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Abstract: In this chapter, we present our recent advances in the formulation and
development of an in-vehicle hands-free route navigation system. The system is
comprised of a multi-microphone array processing front-end, environmental
sniffer (for noise analysis), robust speech recognition system, and dialog
manager and information servers. We also present our recently completed
speech corpus for in-vehicle interactive speech systems for route planning and
navigation. The corpus consists of five domains which include: digit strings,
route navigation expressions, street and location sentences, phonetically
balanced sentences, and a route navigation dialog in a human Wizard-of-Oz like
scenario. A total of 500 speakers were collected from across the United States
of America during a six month period from April-Sept. 2001. While previous
attempts at in-vehicle speech systems have generally focused on isolated
command words to set radio frequencies, temperature control, etc., the CU-
Move system is focused on natural conversational interaction between the user
and in-vehicle system. After presenting our proposed in-vehicle speech system,
we consider advances in multi-channel array processing, environmental noise
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sniffing and tracking, new and more robust acoustic front-end representations
and built-in speaker normalization for robust ASR, and our back-end dialog
navigation information retrieval sub-system connected to the WWW. Results
are presented in each sub-section with a discussion at the end of the chapter.

Keywords: Automatic speech recognition, robustness, microphone array processing, multi-
modal, speech enhancement, environmental sniffing, PMVDR features, dialog,
mobile, route navigation, in-vehicle

1. INTRODUCTION: HANDS-FREE SPEECH
RECOGNITION/DIALOG IN CARS

There has been significant interest in the development of effective dialog
systems in diverse environmental conditions. One application which has
received much attention is for hands-free dialog systems in cars to allow the
driver to stay focused on operating the vehicle while either speaking via
cellular communications, command and control of vehicle functions (i.e.,
adjust radio, temperature controls, etc.), or accessing information via wireless
connection (i.e., listening to voice mail, voice dialog for route navigation and
planning). Today, many web based voice portals exist for managing call
center and voice tasks. Also, a number of spoken document retrieval systems
are available for information access to recent broadcast news content
including SpeechBot by HP-Compaq)[30] and the SpeechFind for historical
digital library audio content (RSPG-CSLR, Univ. Colorado)[29]. Access to
audio content via wireless connections is desirable in both commercial
vehicle environments (i.e., obtaining information on weather, driving
conditions, business locations, etc.), points of interest and historical content
(i.e., obtaining audio recordings which provide a narrative of historical places
for vacations, etc.), as well as in military environments (i.e., information
access for coordinating peacekeeping groups, etc.).

This chapter presents our recent activity in the formulation of a new in-
vehicle interactive system for route planning and navigation. The system
employs a number of speech processing sub-systems previously developed for
the DARPA CU Communicator[1] (i.e., natural language parser, speech
recognition, confidence measurement, text-to-speech synthesis, dialog
manager, natural language generation, audio server). The proposed CU-Move
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system is an in-vehicle, naturally spoken mixed initiative dialog system to
obtain real-time navigation and route planning information using GPS and
information retrieval from the WWW. A proto-type in-vehicle platform was
developed for speech corpora collection and system development. This
includes the development of robust data collection and front-end processing
for recognition model training and adaptation, as well as a back-end
information server to obtain interactive automobile route planning
information from WWW.

The novel aspects presented in this chapter include the formulation of a
new microphone array and multi-channel noise suppression front-end,
environmental (sniffer) classification for changing in-vehicle noise
conditions, and a back-end navigation information retrieval task. We also
discuss aspects of corpus development. Most multi-channel data acquisition
algorithms focus merely on standard delay-and-sum beamforming methods.
The new noise robust speech processing system uses a five-channel array with
a constrained switched adaptive beamformer for the speech and a second for
the noise. The speech adaptive beamformer and noise adaptive beamformer
work together to suppress interference prior to the speech recognition task.
The processing employed is capable of improving SegSNR performance by
more than 10dB, and thereby suppress background noise sources inside the
car environment (e.g., road noise from passing cars, wind noise from open
windows, turn signals, air conditioning noise, etc.).

This chapter is organized as follows. In Sec. 2, we present our proposed
in-vehicle system. In Sec. 3, we discuss the CU-Move corpus. In Sec. 4, we
consider advances in array processing, followed by environmental sniffing,
and automatic speech recognition (ASR), and our dialog system with
connections to WWW. Sec. 5 concludes with a summary and discussion of
areas for future work.

2. CU-MOVE SYSTEM FORMULATION

The problem of voice dialog within vehicle environments offers some
important speech research challenges. Speech recognition in car environments
is in general fragile, with word-error-rates (WER) ranging from 30-65%
depending on driving conditions. These changing environmental conditions
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include speaker changes (task stress, emotion, Lombard effect, etc.)[16,31] as
well as the acoustic environment (road/wind noise from windows, air
conditioning, engine noise, exterior traffic, etc.).

Recent approaches to speech recognition in car environments have
included combinations of basic HMM recognizers with front-end noise
suppression[2,4], environmental noise adaptation, and multi-channel
concepts. Many early approaches to speech recognition in the car focused on
isolated commands. One study considered a command word scenario in car
environments where an HMM was compared to a hidden Neural Network
based recognizer[5]. Another method showed an improvement in
computational requirements with front-end signal-subspace enhancement
used a DCT in place of a KLT to better map speech features, with recognition
rates increasing by 3-5% depending on driving conditions[6]. Another
study[7] considered experiments to determine the impact of mismatch
between recognizer training and testing using clean data, clean data with car
noise added, and actual noisy car data. The results showed that starting with
simulated noisy environment train models, about twice as much adaptation
material is needed compared with starting with clean reference models. The
work was later extended[8] to consider unsupervised online adaptation using
previously formulated MLLR and MAP techniques. Endpoint detection of
phrases for speech recognition in car environments has also been
considered[9]. Preliminary speech/noise detection with front-end speech
enhancement methods as noise suppression front-ends for robust speech
recognition have also shown promise[2,4,10,11]. Recent work has also been
devoted to speech data collection in car environments including
SpeechDat.Car[12], and others [13]. These data concentrate primarily on
isolated command words, city names, digits, etc. and typically do not include
spontaneous speech for truly interactive dialogue systems. While speech
recognition efforts in car environments generally focus on isolated word
systems for command and control, there has been some work on developing
more spontaneous speech based systems for car navigation [14,15], however
these studies use a head-worn and ceiling mounted microphones for speech
collection and limit the degree of naturalness (i.e., level of scripting) for
navigation information exchange.

In developing CU-Move, there are a number of research challenges which
must be addressed to achieve reliable and natural voice interaction within the
car environment. Since the speaker is performing a task (driving the vehicle),
a measured level of user task stress will be experienced by the driver and
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therefore this should be included in the speaker modeling phase. Previous
studies have clearly shown that the effects of speaker stress and Lombard
effect (i.e., speaking in noise) can cause speech recognition systems to fail
rapidly[16]. In addition, microphone type and placement for in-vehicle speech
collection can impact the level of acoustic background noise and ultimately
speech recognition performance. Figure 2-1 shows a flow diagram of the
proposed CU-Move system. The system consists of front-end speech
collection/processing tasks that feed into the speech recognizer. The speech
recognizer is an integral part of the dialogue system (tasks for Understanding,
Discourse, Dialogue Management, Text Generation, and TTS). An image of
the microphone used in the array construction is also shown (Figure 2-2). The
back-end processing consists of the information server, route database, route
planner, and interface with the navigation database and navigation guidance
systems. Here, we focus on our efforts in multi-channel noise suppression,
automatic environmental characterization, robust speech recognition, and a
proto-type navigation dialogue.

Figure 2-1. Flow Diagram of CU-Move Interactive Dialogue System for In-Vehicle Route
Navigation
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3.

As part of the CU-Move system formulation, a two phase data collection
plan was developed. Phase I focused on collecting acoustic noise and probe
speech from a variety of cars and driving conditions. The outcome of Phase I
was to determine the range of noise conditions across vehicles, and select one
vehicle for Phase II collection that is representative of the typical noise
domains experienced while driving. Eight vehicles were used in Phase I
analysis (e.g., compact and two mid-size cars, small and medium pickup
trucks, passenger van, sport utility vehicle (SUV), cargo van). We considered
14 noise conditions in actually driving scenarios. Figure 2-2 summarizes
some of the results obtained from the study, with further details presented in
[26]. The noise level was highest with windows open 2 inches traveling
65mph on the highway, and most quiet when the car was idle at a stop light.
After detailed analysis, we determined the SUV represented the mid-range
noise conditions (noise levels were high for compact cars and low for pickup
trucks).

Next, Phase II speech collection was performed. Since the speaker is
experiencing some level of stress by performing the task of driving the
vehicle, this should be included in the speaker modeling phase. While
Lombard effect can be employed, local state and federal laws in the United
States limit the ability to allow subjects in this data collection to operate the
vehicle and read prompts from a display. We therefore have subjects seated in
the passenger seat, with prompts given on a small flat panel display attached
to the dashboard to encourage subjects to stay focused on the roadway ahead.
Speech data collection was performed across 6 U.S. cities that reflect regional
dialects. These cities were selected to be mid-size cities, in order to increase
the prospects of obtaining subjects who are native to that region. A balance
across gender and age brackets was also maintained. The driver performed a
fixed route similar to what was done for Phase I data collection so that a
complete combination of driving conditions (city, highway, traffic noise, etc.)
was included. The format of the data collection consists of five domains with
four Structured Text Prompt sections and one Wizard-of-Oz (WOZ) dialog
section:

CU-MOVE CORPUS DEVELOPMENT

Navigation Phrases: collection of phrases useful for In-Vehicle navigation
interaction [prompts are fixed for all speakers]. Examples include: “Where is
the closest gas station?” “How do I get to 1352 Pine Street?” “Which exit do I
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take?” “Is it a right or left turn?” “How do I get to the airport?” “I’m lost.
Help me.”

Digit Sequences: each speaker produced 16 digit strings from a
randomized 75 digital string set. Examples include: telephone numbers (425-
952-54o0), random credit card numbers (1234-5621-1253-5981), and
individual numbers (0,o,#86, *551).

Say and Spell Addresses: a randomized set of 20 strings of
words/addresses were produced, with street names spelled. Some street names
are used for all cities, some were drawn from local city maps. Examples
include: Park Place, Ivy Circle, 3215 Marine Street, 902 Olympic Boulevard.

Phonetically Balanced Sentences: each speaker produced a collection of
between 20-30 phonetically balanced from a set of 2500 sentences [prompts
are randomized]. Examples include: “This was easy for us.” “Jane may earn
more money by working hard.”

Dialog Wizard - of - Oz Collection: each speaker from the field called an
on-line navigation system at CSLR, where a human wizard-of-oz like (WOZ)
operator would guide the caller through three different navigation routes
determined for that city. More than 100 potential destinations were previously
established for each city between the driver and WOZ human operator, where
detailed route information was stored for the operator to refer to while the
caller was on the in-vehicle cell-phone. The list of establishments for that
city were points of interest, restaurants, major intersections, etc. (e.g., “How
do I get to the closest police station?”, “How do I get to the Hello Deli?”).
The user calls using a modified cell-phone in the car, that allows for data
collection using one of the digital channels from our recorder. The dialog was
also recorded at CSLR where the WOZ operator was interacting with the field
subject.

The 500 speaker corpus was fully transcribed, labeled, spell checked,
beamformed/processed and organized for distribution. The un-processed
version contains well over 600GB of data, and the processed version consists
of a hard-disk release of approximately 200GB. Figure 2-3 shows the age
distribution of the CU-Move corpus (further details presented in [26,27]).
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Figure 2-2. (a) Analysis of average power spectral density for low (0-1.5kHz) and high (1.5-
4.0kHz) frequency bands for 14 car noise conditions from Phase-I data collection. Overall
average noise level is also shown. (b) Photos show corpus collection setup: constructed
microphone array (using Knowles microphones), array and reference microphone placement,
constructed multi-channel DAT recorder (Fostex) with channel dependent level control and
DC-to-AC converter.

Figure 2-3. Age distribution (17-76 years old) of the 500 speaker CU-Move Corpus
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In addition, a number of cross-transcriber reliability evaluations have been
completed on the CU-Move corpus. Three transcribers were on the average,
in agreement the majority of the time for parts 1-4 (prompts), with a 1.8%
substitution rate when comparing transcriber hypotheses two at a time. When
we consider the spontaneous route navigation WOZ part, transcriber files
naturally had a higher difference, with a substitution rate of 3.0%. These
numbers will depend on the clarity and articulation characteristics of the
speakers across the six CU-Move dialect regions.

4. IN-VEHICLE SUB-SYSTEM FORMULATION

In this section, we discuss the formulation of our microphone array
processing front-end, environmental sniffing, robust speech recognition
system, and proto-type dialogue system.

Figure 2-4. Flow diagram of the Proposed Constrained Switched Adaptive Beamforming (CSA
-BF) algorithm.
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4.1 Constrained Switched Adaptive Array-Processing
(CSA-BF)

The proposed CSA-BF array processing algorithm consists of four parts: a
constraint section (CS), a speech adaptive beamformer (SA-BF), a noise
adaptive beamformer (NA-BF) and a switch. Figure 2-4 shows the detailed
structure of CSA-BF, for a 5-microphone array. The CS is designed to
identify potential speech and noise locations. If a speech source is detected,
the switch will activate SA-BF to adjust the beam pattern and enhance the
desired speech. At the same time, NA-BF is disabled to avoid speech leakage.
If however, a noise source is detected, the switch will activate NA-BF to
adjust the beam pattern for noise and switch off SA-BF processing to avoid
the speech beam pattern from being altered by the noise. The combination of
SA-BF and NA-BF processing results in a framework that achieves noise
cancellation for interference in both time and spatial orientation. Next, we
consider each processing stage of the proposed CSA-BF scheme.

4.1.1 Constraint Section

Many source localization methods have been considered in the past with
effective performance for large microphone arrays in conference rooms or
large auditoriums. Their ability to perform well in changing noisy car
conditions has not been documented to the same degree, but is expected to be
poor. Here, we propose three practical constraints that can be used to separate
speech and noise sources with high accuracy.

Criterion 1 (Maximum averaged energy): Since speech coming from the
driver’s direction will have on average the highest intensity of all sources
present, therefore, we calculate the averaged signal TEO energy [18]
frame by frame, and if this energy is greater than some threshold (Please
refer to [19] for the details, we take the current signal frame as speech
candidate.
Criterion 2 (LMS adaptive filter): In order to separate the front-seat driver
and passenger, we choose the adaptive LMS filter method and incorporate
the geometric structure of the microphone array to locate the source.
Criterion 3 (Bump noise detector) This final criterion is set to avoid
instability in the filtering process which is affected by impulsive noise
with high-energy content, such as road impulse/bump noise.
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Finally, we note that the signal is labeled as speech if and only if all three
criteria are satisfied.

4.1.2 Speech Adaptive Beamformer (SA-BF)

The function of SA-BF is to form an appropriate beam pattern to enhance
the speech signal. Since adaptive filters are used to perform the beam
steering, we can change beam pattern with a movement of the source. The
degree of adaptation steering speed is decided by the convergence behavior of
the adaptive filters. In our implementation, we select microphone 1 as the
primary microphone, and build an adaptive filter between it and each of the
other four microphones. These filters compensate for the different transfer
functions between the speaker and the microphone array. A normalized LMS
algorithm updates the filter coefficients only when the current signal is
detected as speech. There are two kinds of output from the SA-BF: namely
the enhanced speech d(n) and noise signal which are given as follows,

for channels i=2,3,4,5, where is a fixed filter.

4.1.3 Noise Adaptive Beamformer (NA-BF)

The NA-BF processor operates in a scheme like a multiple noise canceller,
in which both the reference speech signal of the noise canceller and the
speech free noise references are provided by the output of the SA-BF. Since
the filter coefficients are updated only when the current signal is
detected as noise, they form a beam that is directed towards the noise, thus the
reason to name it a noise adaptive beamformer (NA-BF). The output response
is given as,
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for microphone channels i=2,3,4,5.

4.1.4 Experimental Evaluation

In order to evaluate the performance of the CSA-BF algorithms in noisy
car environments, we process all available speakers in Release 1.1a
[21,26,27] of the CU-Move corpus using both CSA-BF and DASB
algorithms, and compared the results. This release consists of 153 speakers, of
which 117 were from the Minneapolis, MN area. We selected 67 of these
speakers that include 28 males and 39 females, which reflects 8 hours of data.
In order to compare the result of CSA-BF with that of DASB thoroughly, we
also investigated the enhanced speech output from SA-BF. For evaluation, we
consider two different performance measures using CU-Move data. One
measure is the Segmental Signal-to-Noise Ratio (SegSNR) [22] which
represents a noise reduction criterion for voice communications. The second
performance measure is Word Error Rate (WER) reduction, which reflects
benefits for speech recognition applications. The Sonic Recognizer [23,25] is
used to investigate speech recognition performance. During the recognizer
evaluation, we used 49 speakers (23 male, 26 female) as the training set, and
18 speakers (13 male, 5 female) as the test set.

Table 2-1 summarizes average SegSNR improvement, average WER,
CORR (word correct rate), SUB (Word Substitution Rate), DEL (Word
Deletion Rate) and INS (Word Insertion Rate). Here, the task was on the
digits portion of CU-Move corpus (further details are presented in [19]).
Figure 2-5 illustrates average SegSNR improvement and WER speech
recognition performance results. The average SegSNR results are indicated by
the bars using the left-side vertical scale (dB), and the WER improvement is
the solid line using the right-side scale (%).
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Figure 2-5. SEGSNR and WER Results for Reference Channel 3 Microphone (Chan3) and
Array Processing/Beamforming Scenarios using 67 speakers from the CU-Move Corpus. Bar
graph represents SegSNR in dB (using the left side scale), and line plot represents Avg. word
error rate improvement (in %) (using the right side scale).
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From these results (Table 2-1, Figure 2-5), we draw the following points:

Employing delay-and-sum beamforming (DASB) or the proposed speech
adaptive beamforming (SA-BF), increases SegSNR slightly, but some
variability exists across speakers. These two methods are able to improve
WER for speech recognition by more than 19%.

There is a measurable increase in SegSNR and a decrease in WER when
noise cancellation processing is activated (CSA-BF). With CSA-BF,
SegSNR improvement is +5.5dB on the average, and also provides a
relative WER improvement of 26%.

1.

2.

4.2

In this section we discuss our novel framework for extracting knowledge
concerning environmental noise from an input audio sequence and organizing
this knowledge for use by other speech systems. To date, most approaches
dealing with environmental noise in speech systems are based on assumptions
concerning the noise, or differences in collecting and training on a specific
noise condition, rather than exploring the nature of the noise. We are
interested in constructing a new speech framework which we have entitled
Environmental Sniffing to detect, classify and track acoustic environmental
conditions in the car environment (Figure 2-6, see [24,32]). The first goal of
the framework is to seek out detailed information about the environmental
characteristics instead of just detecting environmental changes. The second
goal is to organize this knowledge in an effective manner to allow smart
decisions to direct other speech systems. Our framework uses a number of
speech processing modules including the Teager Energy Operator (TEO) and
a hybrid algorithm with segmentation, noise language modeling and
broad class monophone recognition in noise knowledge estimation. We
define a new information criterion, Critical Performance Rate (CPR), that
incorporates the impact of noise into Environmental Sniffing performance by
weighting the rate of each error type with a normalized cost function. We use
an in-vehicle speech and noise environment as a test platform for our
evaluations and investigate the integration of Environmental Sniffing into an
Automatic Speech Recognition (ASR) engine in this environment.

Environmental Sniffing
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We evaluate the performance of our framework using an in-vehicle noise
database of 3 hours collected in 6 experimental runs using the same route and
the same vehicle on different days and hours. Fifteen noise classes are
transcribed during the data collection by a transcriber sitting in the car. The
time tags are generated instantly by the transcriber. After data collection,
some noise conditions are grouped together, resulting in 8 acoustically
distinguishable noise classes.

Figure 2-6. Flow Diagram for In-Vehicle Environmental Sniffing

We identified the following primary noise conditions of interest: (N1- idle
noise consisting of the engine running with no movement and windows
closed, N2- city driving without traffic and windows closed, N3- city driving
with traffic and windows closed, N4- highway driving with windows closed,
N5-highway driving with windows 2 inches open, N6- highway driving with
windows half-way down, N7- windows 2 inches open in city traffic, NX-
others), which are considered as long term acoustic environmental conditions.
Other acoustic conditions (idle position with air-conditioning on, etc.) are
matched to these primary classes having the closest acoustic characteristic.

Since the Environmental Sniffing framework is not a speech system itself,
and must work with other speech systems, noise knowledge detection
performance for each noise type should be calculated by weighting each
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classification error type by a term which is conditioned on the importance that
error type plays in the subsequent speech application employing
Environmental Sniffing. In [32], we specialized the formulation of CPR to a
specific case where Environmental Sniffing framework is used for model
selection within an ASR system. The Environmental Sniffing framework
determines the initial acoustic model to be used according to the
environmental knowledge it extracts. The knowledge in this context, will
consist of the acoustic condition types with time tags. For this task, we can
formulate the Critical Performance Rate as:

where denotes the transposed error matrix for noise classification, and C is
the normalized cost matrix. Since some noise conditions occur more
frequently than others, each noise condition will have an a priori probability
denoted as a. Each cost value is proportional with WER difference between
the matched case and the mismatched case, which is the performance
deviation of the ASR engine by using the wrong acoustic model during
decoding instead of using the correct acoustic model. The goal, in terms of
performance, is to optimize the critical performance rate rather than
optimizing the environmental noise classification performance rate, since it is
more important to detect and classify noise conditions that have a more
significant impact on ASR performance.

In our evaluations, we degraded the TI-DIGIT database at random SNR
values ranging from -5 dB to +5 dB (i.e., -5,-3,-1,+1,+3,+5 dB SNR) with 8
different in-vehicle noise conditions using the noise database from [24]. A
2.5-hour noise data set was used to degrade the training set of 4000
utterances, and the 0.5 hour set was used to degrade the test set of 500
utterances (i.e., open noise degrading condition). Each digit utterance was
degraded with only one acoustic noise condition.

Using the sniffing framework presented in Figure 2-6, each utterance was
assigned to an acoustic condition. Using the fact that there was only one
acoustic condition within each utterance, the Environmental Sniffing
framework did not allow noise transitions within an utterance. A noise
classification rate of 82% was obtained. Environmental condition specific
acoustic models were trained and used during recognition tests. The Cost
matrix C is calculated by testing different acoustic conditions using different
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acoustic models. The overall critical performance rate (CPR from Eq. (6))
was calculated as 92.1%

Having established the environmental sniffer, and normalized cost matrix
for directing ASR model selection, we now turn to ASR system evaluation.
We tested and compared the following 3 system configurations: S1-model
matching was done using a priori knowledge of the acoustic noise condition
(i.e., establish theoretical best performance – matched noise conditions), S2-
model matching was done based on the environmental acoustic knowledge
extracted from Environmental Sniffing, S3-all acoustic condition dependent
models were used in a parallel multi-recognizer structure (e.g., ROVER)
without using any noise knowledge and the recognizer hypothesis with the
highest path score was selected.

Figure 2-7. Word Error Rates for Digit Recognition Tests: S1 – matched noise model case, S2
– environmental sniffing model selection (1 CPU for sniffing, 1 CPU for ASR), S3 (ROVER) –
employs up to 9 recognizers (i.e., CPUs) trained for each noise condition with ROVER
selection.
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As Figure 2-7 shows, system S1 achieved the lowest WER (i.e., 3.01%)
since the models were matched perfectly to the acoustic condition during
decoding. The WER for S2 was 3.2% using 2 CPU’s (1 CPU for digit
recognition, 1 CPU for sniffing acoustic conditions), which was close to the
expected value of 3.23% (Note: in Figure 2-7, we plot system S2 with 2
CPU’s even though only 1 ASR engine was used). S3 achieved a WER of
3.6% by using 8 CPU’s. When we compare S2 and S3, we see that a relative
11.1% WER improvement was achieved, while requiring a relative 75%
reduction in CPU resources. These results confirm the advantage of using
Environmental Sniffing over an ASR ROVER paradigm.

There are two critical points to consider when integrating Environmental
Sniffing into a speech task. First, and the most important, is to set up a
configuration such as S1 where prior noise knowledge can be fully used to
yield the lowest WER (i.e., matched noise scenario). This will require an
understanding of the sources of errors and finding specific solutions assuming
that there is prior acoustic knowledge. For example, knowing which speech
enhancement scheme or model adaptation scheme is best for a specific
acoustic condition is required. Secondly, a reliable cost matrix should be
provided to the Environmental Sniffing so the subsequent speech task can
calculate the expected performance in making an informed adjustment in the
trade-off between performance and computation. For our experiments, we
considered evaluation results for Environmental Sniffing where it is employed
to find the highest possible acoustic condition so that the correct acoustic
dependent model could be used. This is most appropriate for the goal of
determining a single solution for the speech task problem at hand. If the
expected performance for the system employing Environmental Sniffing is
lower than the performance of a ROVER system, it may be useful to find the
n most probable acoustic condition types among N acoustic conditions. In the
worst case, the acoustic condition knowledge extracted from Environmental
Sniffing could be ignored and the system will reduce to the traditional
ROVER solution. The goal therefore in this section has been to emphasize
that direct estimation of environmental conditions should provide important
information to tailor a more effective solution to robust speech recognition
systems.
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4.3 Robust Speech Recognition

The CU-Move system incorporates a number of advances in robust speech
recognition including a new more robust acoustic feature representation and
built-in speaker normalization. Here, we report results from evaluations using
CU-Move Release 1.1 A data from the extended digits part aimed at phone
dialing applications.

Capturing the vocal tract transfer function (VTTF) from the speech signal
while eliminating other extraneous information, such as speaker dependent
characteristics and pitch harmonics, is a key requirement for robust and
accurate speech recognition [33, 34]. The vocal tract transfer function is
mainly encoded in the short-term spectral envelope [35]. Traditional MFCCs
use the gross spectrum obtained as the output of a non-linearly spaced
filterbank to represent the spectral envelope. While this approach is good for
unvoiced sounds, there is a substantial mismatch for voiced and mixed sounds
[34]. For voiced speech, the formant frequencies are biased towards strong
harmonics and their bandwidths are misestimated [34,35]. MFCCs are known
to be fragile in noisy conditions, requiring additional compensation for
acceptable performance in realistic environments [45,28].

Minimum Variance Distortionless Response (MVDR) spectrum has a long
history in signal processing but recently applied successfully to speech
modeling [36]. It has many desired characteristics for a spectral envelope
estimation method, most important being the fact it estimates the spectral
powers accurately at the perceptually important harmonics, thereby providing
an upper envelope which has strong implications for robustness in additive
noise. Since the upper envelope relies on the high-energy portions of the
spectrum, it will not be affected substantially by additive noise. Therefore,
using MVDR for spectral envelope estimation for robust speech recognition is
feasible and useful [37].

4.3.1 MVDR Spectral Envelope Estimation:

For details of MVDR spectrum estimation and its previous uses for speech
parameterization, we refer the reader to [36,37,38,39,40]. In the MVDR
spectrum estimation, the signal power at a frequency, is determined by
filtering the signal by a specially designed FIR filter, h(n), and measuring the
power at its output. The FIR filter, h(n), is designed to minimize its output
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power subject to the constraint that its response at the frequency of interest,
has unity gain. This constrained optimization is a key aspect of the MVDR

method that allows it to provide a lower bias with a smaller filter length than
the Periodogram method [41]. The Mth order MVDR spectrum can be
parametrically written as;

The parameters, can be obtained using the linear prediction (LP)
coefficients, and the prediction error variance [41].

4.3.2 Direct Warping of FFT Spectrum

The aim of using a non-linearly spaced filterbank is to remove the
harmonic information that exists in voiced speech and smooth out the
spectrum. MVDR, on the other hand, can handle voiced speech by accurately
modeling spectral powers at the perceptually important harmonics. Therefore,
it is both useful and safe to remove the filterbank structure and incorporate the
perceptual considerations by directly warping the FFT spectrum. The warping
can be incorporated via a first order all pass system [42]. In fact, both Mel and
Bark scales can be implemented by changing only one system parameter,
We use the phase response of the first order system in Eq. (9) as the warping
function given in Eq. (10),
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where determines the degree of warping. For 16kHz sampled signals,
and approximates the Mel and Bark scales, respectively.

4.3.3 PMVDR Algorithm

We can summarize the PMVDR algorithm as follows [37];

Step 1: Obtain the perceptually warped FFT power spectrum,
Step 2: Compute the “perceptual autocorrelations” by using IFFT on the
warped spectrum,
Step 3: Perform an Mth order LP analysis via Levinson-Durbin recursion
using perceptual autocorrelation lags [41],
Step 4: Calculate the Mth order MVDR spectrum using Eq. (7) from LP
coefficients [36],
Step 5: Obtain Cepstrum coefficients using the straightforward FFT-based
approach [43].

A flow diagram for the PMVDR algorithm is given in Figure 2-8. The
algorithm is integrated into the CU-Move recognizer as the default acoustic
feature front-end, (further information and code can be obtained from the CU-
Move web site [27]).

Figure 2-8. Flow Diagram of the PMVDR acoustic feature front-end

4.3.4 Experimental Evaluation

We evaluate the performance of PMVDR on the CU-Move extended digit
task [27,28,37] using our SONIC [23,25] LVCSR system. Sonic incorporates
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speaker adaptation and normalization methods such as Maximum Likelihood
Linear Regression (MLLR), Vocal Tract Length Normalization (VTLN), and
cepstral mean & variance normalization. In addition advanced language-
modeling strategies such as concept language models are also incorporated
into the toolkit.

The training set includes 60 speakers balanced by age and gender, whereas
the test set employs 50 speakers which again are age and gender-balanced.
The word error rates (WER) and relative improvements of PMVDR with
respect to MFCC are summarized in Table 2-2.

The optimal settings for this task were found to be M = 24 and
(close to the Bark scale). The 36.1% reduction in error rate using PMVDR
features is a strong indicator of the robustness of these features in realistic
noisy environments. We tested these features on a number of other tasks
including clean, telephone and stressed speech and consistently obtain better
results than that for MFCCs. Therefore, we conclude that PMVDR is a better
acoustic front-end than MFCC for ASR in car environments.

4.3.5 Integration of Vocal Tract Length Normalization (VTLN)

VTLN is a well-known method of speaker normalization in which a
customized linear warping function in the form of in frequency
domain is used for each speaker [43]. The normalization factor, is a
number which is generally less than 1.0 for female speakers and more than
1.0 for male speakers to account for different average vocal tract lengths. The
normalization factor is determined by an exhaustive search as the one
maximizing the total likelihood of a speaker’s data using specifically trained
models containing only 1 Gaussian for each phoneme cluster for a decision-
tree state clustered HMM setting. The VTLN integrated with PMVDR
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requires two consecutive warpings; one for VTLN and one for incorporation
of perceptual considerations.

In the PMVDR formulation, we used a first order system to perform
perceptual warping. This warping function can also be used for speaker
normalization in which the system parameter is adjusted to each speaker [44].
Rather than performing two consecutive warpings, we could simply change
the degree of warping, (i.e., ), specifically for every speaker. This will
enable us to perform both VTLN and perceptual warping using a single warp.
The estimation of the VTLN-normalizing can be done the same way as
Such an integration of VTLN into the PMVDR framework yields an acoustic
front-end with built-in speaker normalization (BISN). Table 2-3 summarizes
our results with the conventional VTLN and BISN in the PMVDR
framework.

The BISN yields comparable results to VTLN with a less complex front-
end structure hence is an applicable speaker normalization method in ASR.
The total WER reduction compared to the MFCC baseline is around 50%
using PMVDR with BISN. The average warping factor for females was

and for males Females require less warping than males due
to shorter vocal tract length which conforms to VTLN literature.

Finally, experiments here were conducted on raw speech obtained from
one microphone in our array. Using array processing techniques discussed in
Sec. 4.1 and integrating the noise information obtained using techniques
discusses in Sec. 4.2 will boost performance considerably when used in
cascade with the robust acoustic front-end (PMVDR) and built-in speaker
normalization (BISN). It is also possible and feasible to apply noise
adaptation techniques such as Jacobian adaptation and speaker adaptation
techniques such as MLLR to further improve performance[28]. Front-end
speech enhancement schemes before acoustic feature extraction was also
found to be useful in improving performance [28].
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4.4 Proto-type Navigation Dialogue

Finally, we have developed a prototype dialog system for data collection
in the car environment [46]. The dialog system is based on the DARPA
Galaxy Communicator architecture [47,49] with base system components
derived from the CU Communicator system [1,17]. Users interacting with the
dialog system can enter their origin and destination address by voice.
Currently, 1107 street names for Boulder, Colorado area are modeled. The
dialog system automatically retrieves the driving instructions from the
internet using an online WWW route direction provider. Once downloaded,
the driving directions are queried locally from an SQL database. During
interaction, users mark their location on the route by providing spoken
odometer readings. Odometer readings are needed since GPS information has
not yet been integrated into the prototype dialog system. Given the odometer
reading of the vehicle as an estimate of position, route information such as
turn descriptions, distances, and summaries can be queried during travel (e.g.,
“What’s my next turn”, “How far is it”, etc.).

The system uses the University of Colorado SONIC [23,25,48] speech
recognizer along with the Phoenix Parser[1] for speech recognition and
semantic parsing. The dialog manager is mixed-initiative and event driven
[1,17]. For route guidance, the natural language generator formats the driving
instructions before presentation to the user by the text-to-speech (TTS) server.
For example, the direction, “Park Ave W. becomes 22nd St.” is reformatted
to, “Park Avenue West becomes Twenty Second Street”. Here, knowledge of
the task-domain can be used to significantly improve the quality of the output
text. The TTS system is based on variable-unit concatenation of synthesis
units. While words and phrases are typically concatenated to produce natural
sounding speech, the system can back off to smaller units such as phonemes
to produce unseen words.

5. DISCUSSION

In this study, we have considered the problem of formulating an in-vehicle
speech dialogue system for route navigation and planning. We discussed a
flow diagram for our proposed system, CU-Move, and presented results from
several sub-tasks including development of our microphone array CSA-BF
processing scheme, environmental sniffing, speech enhancement processing,
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robust PMVDR features with built-in vocal tract length normalization, and a
proto-type dialogue interface via the WWW. We also discussed our speech
data corpus development based on Phase I: In-Vehicle Acoustic Noise
measurements and Phase II: speech/speaker dialogue collection. Clearly, a
number of challenges exist in the development and integration of a natural
interactive system in such diverse and changing acoustic conditions. We
believe that the processing tasks and results presented reflect useful steps in
both the formulation of the CU-Move speech system, as well as contributing
to a better scientific understanding of how to formulate dialogue systems in
such adverse conditions. Finally, while the prospect of natural hands-free
dialog within car environments is a challenging task, we feel that true
fundamental advances will only occur if each of the processing phases are
capable of sharing knowledge and leveraging their individual contributions to
achieve a reliable overall working system.
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