τ)/ε| ≤ 1 for t ∈ [τ, τ + ε].) Thus
(4.5) equals (4.7). The other terms are treated similarly. The arbitrariness
of e allows it to be cancelled in the final expression. Thus (2.24) implies
(3.1) and these two principles are equivalent.

The Principle of Virtual Power can be used to exclude certain naive
solutions of differential equations as unphysical. We illustrate this property
with a differential equation simpler than that for a string. Consider the
boundary-value problem

(4.8) u′′(s) + π2u(s) = 0 on (−1, 1), u(±1) = 0.

The continuous function u∗ defined by u∗(s) = | sin πs| is in W 1
1 (−1, 1),

satisfies the boundary conditions, and satisfies the differential equation
everywhere except at 0. Other than its failure to be a classical solution of
the boundary-value problem, there is nothing intrinsically wrong with u∗

from a purely mathematical standpoint. Now suppose that (4.8) is regarded
as a symbolic representation for the weak problem
(4.9)
∫ 1

−1
[u′v′ − π2uv] ds = 0 ∀ v ∈ C1[−1, 1] with v(±1) = 0, u(±1) = 0,
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solutions of which are sought in W 1
1 (−1, 1). We presume that (4.9) embod-

ies a Principle of Virtual Power, representing a description of the underly-
ing physics more fundamental than that given by (4.8). It is easy to show
that u∗ does not satisfy (4.9) and can therefore be excluded as unrealistic.
(Just substitute u∗ into (4.9) and integrate the resulting system by parts on
[−1, 0] and [0, 1] obtaining v(0) = 0. Since there are v’s that do not vanish
at the origin, u∗ is not a solution of (4.9).) Indeed, by using methods like
those of (4.4)–(4.6) or of Sec. 6, we can show that every (weak) solution of
(4.9) is a classical solution of (4.8). In the next section we show how the
Principle of Virtual Power enables us to classify precisely those kinds of
jumps that are compatible with it.

In much of modern mathematical literature, the classical form of an equation is
regarded as merely an abbreviation for the weak form. Since weak formulations of
equivalent classical formulations need not be equivalent, this convention should be used
with care. The weak form is also sometimes termed the variational form, an expression
we never employ because it connotes far more generality than the notion of variational
structure introduced in Sec. 10.

If there are concentrated or impulsive forces applied to the string, then f would not
be locally integrable, and the development of these last two sections would not be valid.
Distribution theory, which was designed to handle linear equations with such forces, has
recently been extended to handle nonlinear equations (see Colombeau (1990), Rosinger
(1987)). But it is not evident how to obtain (3.6) in such a more general setting. In
Sec. 6 we comment further on this question for a degenerately simple static problem.

5. Jump Conditions
We now show how the Principle of Virtual Power yields jump conditions

that weak solutions must satisfy at their discontinuities.

(γ1 ,γ2 )

0 1
s

t

G G

C

1
2

Figure 5.1. The neighborhood of a curve of discontinuity.

Let C ∈ [0, 1]× [0,∞) be (the image of) a simple curve. We assume that
C is so smooth that it possesses a unit normal (γ1, γ2) at almost every point.
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(It suffices for C to be uniformly Lipschitz-continuous, i.e., that there be
a finite number of open sets covering C such that in each such set E there
is a coordinate system with respect to which C ∩ E can be described as
the graph of a Lipschitz continuous function.) Suppose that there are two
disjoint, simply-connected open sets G1 and G2 such that ∅ �= ∂G1∩∂G2 ⊂ C
(see Fig. 5.1), that (2.9) holds in the classical sense in G1 and in G2, and
suppose that there are integrable functions n1,n2, r1

t , r2
t on C such that

(5.2) n → nα, rt → rα
t (in the sense of trace)

as Gα � (s, t) → C, α = 1, 2.

Set

(5.3) [[n]] := n2 − n1, [[rt]] := r2
t − r1

t on C.

[[n]] is called the jump in n across C.
If y is taken to have support in G1 ∪ G2 ∪ C, then (2.24) reduces to

(5.4)
∫

G1∪G2

[n · ys − f · y − ρA(rt − v) · yt] ds dt = 0

for all such y’s. We separately integrate (5.4) by parts over G1 and G2
(by means of the divergence theorem), noting that (2.9) is satisfied in each
region and that y vanishes on ∂G1 \ C and on ∂G2 \ C. We obtain

(5.5)
∫

C
y · {[[n]]γ1 − ρA[[rt]]γ2} dλ = 0

for all such y’s. Here dλ is the differential arc length along C. Since y is
arbitrary on C, Eq. (5.5) implies that

(5.6) [[n]]γ1 − ρA[[rt]]γ2 = o a.e. on C.

These are the Rankine-Hugoniot jump conditions for (2.24). A curve in
the (s, t)-plane across which there are jumps in n or rt is called a shock
(path). A solution suffering such a jump is said to have (or be) a shock.
Suppose that the shock path has the equation s = σ(t). Then σ′(t) is the
shock speed at (σ(t), t). Equation (5.6) thus has the form

(5.7) [[n]] + ρAσ′[[rt]] = o.

The foregoing analysis leading to (5.6) is formal to the extent that so-
lutions are presumed classical except on isolated curves. For further in-
formation on jump conditions and shocks, see Chap. 18 and the references
cited there.
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6. The Existence of a Straight Equilibrium State
When none of the variables appearing in the Linear Impulse-Momentum

Law depends on the time, it reduces to the static form of (2.7), (2.8):

(6.1) n(s) − n(a) +
∫ s

a

f(ξ) dξ = o

for (almost) all a and s in [0, 1]. If f is Lebesgue-integrable, then (6.1)
implies that n is absolutely continuous and has a derivative almost every-
where. Thus the classical equilibrium equation

(6.2) n′(s) + f(s) = o

holds a.e. When (2.3a) holds, the Principle of Virtual Power (2.24) reduces
to

(6.3)
∫ 1

0
[n(s) · y′(s) − f(s) · y(s)] ds = 0

for all sufficiently smooth y that vanish at 0 and 1.
Note that in equilibrium the constitutive equation (2.14) reduces to that

for an elastic string, namely (2.11). (Indeed, if the string has been in
equilibrium for its entire past history, then the general constitutive equation
(2.16b) itself reduces to (2.11). This observation must be interpreted with
care, because a string described by (2.16b) can creep under the action of
an equilibrated system of forces not varying with time.) We accordingly
limit our attention to elastic strings, described by (2.10b) and (2.11):

(6.4) n(s) = N̂
(
ν(s), s

)r′(s)
ν(s)

.

We assume that N̂ is continuously differentiable, although much can be
done with N̂ ’s that are merely continuous. (See the remarks surrounding
(2.17e).)

For integrable f we now study the boundary-value problem of finding a
function r, whose (distributional) derivative r′ is integrable, that satisfies
the system (6.1), (6.4), (2.3), which we record as

N̂
(
|r′(ξ)|, ξ

) r′(ξ)
|r′(ξ)|

∣
∣
∣
∣

s

a

+
∫ s

a

f(ξ) dξ = o,(6.5)

r(0) = o, r(1) = Lk.(6.6)

(Conditions (6.6) interpreted as (2.3a) make sense because r is the indef-
inite integral of the integrable function r′ and is accordingly absolutely
continuous.)

In Chap. 3 we shall study a rich collection of problems for (6.5) and
(6.6) in which f depends on r. Here we content ourselves with the study
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of straight equilibrium configurations s �→ r(s) = z(s)k, in which z is an
absolutely continuous, increasing function, when f has the special form

(6.7) f(s) = g(s)k.

In keeping with the local integrability of f assumed in Secs. 3 and 4, we
take g to be Lebesgue-integrable. The requirement that z′(s) > 0 for all s
ensures (2.2). Under these conditions, the problem (6.5), (6.6) reduces to
finding z and a constant K such that

N̂(z′(s), s) = G(s) + K ∀ s ∈ [0, 1], G(s) := −
∫ s

0
g(ξ) dξ,(6.8)

z(0) = 0, z(1) = L.(6.9a,b)

In view of the equivalence of (2.11) with (2.23), Eq.(6.8) is equivalent to

(6.10) z′(s) = ν̂
(
G(s) + K, s

)
.

The properties of ν̂ ensure that z′(s) > 0 for all s. We integrate (6.10)
subject to (6.9a) to obtain

(6.11) z(s) =
∫ s

0
ν̂
(
G(ξ) + K, ξ

)
dξ.

The boundary-value problem (6.8), (6.9) has this z as a solution provided
K can be chosen so that (6.11) satisfies (6.9b), i.e., so that

(6.12) Φ(K) :=
∫ 1

0
ν̂
(
G(ξ) + K, ξ

)
dξ = L.

Note that since G is the indefinite integral of the integrable function g, it
is absolutely continuous. It follows that the function Φ(·), just like ν̂(·, s),
strictly increases from 0 to ∞ as its argument increases from −∞ to ∞.
Since L > 0, we can reproduce the argument justifying the existence of ν̂ to
deduce that (6.12) has a unique solution K (depending on G and L). The
solution of (6.8), (6.9) is then obtained by substituting this K into (6.11).

Since G and ν̂ are continuous, (6.11) implies that the solution z is con-
tinuously differentiable and its derivative is given by (6.10). Let us now
suppose that g is continuous. Then G is continuously differentiable. Since
ν̂ is continuously differentiable, (6.10) implies that the solution z is twice
continuously differentiable. Since (6.10) is equivalent to (6.8), we can ac-
cordingly differentiate (6.8) to show that z is a classical solution of the
ordinary differential equation

(6.13) d
dsN̂

(
z′(s), s

)
+ g(s) = 0.

(The regularity theory of this paragraph is called a bootstrap argument.)
We summarize our results:
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6.14. Theorem. Let N̂ be continuously differentiable on (0,∞) × [0, 1],
N̂ν(ν, s) > 0 for all ν and s, N̂(ν, s) → ∞ as ν → ∞, and N̂(ν, s) → −∞
as ν → 0. Let g be Lebesgue-integrable. Then (6.8), (6.9) has a unique
solution z, which is continuously differentiable and satisfies z′(s) > 0 for
all s. If g is continuous, then z is twice continuously differentiable and
satisfies (6.13).

Note that (6.10) implies that the stretch z′ is constant if the material is
uniform, i.e., if N̂s = 0, and if G is constant, i.e., if g = 0.

Equation (6.8) and its equivalent, (6.10), make sense if G is merely integrable. In
this case, g is defined as the distributional derivative of −G. Our analysis goes through
with the solution z continuous by (6.11). The only trouble with such a solution lies in
its mechanical interpretation: Our proof in Sec. 3 that n+ = n− is no longer applicable.
Much of the difficulty with this question evaporates if the distribution g were to equal
an integrable function a.e. In particular, if G were a Heaviside (i.e., a step) function,
then g would be a Dirac delta, and our problem, which would be solvable, would also
make mechanical sense.

Note that the unique solution of (6.8), (6.9) may well represent a compressed straight
state. This certainly occurs if g = 0 and L < 1. Such a solution should certainly be
unstable under any reasonable physical criterion. (It is unique only among all straight
equilibrium states.) This solution is nevertheless worthy of study because its equations
are exactly those for the straight equilibrium state of a naturally straight rod, whose
bending stiffness allows it to sustain a certain amount of compression without losing
stability. A knowledge of the properties of the straight states of a straight rod is necessary
for the study of its buckling from that state.

Note that (6.5) and (6.6) may admit straight folded solutions in which z is not
increasing. These can have a very complicated structure (see Reeken (1984a) and the
treatments of Chaps. 3 and 6). These solutions are not accounted for by Theorem 6.14.

7. Purely Transverse Motions
The ad hoc assumption that the motion of each material point is confined to a plane

perpendicular to the line joining the ends of the string, frequently used in textbook
derivations of the equations of motion of strings and discussed in Sec. 1, motivates our
study in this section of conditions under which such special motions can occur.

J. B. Keller (1959) and B. Fleishman (1959) independently observed that if an elastic
string has a constitutive equation of the form

(7.1) N̂(ν, s) = (EA)(s)ν

where EA is a given positive-valued function, then the equations of motion (2.9), (2.10b),
and (2.11) reduce to the special form

(7.2) [(EA)(s)rs(s, t)]s + f(s, t) = (ρA)(s)rtt(s, t).

(The ungainly symbol EA is used because it roughly conforms to traditional engineering
notation. See the discussion of the notation ρA in Sec. 2.) If f does not depend on r
through a relation such as (2.6), then (7.2) is a system of three uncoupled nonhomoge-
neous wave equations. In particular, if f satisfies

(7.3) k · f(s, t) = −G′(s)

and if the initial data satisfy

(7.4) k · u = z, k · v = 0
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where z is the unique solution of (6.8) and (6.9), then the initial-boundary-value problem
consisting of (7.2), (2.3), and (2.4) has a unique solution with k · r = z. (The existence
and uniqueness of such a solution, under mild conditions on the data, follows from the
theory of partial differential equations.) This solution describes a purely transverse
motion.

Of course, (7.1) satisfies neither (2.19b) nor (2.20). Keller noted, however, that (7.1)
could closely approximate the behavior of certain rubber strings when ν is large. This
observation does not imply that the motion of a string satisfying a constitutive equation
close to (7.1) is close to the motion given by (7.2), because a small nonlinear coupling
can shift energy from one mode to another, as is well known in rigid-body mechanics.
In particular, even if (7.3) and (7.4) hold, a string with a constitutive equation close to
(7.1) could undergo motions with a significant longitudinal component.

We now address the converse problem of determining what restrictions are imposed
on the constitutive functions by the assumption that the string must execute a nontrivial
purely transverse motion with

(7.5a,b) r(s, t) · k = z(s), (r · i)2 + (r · j)2 
= 0

for every f satisfying (7.3) and for all initial conditions satisfying (7.4) when z satisfies
(6.8) and (6.9) and when ν lies in a certain interval (ν−, ν+) in (0, ∞) with ν− ≤ min z′.
The substitution of (7.5a) and (2.10b) into the k-component of (2.9) yields

(7.6)
[
N̂

(
ν(s, t), s

) z′(s)
ν(s, t)

]

s

− G′(s) = 0,

so that

(7.7) Ω
(
ν(s, t), s

)
:=

N̂
(
ν(s, t), s

)
z′(s)

ν(s, t)
− G(s) = Ω

(
ν(0, t), 0

)
.

The theory of initial-value problems for quasilinear partial differential equations,
applied to the full system of governing equations, says that in a small neighborhood of
the initial time, solutions depend continuously on smooth initial data. Thus smooth
initial data satisfy (7.7) for t = 0. For any fixed s we can prescribe the initial data
ν(s, 0) and ν(0, 0) arbitrarily in (ν−, ν+). Thus from (7.7) at t = 0 we conclude that Ω

is a constant function. This constancy of Ω ensures that N̂(·, s), restricted to (ν−, ν+),
has the form (7.1). We summarize this argument, a modified version of that of J. B.
Keller (1959):

7.8. Theorem. Let (7.3) and (7.4) hold. If every solution of (2.9), (2.10b), (2.11),
(2.3), (2.4) for which ν− < ν < ν+ is purely transverse, i.e., satisfies (7.5), then N̂(·, s)
restricted to (ν−, ν+) has the form (7.1).

7.9. Problem. Let (7.3) and (7.4) hold. Suppose that Ω is independent of s and
that the initial-boundary-value problem admits a nontrivial purely transverse motion
satisfying (7.5). What restrictions are thereby imposed on N̂?

The following exercise, proposed by J. M. Greenberg, also indicates the role played
by linear, or more generally, affine constitutive relations.

7.10. Exercise. Consider the free motion of a uniform, nonlinearly elastic string of
doubly infinite length. Thus f = o, N̂s = 0, s ∈ (−∞, ∞). A solution r of the governing
equations is called a travelling wave iff it has the form

(7.11) r(s, t) = p(s − ct)

where c is a real number. Show that if there is no nonempty open interval of (0, ∞) on
which N̂ is affine, then the travelling waves in a string have very special and uninteresting
forms. Determine those forms. (In Sec. 9.3 we shall see that the equations for rods have
a very rich collection of travelling waves.)
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8. Perturbation Methods and
the Linear Wave Equation

In Sec. 6 we proved the existence of a unique straight equilibrium con-
figuration zk for an elastic string when f = g(s)k. In this section we
study the motion of an elastic string near this equilibrium state by formal
perturbation methods. We first outline their application to the initial-
boundary-value problem (2.9), (2.10b), (2.11), (2.3), (2.4) and then give
a detailed treatment of time-periodic solutions. We discuss the validity of
the perturbation methods in the next section.

We begin by studying the initial-boundary-value problem when the data
are close to those yielding the straight equilibrium state: Let ε represent a
small real parameter and let the data have the form

(8.1) u(s) = z(s)k+εu1(s), v(s) = εv1(s), f(s, t) = g(s)k+εf1(s, t)

where z is the solution of the equilibrium problem given in Sec. 6. For
well-behaved solutions, the inital data should satisfy the compatibility con-
ditions u1(0) = o = v1(0), u1(1) = o = v1(1). We suppose that N̂(·, s) is
(p + 1)-times continuously differentiable. We seek formal solutions of the
initial-boundary-value problem whose dependence on the parameter ε is
specified by a representation of the form

(8.2) r(s, t, ε) = z(s)k +
p∑

k=1

εk

k!
rk(s, t) + o(εp).

Since (8.2) implies that

(8.3) rk(s, t) =
∂kr(s, t, ε)

∂εk

∣
∣
∣
∣
ε=0

, k = 1, . . . , p,

we can find the problem formally satisfied by rk by substituting r(s, t, ε)
into the equations of the nonlinear problem, differentiating the resulting
equations k times with respect to ε, and then setting ε = 0. We find that
the equation for rk is linear and involves r1, . . . , rk−1; thus the equations
for r1, . . . , rp can be solved successively.

To compute these equations directly in vectorial form, we define

(8.4) n̂(q, s) := N̂(|q|, s)q|q|−1.

Thus (2.9), (2.10b), (2.11) has the form

(8.5) n̂(rs, s)s + f = ρArtt.

We use the definition of Gâteaux derivative given after (1.4.5) to obtain

(8.6) n̂q(q, s) · c = N̂ν(|q|, s)q q · c

|q|2 +
N̂(|q|, s)

|q|

[

c − q q · c

|q|2
]

.
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(To differentiate |q| with respect to q, we write it as
√

q · q so that
∂
√

q · q/∂q = q/
√

q · q.) Thus we find that

(8.7) ∂εn̂(rs(s, t, ε), s)|ε=0 = n̂q(z′(s)k, s) · ∂sr1(s, t).

Note that n̂q is symmetric.
Differentiating (8.5) once with respect to ε and using (8.6) and (8.7) we

reduce the equation for r1 to

(8.8a) (L · r1)(s, t) = f1(s, t)

where the vector-valued partial differential operator L is defined by

(8.8b) (L · r)(s, t) := (ρA)(s)rtt(s, t)

− ∂

∂s

{
N0(s)
z′(s)

[rs(s, t) · i i + rs(s, t) · j j] + N0
ν (s)rs(s, t) · k k

}

with

(8.9) N0(s) := N̂(z′(s), s), N0
ν (s) := N̂ν(z′(s), s).

We use an analogous notation for higher derivatives. Note that the com-
ponents of (8.8) in the i-, j-, and k-directions uncouple into three scalar
wave equations.

r1 must satisfy the boundary conditions

(8.10) r1(0, t) = o, r1(1, t) = o

and the initial conditions

(8.11) r1(s, 0) = u1(s), ∂tr1(s, 0) = v1(s).

The component r1 · k satisfies the following wave equation obtained by
dotting (8.8) with k:

(8.12) (ρA)(s)wtt(s, t) − [N0
ν (s)ws(s, t)]s = f1(s, t) · k.

We can simplify the equations for the other two components of (8.8) by
introducing the change of variable

(8.13) ζ = z(s) or, equivalently, s = s̃(ζ)

where s̃ is the inverse of z, which exists by virtue of the positivity of z′.
We set

(8.14) r̃1(ζ, t) := r1(s̃(ζ), t), ρ̃A(ζ) :=
(ρA)(s̃(ζ))
z′(s̃(ζ))

.
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Then r̃1 · i and r̃1 · j satisfy

(8.15) ρ̃A(ζ)utt(ζ, t) − [N0(s̃(ζ))uζ(ζ, t)]ζ = h(ζ, t)

where h(ζ, t) respectively equals f1(s̃(ζ), t) · i and f1(s̃(ζ), t) · j. Note that
(6.8) and (8.9) imply that

(8.16) N0(s̃(ζ)) = K + G(s̃(ζ))

where K satisfies (6.12). ρ̃A is the mass per unit length in the configuration
zk. The change of variables (8.13) and (8.14) is tantamount to taking the
stretched equilibrium configuration zk as the reference configuration.

Equation (8.12) describes the small longitudinal motion of a string (or of
a rod) about its straight stretched equilibrium state. The nonuniformity of
the string and the presence of G cause the coefficients of (8.12) to depend
on s. Condition (2.17d) ensures that N0

ν is positive and that (8.12) is
consequently hyperbolic.

Equation (8.15) describes the small transverse vibrations of the string.
If G = 0 and if the string is uniform, then ρ̃A is constant. N0(s̃(ζ)) is the
tension at s̃(ζ) in the configuration zk. If G = 0, Eq. (8.16) implies that
this tension is constant whether or not the string is uniform. Under the
hypotheses (2.17a) and (2.20), Eq. (6.13) implies that for G = 0 this con-
stant tension is positive if and only if L > 1. Where this tension (constant
or not) is positive, (8.15) is hyperbolic, and where the tension is negative,
(8.15) is elliptic. In the latter case, expected physical instabilities are re-
flected by the ill-posedness of initial-boundary-value problems for (8.15).
Analogous statements apply to the full nonlinear system. By endowing
the string with resistance to bending and twisting (i.e., by replacing the
string theory with a rod theory), we remove this ill-posedness at the cost
of enlarging the system. See Chaps. 4 and 8.

8.17. Exercise. Find the linearized equations (satisfied by r1) for the motion of a
viscoelastic string satisfying (2.14). Classify the equations as to type.

8.18. Exercise. Suppose that L > 1 and that v = o and f = o. Find equations for r1,
r2, r3 for the perturbation solution for (2.9), (2.10b), (2.11), (2.3), (2.4). If u1 · k = 0,
how do these equations illuminate the role of purely transverse motions discussed in
Sec. 7?

We now turn to the more interesting problem of determining the properties of free
time-periodic motions of an elastic string near the straight equilibrium state. We seek
motions satisfying (8.5) with f(s, t) = g(s)k, satisfying (2.3), and having an as yet
undetermined period 2π/

√
λ with λ > 0 so that

(8.19) r(s, t + 2π/
√

λ) = r(s, t).

Let us set t̄ =
√

λt, r̄(s, t̄) = r(s, t̄/
√

λ), introduce these variables into the governing
equations, and then omit the superposed bars. In this case, (8.5) is modified by having
λ precede ρA. Equation (8.19) reduces to

(8.20) r(s, t + 2π) = r(s, t).
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Note that a small parameter ε is not supplied in this problem. For the moment, we may
think of it as an amplitude characterizing the departure of time-periodic solutions from
the trivial straight equilibrium state.

The following exercise shows that we cannot attack this problem of periodic solutions
by blindly following the approach used for the initial-boundary-value problem.

8.21. Exercise. Substitute (8.2) into the problem for time-periodic solutions. Find the
frequencies λ for which the problem for r1 has solutions of period 2π in time. Show that
if the corrections r2 and r3 have the same frequencies, then N̂ is subjected to unduly
severe restrictions.

We circumvent this difficulty by allowing λ also to depend on ε. The dependence of
frequency on the amplitude thereby permitted is a typical physically important mani-
festation of nonlinearity. We accordingly supplement (8.2) with

(8.22) λ(ε) = ω2 +
p∑

k=1

εk

k!
λk + o(εp+1).

Equations (8.2) and (8.22) give a parametric representation (i.e., a curve) for the configu-
ration and the frequency in a neighborhood of the trivial state. We obtain the equations
satisfied by rk and λk−1 by substituting (8.2) and (8.22) into the governing equations,
differentiating them k times with respect to ε, and then setting ε = 0. We find that rk

satisfies the boundary conditions and periodicity conditions

(8.23a,b) rk(0, t) = o = rk(1, t), rk(s, t + 2π) = rk(s, t).

r1 satisfies

(8.24) L(ω2) · r1 = o

where L(λ) is defined by (8.8b) with ρA replaced with λρA. We assume that system
(8.24) is hyperbolic, i.e., we assume that N0 is everywhere positive. We can solve (8.23),
(8.24) for r1 by separation of variables. We find that nontrivial solutions r1 have the
form

(8.25a,b) r1(s, t) =

{
ul(s)[alm cos mt + blm sin mt] when ω2 = σ2

l /m2,

wl(s)[αlm cos mt + βlm sin mt]k when ω2 = τ2
l /m2,

l = 0, 1, 2, . . . , m = 1, 2, . . . ,

where the {alm} and the {blm} are arbitrary vectors in span{i, j}, where the {σ2
l } are

the eigenvalues and {ul} are the corresponding eigenfunctions of the Sturm-Liouville
problem

(8.26)
d

ds

[
N0(s)u′

z′(s)

]
+ σ2(ρA)(s)u = 0, u(0) = 0 = u(1),

where the {αlm} and the {βlm} are arbitrary real numbers, and where the {τ2
l } are the

eigenvalues and the {wl} are the corresponding eigenfunctions of the Sturm-Liouville
problem

(8.27)
d

ds

[
N0

ν (s)w′] + τ2(ρA)(s)w = 0, w(0) = 0 = w(1).

We normalize {ul} by the requirement that

(8.28)
∫ 1

0
(ρA)(s)ul(s)un(s) ds = δln :=

{
1 if l = n,

0 if l 
= n,
, u′

l(0) > 0
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and adopt the same conditions for {wl}. δln is the Kronecker delta. The positivity
everywhere of N0 and z′ ensures that 0 < σ2

0 < σ2
1 < · · · and that σ2

l → ∞ as
l → ∞ by the Sturm-Liouville theory (see Coddington & Levinson (1955) or Ince (1926),
e.g.). The positivity everywhere of N0

ν ensures that {τ2
l } has the same properties.

The representations of (8.25a,b) respectively correspond to transverse and longitudinal
motions. Since (8.23) with k = 1 and (8.24) are invariant under translations of time
and under rotations about the k-axis, we could without loss of generality impose two
restrictions the four components of alm and blm appearing in (8.25a).

Note that for fixed ω2 = σ2
l /m2, there are as many different solutions of the form

(8.25) as there are distinct pairs (j, p) of integers, j = 1, 2, . . . , p = 0, 1, 2, . . . , satisfying

(8.29a,b)
σ2

l

m2
=

σ2
j

p2
or

σ2
l

m2
=

τ2
j

p2
.

(Note that the special condition that N̂(·, s) be linear, discussed in Sec. 7, ensures that
σ2

l = τ2
l for all l.) If N0/z′ and ρA are constant, then there are infinitely many pairs

(j, p) satisfying (8.29a).
Suppose that ω2 = σ2

l /m2 and that there are no pairs of integers (j, p) such that
(8.29b) holds. In this case we find that r1 · k = 0. Then the perturbation procedure
yields

(8.30) L(σ2
l /m2) · r2 = 2λ1ρA∂ttr1 + ∂s

{[
N0 − z′N0

ν

(z′)2

]
∂sr1 · ∂sr1

}
k.

Before blindly lurching toward a solution of (8.30), it is useful to take a preliminary
step that can greatly simplify the analysis: We take the dot product of (8.30) with r1 of
(8.25) and then integrate the resulting expression by parts twice over [0, 1]×[0, 2π]. Since
r1 satisfies the homogeneous equation and since r1 has no k-component, the resulting
equation reduces to

(8.31) λ1 = 0.

Thus the equations for the i- and j-components of r2 are exactly the same as those for
these components of r1. It follows that the contribution of these terms of r2 to (8.2)
has exactly the same form as the corresponding components of r1, but with a coefficient
of ε2/2 in place of ε. We accordingly absorb r2 into r1 by taking

(8.32) r2 · i = 0 = r2 · j,

In Sec. 5.6 we describe a more systematic way to get relations like (8.32).
In view of (8.31) and (8.32), problem (8.30) reduces to a nonhomogeneous linear

equation for r2 · k:

(8.33)
σ2

l

m2
ρA∂ttr2 · k − ∂s[N0

ν ∂sr2 · k]

= 1
2∂s

[
N0 − z′N0

ν

(z′)2
(u′

l)
2
]

[
|alm|2 + |blm|2 +

(
|alm|2 − |blm|2

)
cos 2mt

+alm · blm sin 2mt] .

Since we know that the homogeneous problem for (8.33) has only the trivial solution, we
can seek a solution in the form f(s) + g(s) cos 2mt + h(s) sin 2mt and obtain boundary-
value problems for f , g, and h like (8.27). The solutions of these boundary-value prob-
lems can be represented in terms of a Green function associated with the operator of
(8.27) or alternatively by an expansion in terms of the eigenfunctions associated with
(8.27). We can also represent the solution of (8.33) directly as an eigenfunction expan-
sion with respect to the basis

(8.34) {(s, t) �→ 1
π

wq(s) cos nt, 1
π

wq(s) sin nt, q = 0, 1, . . . , n = 1, 2, . . . }.
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We find the Fourier coefficients of k · r2 by multiplying (8.33) by a member of (8.34)
and integrating the resulting equation by parts over [0, 1]× [0, 2π]. (See Stakgold (1998),
e.g.) We get

(8.35a) k · r2(s, t)

=
m2

2π

∞∑

q=0

µlqwq(s)
[
(|alm|2 − |blm|2) cos 2mt + (alm · blm) sin 2mt

]
,

(8.35b)
( 1

4 τ2
q − σ2

l

)
µlq :=

∫ 1

0
∂s

{
N0(s) − z′(s)N0

ν (s)
z′(s)2

u′
l(s)

2
}

wl(s) ds

when (8.25a) holds and when τ2
q 
= 4σ2

l for each q. The properties of {τ2
q } developed in

Sturm-Liouville theory ensure that (8.35a) converges. Equation (8.35) shows that the
first correction to the purely transverse linear motion is a longitudinal motion.

Using (8.25), (8.31), and (8.32) we find that

(8.36) L(σ2
l /m2) · r3

= 3λ2ρA∂ttr1 + 3∂s

{
(N0 − z′N0

ν )
[∂sr1 · ∂sr1 + (k · ∂sr2)z′]∂sr1

(z′)3

}
.

We treat this equation just like (8.30): We dot it with r1 and integrate the resulting
equation by parts over [0, 1] × [0, 2π] to get

(8.37) m2π(|alm|2 + |blm|2)λ2

=
∫ 1

0

∫ 2π

0
∂s

{
(N0 − z′N0

ν )
[∂sr1 · ∂sr1 + (k · ∂sr2)z′]∂sr1

(z′)3

}
· ∂sr1 dt ds.

In view of (8.22) the sign of this expression for λ2 gives the important physical infor-
mation of whether the frequency λ increases or decreases with the amplitude ε of the
motion. Note how λ2 depends crucially on the behavior of the constitutive function N̂ .
The procedures we have used in this analysis are quite general.

8.38. Exercise. Obtain an explicit representation for λ2 when the material is uniform,
so that N̂s = 0 and z′ and ρA are constant.

A computation analogous to that leading to (8.37) can be carried out for the purely
longitudinal motion. But the results are purely formal because it can be shown that
no purely longitudinal periodic motion is possible (see Keller & Ting (1966) and Lax
(1964)). The solutions must exhibit shocks. For the transverse motions (which have a
longitudinal component as we have seen), periodic solutions are possible. (The energy
could be shifted about and avoid being concentrated. We give a transparent example of
such a phenomenon in Sec. 14.15.) This possibility of shocks makes it hard to justify
the method and to interpret the results. The formal results clearly say something im-
portant about the nonlinear system, but it is difficult to give a mathematically precise
and physically illuminating explanation of exactly what is being said. In other words,
it is not clear what the linear wave equations say about solutions of the nonlinear equa-
tions. By introducing a strong dissipative mechanism, corresponding to (2.14) subject
to (2.22b), it is likely that we could prevent our equations from having shocks. But
this dissipation would prevent periodic solutions unless we introduced periodic forcing.
The resulting perturbation scheme would be more complicated, but there is some hope
that the approach could be justified. It is physically attractive but notoriously difficult
to study the undamped system by taking the limit as the dissipation goes to zero. We
comment on related questions at the end of Sec. 11.

Carrier (1945, 1949) used such perturbation methods to study periodic planar vibra-
tions of an elastic string for which N̂(·, s) is taken to be affine, although this restriction
is inessential. The work of this section is largely based on Keller & Ting (1966) and
J. B. Keller (1968). For other applications of this formalism, see Millman & Keller
(1969) and Iooss & Joseph (1990).
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9. The Justification of Perturbation Methods
In this section we give precise conditions justifying perturbation methods

for static problems. The fundamental mathematical tool for our analysis is
the Implicit-Function Theorem in different manifestations. References on
the justification of perturbation methods for dynamical problems are given
at the end of this section. Our basic result is

9.1. Theorem. Let z be as in Sec. 6. Let p be a positive integer. If
N̂ is continuous, if N̂(·, s) ∈ Cp+1(0,∞), if N̂ν(z′(s), s) ≡ N0

ν (s) > 0 and
N̂(z′(s), s) ≡ N0(s) > 0 for each s, if g ∈ C0[0, 1], and if f1 ∈ C0[0, 1], then
there is a number η > 0 such that for |ε| < η the boundary-value problem

d

ds

[

N̂
(
|r′(s)|, s

) r′(s)
|r′(s)|

]

+ g(s)k + εf1(s) = o,(9.2)

r(0) = o, r(1) = Lk(9.3a,b)

has a unique solution r(·, ε) with r(·, ε)∈C2[0, 1] and r(s, ·)∈Cp+1(−η, η).
(Thus r(s, ε) admits an expansion like (8.2).)

Proof. From (6.5) with a = 0 and from (8.4) we get

(9.4) n̂
(
r′(s), s

)
− n̂

(
r′(0), 0

)
− G(s)k + ε

∫ s

0
f1(ξ) dξ = o,

which can be obtained from the integration of (9.2). From (8.6) we obtain

(9.5) c · n̂q(z′(s)k, s) · c = N0
ν (s)(k · c)2 +

N0(s)
z′(s)

[
c · c − (k · c)2

]
.

Thus n̂q(z′(s)k, s) is positive-definite and therefore nonsingular. The clas-
sical Implicit-Function Theorem thus implies that for q near z′(s)k, the
function q �→ n̂(q, s) has an inverse, which we denote by n �→ m(n, s). We
use it to solve (9.4) for r′(s). We integrate the resulting equation from 0
to s subject to (9.3a) to obtain

(9.6) r(s) =
∫ s

0
m

(

n̂(r′(0), 0) + G(ξ)k − ε

∫ ξ

0
f1(σ) dσ, ξ

)

dξ.

The requirement that (9.6) satisfy (9.3b) yields

(9.7) l(r′(0), ε)

:=
∫ 1

0
m

(

n̂(r′(0), 0) + G(ξ)k − ε

∫ ξ

0
f1(σ) dσ, ξ

)

dξ = Lk.

If there is a unique solution r′(0) = p(ε) of this equation, then its substi-
tution for r′(0) in (9.6) yields the solution r(·, ε) of (9.2), (9.3). We now
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verify that (9.7) meets the hypotheses of the classical Implicit-Function
Theorem: First of all, we must show that

(9.8) l(z′(0)k, 0) = Lk.

But this is equivalent to (6.12) because (8.4) and (6.8) imply that

(9.9a)
n̂ (z′(0)k, 0) + G(ξ)k = [N(z′(0), 0) + G(ξ)]k = [K + G(ξ)]k

= N̂(z′(ξ), ξ)k = n̂ (z′(ξ)k, ξ) .

Next, (9.7) implies that

(9.9b) lp(p, 0) =
∫ 1

0
mn

(
n̂(p, 0) + G(ξ)k, ξ

)
· n̂q(p, 0) dξ.

From (9.9a) we find that

(9.10) mn

(
n̂(z′(0)k, 0) + G(ξ)k, ξ

)
= mn

(
N̂(z′(ξ), ξ)k, ξ

)
,

so that (9.10) is the inverse of the symmetric positive-definite tensor
n̂q(z′(ξ)k, ξ). It follows that (9.10) is positive-definite. Since the prod-
uct of two symmetric positive-definite tensors is positive-definite (though
not necessarily symmetric), we find that

(9.11) lp(z′(0)k, 0) is nonsingular.

Conditions (9.8) and (9.11) are the requisite hypotheses for the classical
Implicit-Function Theorem, which says that there is a number η > 0
such that (9.7) has a unique solution p(ε) for |ε| < η and that p(·) ∈
Cp+1(−η, η). It then follows from (9.5) that r(s, ·) itself is in this space.
The regularity of r(·, ε) can be read off from (9.6). (It is correspondingly
enhanced for increased smoothness of g and f1.) �

Note that this theorem is purely local in the sense that it gives information about so-
lutions of the nonlinear problem (9.2), (9.3) only in a neighborhood of a known solution.
In contrast, the elementary analysis of Sec. 6 is global. In Chap. 3 we shall give global
analyses of equilibrium states of strings under several more interesting force systems.

In this proof we have avoided the use of determinants. They are not suitable for
proving (9.11) because lp(z′(0)k, 0) is an integral. If an integrand is a positive-definite
tensor everywhere, then its integral is likewise, but if an integrand is merely nonsingular
everywhere, then its integral need not be nonsingular.

9.12. Exercise. Prove the last assertion about nonsingular tensors.

The proof of Theorem 9.1 relied on the special nature of (9.2). If f1, say, were to
depend upon r, then (9.5) would be an integral equation for r and would require a subtler
analysis. Procedures for such analyses have been systematized, the most comprehensive
methods employing an abstract version of the local Implicit-Function Theorem 20.1.27
in Banach Space, which is applied in several places in this book. Here we present
a related concrete approach, the Poincaré shooting method, applicable to systems of
ordinary differential equations (more complicated than (9.2)).
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Proof of Theorem 9.1 by the Poincaré shooting method.We seek a vector a such
that (9.2) subject to the initial conditions

(9.13) r(0) = o, r′(0) = a

has a solution satisfying (9.3b). To apply the basic theory of ordinary differential equa-
tions to this problem, it is convenient to write (9.2) as a first-order system in which the
derivatives of the unknowns are expressed as functions of the unknowns. This reduction
can be effected in two ways: For r′ close enough to z′k, we can use the tools developed
in the above proof of Theorem 9.1 to write (9.2), (9.3) as

(9.14) n′ = −g(s)k − εf1(s), r′ = m(n, s), r(0) = o, n(0) = b := n̂(a, 0).

Alternatively, we could carry out the differentiation in (9.2). For r′ close enough to z′k,
we can solve (9.2) for r′′, obtaining an equation of the form r′′ = h(r′, s, ε). We set
v = r′ and thereby convert this second-order system to the equivalent first-order system

(9.15) v′ = h(v, s, ε), r′ = v.

To be specific, we limit our attention to (9.14). Since the results of Sec. 6 imply that it
has a unique solution r = zk, n = n̂(z′(·)k, ·)) for ε = 0 and b = n̂(z′(0)k, 0)), the basic
theory of ordinary differential equations (see Coddington & Levinson (1955, Chaps. 1,2)
or Hale (1969, Chap. 1), e.g.) implies that (9.14) has a unique solution r(·, b, ε) defined
on the whole interval [0, 1] if ε and b are close enough to 0 and n̂(z′(0)k, 0)). Moreover,
r(s, ·, ·) is (p + 1)-times continuously differentiable. r(·, b, ε) would correspond to a
solution of (9.2), (9.3) for small nonzero ε if b can be chosen so that

(9.16) r(1, b, ε) = Lk.

We know that this system for b has the solution b0 := n̂(z′(0)k, 0)) for ε = 0. The
Implicit-Function Theorem then implies that there is a number η > 0 such that (9.16)
has a unique solution (−η, η) � ε �→ b̂(ε) with b̂ ∈ Cp+1(−η, η) and with b̂(0) = b0
provided that

(9.17) det R(1) 
= 0, R(s) :=
∂r

∂b
(s, b0, 0).

The theory of ordinary differential equations implies that the matrix R satisfies the
initial-value problem obtained by formally differentiating (9.14) with respect to b and
then setting (b, ε) = (b0, 0). This process yields

(9.18) n′
b = O, r′

b = mn
(
n̂(z′(s)k, s)

)
· nb, , nb(0) = I, rb(0) = O,

whence we obtain

(9.19) R′ = mn
(
n̂(z′(s)k, s)

)
, R(0) = O.

We obtain R(1) by integrating (9.19). It is positive-definite because (9.10) is. �
9.20. Problem. Investigate the validity of the perturbation process when N0 is not
everywhere positive.

Chap. 20 contains proofs of a general version of the Implicit-Function Theorem, of the
basic existence and uniqueness theorem for initial-value problems for ordinary differential
equations in Ex. (20.1.22), and of the Poincaré Shooting Method. These proofs are each
based upon the Contraction Mapping Principle. Thus both methods discussed above
are intimately connected. Methods for justifying perturbation methods for dynamical
problems have so far required that the equations have a strong dissipative mechanism.
See Koch & Antman (2001), Potier-Ferry (1981,1982), Xu & Marsden (1996).
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10. Variational Characterization of
the Equations for an Elastic String

If f : R → R is continuous, then the equation

(10.1) f(x) = 0

is equivalent to

(10.2) φ′(x) = 0

where

(10.3) φ(x) =
∫ x

0
f(ξ) dξ.

Thus we might be able to study the existence of solutions of (10.1) by
showing that φ has an extremum (a maximum or a minimum) on R. If φ
is merely continuous, we can still study the minimization of φ, although
the corresponding problem (10.1) for f need not be meaningful. (The
present situation in 3-dimensional nonlinear elastostatics has precisely this
character: Under certain conditions the total energy is known to have a
minimizer, but it is not known whether the equilibrium equations, which
correspond to the vanishing of the Gâteaux derivative of the energy, have
solutions. See Chap. 13.)

If f : R
n → R

n is continuous, then the system

(10.4) f(x) = o

may not be equivalent to the vanishing of a gradient

(10.5) ∂φ(x)/∂x = o

because there may not be a scalar-valued function φ such that ∂φ/∂x = f.
If f ∈ C1(Rn), then a necessary and sufficient condition for the existence
of such a φ is that:

(10.6) ∂f/∂x is symmetric.

In this case, φ is defined by the line integral

(10.7) φ(x) :=
∫

C
f(y) · dy

where C is a sufficiently smooth curve joining a fixed point to x. (For a
proof, see Sec. 12.3.) We could then study (10.4) by studying extrema of
φ.

In this section we show how the equations of motion for an elastic string
can be characterized as the vanishing of the Gâteaux differential of a scalar-
valued function of the configuration. For this purpose, we must first extend
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the notion of directional derivative of a real-valued function defined on some
part of R

n to a real-valued function defined on a set of functions, which
are to be candidates for solutions of the governing equations.

Let E1 and E2 be normed spaces (e.g., spaces of continuous functions;
see Chap. 19) and let A ⊂ E1. Let f [ · ] : E1 → E2. (When the argument
of a function lies in a function space, we often enclose this argument with
brackets instead of parentheses. Examples of such f ’s are forthcoming.) If

(10.8) d
dεf [u + εy]|ε=0

exists for u ∈ A, y ∈ E1, and ε ∈ R \ {0}, then it is called the Gâteaux
differential, directional derivative, or first variation of of f at u in the
direction y. If (10.8) exists for all y in E1 (for which it is necessary that u
be an interior point of A) and if it is a bounded linear operator acting on y
(i.e., if (10.8) is linear in y and if the E2-norm of (10.8) is less than a constant
times the E1-norm of y), then f is said to be Gâteaux-differentiable at u.
In this case, (10.8) is denoted by fu[u] · y, and fu[u] is called the Gâteaux
derivative of f at u. (This terminology is not completely standardized. See
Văınberg (1964) for a comprehensive treatment of the interrelationship of
various kinds of differentiations.) If E2 = R, then f is called a functional.

We ask whether the (weak form of the) governing equations for a string
can be characterized by the vanishing of the Gâteaux differential of some
suitable functional. We show that this can be done for elastic strings under
conservative forces. We study the formulation of the equations for time-
periodic motions of such strings; the formulation of initial-boundary-value
problems by variational methods proves to be somewhat unnatural.

The kinetic energy of the string at time t is

(10.9) K[r](t) := 1
2

∫ 1

0
(ρA)(s)|rt(s, t)|2 ds.

The stored-energy (or strain-energy) (density) function for an elastic string
is the function W defined by

(10.10) W (ν, s) :=
∫ ν

1
N̂(β, s) dβ.

The (total) stored energy in the string at time t is

(10.11) Ψ [r](t) :=
∫ 1

0
W

(
ν(s, t), s

)
ds.

Suppose that f has the form

(10.12) f(s, t) = g(r(s, t), s)

and that there is a scalar-valued function ω, called the potential-energy
density of g, such that

(10.13) g(r, s) = −∂ω(r, s)/∂r
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(see the remarks following (10.5)). Thus g is conservative. The potential
energy of the body force g at time t is

(10.14) Ω[r](t) :=
∫ 1

0
ω
(
r(s, t), s

)
ds.

The potential-energy functional for the string is Ψ + Ω.
Let E consist of all continuously differentiable vector-valued functions

[0, 1] × R � (s, t) �→ y(s, t) that satisfy

(10.15) y(0, t) = o = y(1, t), y(s, ·) has period T .

The norm on E can be taken to be

(10.16) ‖ y‖ := max{|y(s, t)|+ |ys(s, t)|+ |yt(s, t)| : (s, t) ∈ [0, 1]× [0, T ]}.

We introduce the Lagrangian functional Λ by

(10.17) Λ[r] :=
∫ T

0
{K[r](t) − Ψ [r](t) − Ω[r](t)} dt.

We study this functional on the class of admissible motions

(10.18) A := {r : r(s, t) = y(s, t) + Lsk, y ∈ E , |rs(s, t)| > 0}.

For r ∈ A and y ∈ E , we obtain from (10.9)–(10.14) that

(10.19)

Λr[r] · y =
d

dε

∫ T

0

∫ 1

0

[ 1
2 (ρA)(s)|rt(s, t) + εyt(s, t)|2

− W
(
|rs(s, t) + εys(s, t)|, s

)

− ω
(
r(s, t) + εy(s, t), s

)]
ds dt

∣
∣
∣
∣
ε=0

=
∫ T

0

∫ 1

0

[

(ρA)(s)rt(s, t) · yt(s, t)

− N̂
(
|rs(s, t)|, s

)rs(s, t) · ys(s, t)
|rs(s, t)|

+ g
(
r(s, t), s

)
· y(s, t)

]

ds dt.

The mild difference between the vanishing of (10.19) and the Principle of
Virtual Power (2.24), embodied in the presence of v in (2.24), reflects the
fact that (2.24) accounts for initial conditions, whereas (10.19) accounts
for periodicity conditions. Hamilton’s Principle for elastic strings under
conservative forces states that (the weak form of) the governing equations
can be characterized by the vanishing of the Gâteaux differential of the
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Lagrangian functional Λ. Any system of equations that can be character-
ized by the vanishing of the Gâteaux differential of a functional is said to
have a variational structure; the equations are called the Euler-Lagrange
equations for that functional.

Hamilton’s principle does not require that variables entering it be periodic in time.
In fact, in the mechanics of particles and rigid bodies, the configuration is typically
required to satisfy boundary conditions at an initial and terminal time. Such conditions
are artificial; they are devised so as to yield the governing equations as Euler-Lagrange
equations. On the other hand, periodicity conditions define an important class of prob-
lems.

In continuum mechanics, Hamilton’s principle is applicable only to frictionless sys-
tems acted on solely by conservative forces. A criterion telling whether a system of
equations admits a natural variational structure is given by Văınberg (1964) and is ex-
ploited by Tonti (1969). (Its derivation is just the generalization to function spaces of
that for (10.6).) There is also a theory, akin to the theory of holonomicity in classical
mechanics, that tells when a system can be transformed into one having a variational
principle. The use of such a theory for quasilinear partial differential equations is very
dangerous because the requisite transformations may change the weak form of the equa-
tions. For physical systems, the altered form may not be physically correct because it
does not conform to the Principle of Virtual Power and accordingly does not deliver the
correct jump conditions.

For Hamilton’s Principle to be useful, it must deliver something more than an al-
ternative derivation of the governing equations with theological overtones. One way for
it to be useful would be for it to promote the proof of existence theorems for solutions
characterized as extremizers of Λ. Serious technical difficulties have so far prevented
this application to the equations of motion of nonlinear elasticity. Hamilton’s Principle,
however, has recently proved to be very effective in supporting the demonstration of the
existence of multiple periodic solutions of systems of ordinary differential equations (see
Ekeland (1990), Mawhin & Willem (1989), Rabinowitz et al. (1987), e.g.). The spe-
cialization of Hamilton’s Principle to static problems, called the Principle of Minimum
Potential Energy, is very useful for existence theorems and for the interpretation of the
stability of equilibrium states, as we shall see in Chaps. 7 and 13. Moreover, Hamiltonian
structure has been effectively exploited to derive stability theorems for certain elastic
systems (see Simo, Posbergh, & Marsden (1991), e.g.).

11. Discretization

In this section we briefly survey some numerical methods for solving partial differen-
tial equations like those for the string. This text is not directly concerned with numerical
methods; we examine these questions here because they are intimately related to the
Principle of Virtual Power. (They can also be used to produce constructive existence
theorems for certain problems.)

We describe a simple method that leads to the formal approximation of the partial
differential equations for an elastic string by a system of ordinary differential equa-
tions. This procedure, associated with the names of Bubnov, Galerkin, Faedo, and
Kantorovich, is sometimes called the method of lines. A special case of it is the semi-
discrete finite-element method.

Let {s �→ φk(s), k = 1, 2, . . . } be a given set of functions in W 1
p (0, 1) with the

properties that φk(0) = 0 = φk(1) and that given an arbitrary function in W 1
p (0, 1) and

an error, there exists a finite linear combination of the φk that approximate the given
function to within the assigned error in the W 1

p -norm. (The set {s �→ sin kπs} has these
properties. Another such set is defined in (11.9).) We seek to approximate solutions of
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the initial-boundary-value problem for elastic strings of Sec. 2 by functions rK of the
form

(11.1) rK(s, t) = Lsk +
K∑

k=1

φk(s)rk(t)

where the functions rk are to be determined. We approximate the given initial position
u(s) and initial velocity v(s) by

(11.2a,b) uK(s) = Lsk +
K∑

k=1

φk(s)uk, vK(s) =
K∑

k=1

φk(s)vk

where the constant vectors {uk, vk} are given. In the Principle of Virtual Power (2.24),
(2.10b), (2.11) for elastic strings let us replace r and v with rK and vK and let us
choose

(11.3) y(s, t) = φl(s)yl(t)

where yl is an arbitrary absolutely continuous function that vanishes for large t. (There
is no need for yl to be indexed with l. No summation is intended on the right-hand side
of (11.3).) Then this principle reduces to the following weak formulation of the system
of ordinary differential equations for {rk}:

(11.4)
∫ ∞

0

∫ 1

0
n̂

(

Lk +
K∑

k=1

φ′
k(s)rk(t), s

)

· yl(t)φ′
l(s) ds dt −

∫ ∞

0
fl · yl dt

=
K∑

k=1

〈φk, φl〉
∫ ∞

0

(
drk

dt
− vk

)
· dyl

dt
dt

for all absolutely continuous yl, l = 1, . . . , K, where

(11.5) fl(t) :=
∫ 1

0
f(s, t)φl(s) ds, 〈φk, φl〉 :=

∫ 1

0
ρAφkφl ds.

In consonance with (2.4) we require that {rk} satisfy the initial conditions

(11.6a,b) rk(0) = uk,
drk

dt
(0) = vk,

the second of which is incorporated into (11.4) as we shall see.

11.7. Exercise. Suppose that (11.4) has a continuously differentiable (or more gen-
erally an absolutely continuous) solution {r1, . . . , rK}. Take yl(t) = ψ(t)e where ψ
is defined in (4.4b) and and where e is an arbitrary constant vector. Use the method
described at the end of Sec. 4 to prove that

∑K
k=1〈φk, φl〉( drk

dt
− vk) is continuously

differentiable (whichever smoothness hypothesis is made about the solution) and ac-
cordingly satisfies (11.6b). Show that the solution of (11.4) is thus a classical solution
of the system

(11.8)
K∑

k=1

〈φk, φl〉
d2rk

dt2
+

∫ 1

0
n̂

(

Lk +
K∑

k=1

φ′
l(s)rk(t), s

)

φ′
k(s) ds − fl = o.

If we make the very reasonable assumption that the Gram matrix with components
〈φk, φl〉 is nonsingular, then (11.8) can be put into standard form. In particular, if
φk(s) = sin kπs and if ρA is constant, then this matrix as well as the corresponding
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kh

φk

(k+1)h(k−1)h

Figure 11.10. The function φk.

matrix with components 〈 f ′
k, φ′

l〉 is diagonal. For practical computation, this virtue is
counterbalanced by the high cost of the numerical evaluation of the integrals in (11.4)
and (11.8).

Let us set h = 1/(K + 1) and

(11.9) φk(s) =






h−1[s − (k − 1)h] for (k − 1)h ≤ s ≤ kh,

1 − h−1(s − kh) for kh ≤ s ≤ (k + 1)h,

0 elsewhere.

(This function is shown in Fig. 11.10.) When (11.9) is used, the matrices whose elements
are 〈φk, φl〉 and 〈φ′

k, φ′
l〉 are tridiagonal. The cost of the numerical evaluation of the

integrals in (11.4) and (11.8) is low. (Matrices with components 〈φ′
k, φ′

l〉 arise naturally
in the linearization of (11.8) and are associated with the finite-difference approximation
of rss.) The choice (11.9) gives the simplest (semi-discrete) finite-element approximation
to our nonlinear initial-boundary-value problem. If ρA is constant, say ρA = 1, then

(11.11) 〈φk, φk〉 =
4h

6
, 〈φk, φk+1〉 =

h

6
, 〈φk, φl〉 = 0 for l 
= k − 1, k, k + 1.

If, however, we were to approximately evaluate these integrals by using the trapezoid
rule, then we would find that 〈φk, φl〉 = δkl. In this case, the left-hand side of (11.8)
would uncouple and the resulting equations could be identified with the equations of
motion of K beads joined by massless nonlinearly elastic springs.

11.12. Exercise. Replace r in (10.17) with rK of (11.1). Show that the vanishing of
the Gâteaux derivative of the resulting functional of {r1, . . . , rK} is equivalent to (11.4).

11.13. Exercise. Using the principles of classical particle mechanics, find the equations
of motion of K beads joined in sequence by massless nonlinearly elastic springs, with
the first and the Kth bead joined to fixed points by such springs. Compare the resulting
equations with (11.8). Formally obtain (2.9)–(2.11) by letting K → ∞ while the total
mass of the beads stays constant. (See the discussion at the end of Sec. 2.)

Even though the form of the governing equations for discrete models converges to the
form of the governing equations for string models, it does not follow that the solutions
of the former converge to solutions of the latter in any physically reasonable sense.
Von Neumann (1944) (in a paper filled with valuable insights) advanced the view, now
recognized as false, that the solutions for the positions of the beads in the equations of
Ex. 11.13, together with their time derivatives and suitable difference quotients should
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converge respectively to the position, velocity, and strain fields for (2.9)–(2.11). This
convergence is valid only where the partial differential equations have classical solutions.
Where the velocity and strain suffer jump discontinuities (shocks), the solutions of the
discrete problem develop high-frequency oscillations that persist in the limit as K →
∞. Consequently it can be shown that the limiting stress is incorrect. For thorough
discussions of this phenomenon and related issues, see Greenberg (1989, 1992), Hou &
Lax (1991), and the references cited therein.

Likewise, finite-element discretizations of dynamic problems of nonlinear elasticity
may fail to give sharp numerical results because they are not well adapted to capture
the shocks such systems may possess. (There is an effort to change this state of af-
fairs.) There are a variety of effective numerical schemes, originally developed for gas
dynamics, that can effectively handle shocks. One such scheme, that of Godunov (see
Bell, Colella, & Trangenstein (1989), e.g.), may be regarded as a discretization of the
Impulse-Momentum Law of Sec. 3 in a way that exploits the characteristics of the un-
derlying hyperbolic system. The trouble with many such schemes is that they have
inherent dissipative mechanisms, inspired by those for gas dynamics, that are not in-
variant under rigid motions and could therefore lead to serious errors in problems for
which there are large rotations. (Cf. Antman (1998, 2003a) and Sec. 8.9.) There is an
extensive literature on the finite-element method for equilibrium problems. Among the
more mathematical works oriented toward solid mechanics are those of Brenner & Scott
(2002), Brezzi & Fortin (1991), Ciarlet (1978), Ciarlet & Lions (1991), Hughes (1987),
Johnson (1987), Oden & Carey (1981–1984), and Szabó & Babuška (1991).

Although we do not know in what sense the solution of (11.8) converges to the solution
of the partial differential equations for elastic strings, we might be able to resolve this
question for viscoelastic strings by using modern analytic techniques associated with
the Faedo-Galerkin method. (See Ladyzhenskaya (1985), Ladyženskaja, Solonnikov, &
Ural’tseva (1968), Lions (1969), and Zeidler (1990, Vol. IIB).) An analysis along these
lines for a quasilinear engineering model of an elastic string was carried out by Dickey
(1973). He proved that the solutions of a system like (11.8) converge to the classical
solution of the partial differential equations until the advent of shocks. Antman &
Seidman (1996) used the Faedo-Galerkin method to treat the longitudinal motion of a
viscoelastic rod with a constitutive equation of the form (2.14).


