
Chapter 2 

Statistics 

In the present chapter, I will briefly review some statistical distributions 
that are used often in this book. I will also discuss some statistical techniques 
that are important in this book, but that may not be very well known. Good 
introductions to practically all the statistical techniques used here can be 
found in, for example, Lindgren [38], or Casella and Berger [10]. The group 
of techniques that are used most often is centered on the likelihood function, 
but in some instances bootstrapping will be used as well. They will be 
described briefly. 

Many chapters in this book rely strongly on the difference between ran­
dom variables and model parameters. To accentuate this difference, the 
general custom will be followed of labeling random variables with upper case 
letters, and parameters with lower case ones. 

1 STATISTICAL DISTRIBUTIONS 

The number of distributions used in this book is small, basically the bino­
mial and Poisson distributions, and some variations on them. 

1.1 Binomial and multinomial distributions 

The binomial distribution is that of the number of fails in a given number 
of attempts, given the fail probability. To simplify notation, I will use Feller's 
one [22] for the probability density function of the binomial distribution. The 
probability that n fails will be observed in N tries if the fail probability is p is 

b(n;N,p) = n p " ( 1 - p f - " . (2.1) 
^n^ 

The expected value of n is Np, and its variance is Np(l - p). 
When p is very close to 0 or 1, the relationship between the expected value 

of n and its fluctuations becomes very simple. When p is very small, it can be 
neglected with respect to 1. The standard deviation of n is then roughly equal 
to the square root of its expected value. Likewise, when p is very close to 1, 
the standard deviation of N - n is roughly equal to the square root of that num­
ber. In other words, when p is either very small or very large, the typical size 
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of the variations in the number of the rarer events (failures with very low fail 
probability, passes otherwise,) is roughly equal to the square root of the num­
ber of those events, and does not depend on the number of the more common 
events. 

The binomial distribution can be generalized by compounding [12]. In that 
case, the binomial parameter p is a random variable itself, with a probability 
distribution h(p). The expected value of p will be indicated by 

<p) == jh(p)pdp , (2.2) 

2 
and its variance by a (p). 

The expected value of the number of fails in the compounded distribution 
equals N<p>, and its variance is equal to 

N ( P ) ( 1 - < P ) ) + N V ( P ) . (2.3) 

The first term in this variance is the standard binomial one, the second one is 
the contribution from the finite width of h(p). It has the important conse­
quence that, when N becomes large, the ratio of the standard deviation of the 
number of fails to its expected value does not go to 0, as in a pure binomial 
distribution, but, instead, to the finite ratio a(p) / (p) . Even with large N, 
therefore, the variability in the number of fails cannot be ignored, and can, in 
fact, be substantial. 

Another extension of the binomial distribution is the multinomial [22] one, 
in which more than two outcomes are possible, each with their own probabil­
ity of occurrence. There is no standard notation for this distribution. The one 
that will be used here was inspired by that for the binomial distribution. If 
there are k choices, with probabilities p, for i = 1, ..., K, the probability P(ni, 

..., Uĵ ) of Uj occurrences of choice i is given by the multinomial probability 

m({ni};N,{Pi}) = ^ ^ r r p " \ (2.4) 

IT^i' 
where n! stands for the factorial of n, and all products are from i = 1 to k. The 

sets {pi} and {Uj} obey the obvious sum rules V pj = 1, and V n̂  = N. 
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By summing over all iij except one, say nj, we find that the probability of 

nj occurrences out of N trials equals b(n;N, p ) Consequently, the expected 

value of any Uj equals Npj. 

1.2 Poisson and compound Poisson distributions 

The Poisson distribution is that of the number of occurrences of some 
event in a given space, given the probability of an occurrence in a unit amount 
of space, and given that occurrences are independent. Typical examples are 
the number of events in a given amount of time or the number of defects in a 
given area. The latter example is the important one in this book. 

The probability of an occurrence in a unit amount of space is also called 
the strength of the Poisson distribution. When the strength is v, the probability 
of n occurrences in a unit amount of space equals 

n 
V - V 

- e . (2.5) 

The expected value and variance of n are both equal to v. The probability of 
- V 

no occurrence is e . 
A more general version of the Poisson distribution is the compound Pois­

son distribution, in which the strength v is itself a random variable with some 
distribution h(v) [12]. The probability of n occurrences is then equal to 

n 
j h ( v ) ^ e ~ ' ' dv. (2.6) 

It is easy to show, by interchanging integration and summation, that the 

expected value |i of n is now equal to (v) = |h(v)vdv, and that its variance 

2 2 
equals JLI + a (v) , in which a (v) is the variance of the Poisson strength v. 
Compounding, therefore, always increases the variance of the observed 
yields. 

Another effect of compounding is to increase the probability of no occur­
rences at all, at least when (v) , the expected number of occurrences stays the 
same. This probability equals 

Po = Jh(v) e""" dv . (2.7) 
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That compounding always increases po compared to its Poisson value can be 

proven as follows. It is easy to see that e >e -{V-X)Q , because 

-(v - X)e describes the tangent to e at v = A., and because e"^ curves 
upwards. The constant X in the inequality can be any number, but is taken 
here as the mean of v. In the compound model, we then find that 

1.3 Negative binomial distribution 

An important example of a compound Poisson distribution is the negative 
binomial one. It emerges when the compounding fiinction is the gamma distri­
bution. In other words, when 

a - 1 -va/ja 
h(v) = ^ 5 -, (2.8) 

r(a)()Li/a) 

in which a is a positive parameter, called the cluster coefficient, \i is the mean 
of v, and r(x) is the gamma function of x. The negative binomial distribution 
can be generated in other ways than by compounding a Poisson distribution 
[12], but compounding is a very convenient one. 

The probability of n occurrences in the negative binomial distribution 
equals 

2 
The expected value of n is |i, and its variance is \i + \i / a . The probabil­

ity of no occurrences equals 

(1 +jLi /a)~^. (2.10) 

The cluster coefficient functions as a sort of scale that separates the region 
a » |i in which the negative binomial distribution is very similar to a Poisson 
distribution, from that in which the two are very different. 

The cluster coefficient is related to the distributional parameters of the 
compounded Poisson distribution through 
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'- = ^ H ^ , (2.11) 

which suggests a rough estimate of the inverse of the cluster coefficient from 
actual data. Using the inverse of a rather than a itself is more meaningful, for 
the former vanishes in the limit of a pure Poisson distribution. It will be indi­
cated by y. 

Equation (2.11) can also be seen as a generalized definition of a cluster 
coefficient, one that goes beyond its definition in the gamma function. As 
such, the estimate obtained from equation (2.11) need not be positive, even 
though a is in Equation (2.8). There is in fact no reason why the generalized 
cluster coefficient should always be positive, and we will find in Chapter 4 
that it oftentimes is not. 

Large values of y correspond to strong clustering, and small values to little 
clustering. For example, when we calculate y for the compound binomial dis­
tribution, it equals - 1 / N in the case of no compounding, but then increases 
smoothly to positive values. It can become arbitrarily large when a ( p ) , the 
width of the compounder, becomes large. 

2 LIKELIHOOD 

In many situations, the data that are collected have some known statistical 
properties, except that some parameters of the underlying distribution are not 
known. One of the goals of collecting the data is to estimate those parameters. 
An example is the passes and fails of an embedded SRAM on the chips. It is 
assumed to fail with a probability that may depend on the wafer column in 
which the chip is located. The numbers of passing and failing SRAMs per col­
umn have Binomial distributions, and one statistical analysis that can be done 
is estimating the fail probabilities of those distributions, and determining 
whether they are column dependent or not. 

A standard way of constructing estimators for the parameters of a distribu­
tion is the maximum likelihood method. It relies on the so called likelihood 
function. This approach is described in some detail in the statistics books 
mentioned previously [10, 38], and in more detail in the book by Edwards 
[20]. 

The likelihood function is numerically proportional to the probability that 
the observed data would have been obtained, given a specific set of distribu­
tional parameters. By considering the likelihood function as a function of the 
parameters, with the observed data as fixed values, the probability is trans-
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formed into a function of the parameters. The likelihood function is 
proportional to it, for factors that do not depend on the parameters turn out to 
be irrelevant. 

In the example given above, the probability that the given numbers of 
passes and fails in the various columns would have been observed is equal to 
the product of a number of binomial probabilities, one for each column, and 
each one with its own fail probability. With the actual observations fixed, this 
product is a function of the column fail probabilities. It will vary when the fail 
probabilities are varied. 

2.1 Maximum likelihood 

The maximum likelihood method is based on the assumption that the best 
estimate of the physical fail probabilities, the ones that govern the actual 
passes and the fails on the physical wafers, is that set of probabilities that 
maximizes the likelihood function. It obviously depends on the observed data, 
because different sets of data will put the maximum of the likelihood function 
in different places. 

The likelihood function is generally indicated by L. If we continue the 
example, L is function of the column fail probabilities pj. To make the depen­
dence on the observed data explicit, they are sometimes added to L as a 
condition: 

L = L(pi, . . . ,p,^|data). (2.12) 

Given the data, the first step in the analysis is estimating the fail probabili­
ties. As mentioned above, this is done by maximizing L, and entails two steps. 
First, the extrema of L have to be found, which can be done by solving 

1 ^ - 0 (2.13) 
5Pi 

for each i (column in the example). Second, the maximum has to be found 
among the extrema. A maximum corresponds to an extremum where the 
matrix with elements 
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is negative definite. In most cases, Equations (2.13) have only one solution, 
and that solution can trivially be shown to correspond to a maximum. In some 
cases, however, multiple solutions may have to be considered, and the nega­
tive definiteness of the matrix of second derivatives of L has to be established 
using numerical methods. 

Strictly speaking, the found maximum should also be compared to values 
of L on the boundary of the range of the parameters of the distribution, for 
maxima on those boundaries usually do not obey Equation (2.13). In most 
cases encountered in this book, L trivially vanishes on this boundary, and is 
positive in the interior region of the range, so the question of maxima on the 
boundary does not occur. 

There are in fact situations in which Equations (2.13) are so complex that 
they cannot be solved even with moderate effort. If all else fails, the maxi­
mum of L can always be found by reliable, but numerically more demanding 
maximization routines [44]. 

The estimates of the parameters are random variables, for they depend 
solely on the observations, and not on the parameters to the underlying distri­
butions. These estimates, therefore, have a distribution, but that distribution is 
usually not known. Fortunately, for large sample - that is, large wafers in the 
example - the distribution of the estimates is approximately normal with a 
covariance matrix equal to minus the inverse of the matrix of second deriva­
tives. The latter matrix is therefore not only important for establishing 
maximality of extrema, but also for gauging the accuracy of the estimates. 

2.2 Likelihood ratio 

The likelihood function is used not only for estimating parameters, but 
also for deciding whether one particular statistical model is better suited to 
explain the data than some other potential model. The manner in which that 
will be done in this book can be demonstrated with the example that we have 
been using in this section. 

In the running example, there are two reasonable models. The first one, 
called the heterogeneous model, is the one that we have been using: one fail 
probability per column. The second one is called the homogeneous model, 
and is a simplification of the first: one fail probability for all columns. The 
heterogeneous model is always more accurate, for it has more adjustable 
parameters. The homogeneous one is more parsimonious, and may be pre­
ferred for that reason. 

Even when the homogeneous model is correct, the numbers of fails on any 
given column will not always be equal to the mean, but will fluctuate around 
it. Small deviations of the numbers of fails around their respective means will 
not necessarily invalidate this model, therefore; only large deviations can do 
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that. The question is, "how large should the deviations be before we should 
discard the homogeneous model and assume the validity of the heterogeneous 
one ?" 

This question can be answered to some extent with the likelihood ratio 

L( p data) 
A = _ ' _ , , (2.15) 

L(pp ...,pj^ data) 

in which a carrot ( ) over a variable indicates the maximum likelihood esti­

mates of that variable, and p is the maximum likelihood estimate of the 

single fail probability in the homogeneous model. 
A will never exceed 1, for both numerator and denominator are maxi­

mized, and the space of the p values is a subset of the space of the pj values. 

Therefore, if L( p ) were larger than L(pj , ...,pj^), the latter could be 

increased by replacing the estimates of pj by the estimate of p, contrary to the 

assumption that it is maximal. 
A is a convenient measure of the extent to which the observed deviations 

match the expected ones; in other words, it is a good indicator of column sim­
ilarity. If the homogeneous model reflects the true state of affairs, it will be 
close to 1, but not equal to it, because of statistical fluctuations. If this model 
is not the correct one, A will be much smaller than 1. 

How much A should differ from its maximum value before the homoge­
neous model can be rejected depends of course on the size of the expected 
statistical fluctuations, which depend on the numbers of columns and chips 
per column through N^p, the number of degrees of freedom. This number 

equals, in this case, V ( m | - 1), in which the sum is over all the columns, 

and mj is the number of chips in column i. 

Under the null hypothesis that all columns have the same fail probability, 

- 2 In A has approximately the chi-squared distribution with Nj)p degrees of 

freedom [10]. Consequently, under the null hypothesis, the expected value of 

-2 In A equals Nj)p, and its variance 2Np)p. 

If the null hypothesis is correct, the actual value of-21nA is expected to be 
within a few standard deviations of its mean. A more convenient measure of 
column similarity, therefore, is the ratio 
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- 2 1 n A - N T 3 p 
(2.16) 

J^ DF 

Any significant deviation of A from its mean leads to a large value of p, and 
indicates that one or more columns differ significantly from the others. More­
over, when the number of degrees of freedom is large, as it typically is, the 
chi-square distribution can be replaced by a normal one with the same mean 
and variance. 

3 BOOTSTRAPPING 

When estimating the values of distributional parameters or other distribu­
tion related quantities, we often would like to the know the accuracy of those 
estimates, in addition to the estimates themselves. When the statistical distri­
bution of the estimator is known, the accuracy of the estimate can be obtained 
from the variance of the estimator. Oftentimes, however, the distribution is 
not known, or, if known, is valid only in the limit of very large samples. In 
such cases, other means have to be employed to get a sense of the accuracy of 
the estimators. 

The variance of an estimator could also be estimated, and trivially so, if 
many samples were available. For then we could estimate whatever quantity 
we are interested in in each sample, and compare the results. Unfortunately, 
there is only one sample. It is possible, however, to create artificial samples, 
with many of the same statistical properties as real samples, and use these arti­
ficial samples as substitutes for the latter. This technique is called 
bootstrapping [41]. 

In bootstrapping, a large number of secondary samples are generated from 
the original one, called the primary sample. The secondary samples have the 
same size as the primary one, and are formed by randomly selecting the units 
of the sample (embedded SRAMs in our running example) from the original 
sample. The selection is done sequentially, and with replacement (so the same 
unit can be selected multiple times.) 

The bootstrap assumption is that the statistical properties of primary sam­
ples are approximately the same as those of the secondary samples, based on a 
single primary one. For example, a single fail probability for the embedded 
SRAMs, valid for all columns, can be calculated for each secondary sample, 
and the distribution of these fail probabilities is assumed to approximate that 
of the maximum likelihood estimate of the fail probability in the primary 
sample. 




