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Abstract Human genetics is undergoing an information explosion. The availability of chip-
based technology facilitates the measurement of thousands of DNA sequence 
variation from across the human genome. The challenge is to sift through these 
high-dimensional datasets to identify combinations of interacting DNA sequence 
variations that are predictive of common diseases. The goal of this study is to 
develop and evaluate a genetic programming (GP) approach to attribute selection 
and classification in this domain. We simulated genetic datasets of varying size 
in which the disease model consists of two interacting DNA sequence variations 
that exhibit no independent effects on class (i.e. epistasis). We show that GP is 
no better than a simple random search when classification accuracy is used as the 
fitness function. We then show that including pre-processed estimates of attribute 
quality using Tuned ReliefF (TuRF) in a multi-objective fitness function that also 
includes accuracy significantly improves the performance of GP over that of 
random search. This study demonstrates that GP may be a useful computational 
discovery tool in this domain. This study raises important questions about the 
general utility of GP for these types of problems, the importance of data pre­
processing, the ideal functional form of the fitness function, and the importance 
of expert knowledge. We anticipate this study will provide an important baseline 
for future studies investigating the usefulness of GP as a general computational 
discovery tool for large-scale genetic studies. 

Keywords: genetic programming, human genetics, expert knowledge, epistasis, multifactor 
dimensionality reduction 
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1. Introduction 
Genetic programming (GP) is an automated computational discovery tool 

that is inspired by Darwinian evolution and natural selection (Koza, 1992; Koza, 
1994; Koza et al., 1999; Koza et al, 2003; Banzhaf et al., 1998; Langdon, 
1998; Haynes et al., 1999). The goal of GP is to evolve computer programs 
to solve problems. This is accomplished by first generating random computer 
programs that are composed of the building blocks needed to solve or approx­
imate a solution to a problem. Each randomly generated program is evaluated 
and the good programs are selected and recombined to form new computer 
programs. This process of selection based on fitness and recombination to gen­
erate variability is repeated until a best program or set of programs is identified. 
Genetic programming and its many variations have been applied successfully 
to a wide range of different problems including data mining and knowledge 
discovery e.g. (Freitas, 2002). Despite the many successes, there are a large 
number of challenges that GP practitioners and theorists must address before 
this general computational discovery tool becomes a standard in the modem 
problem solver's toolbox. (Yu et al., 2005) list 22 such challenges. Several of 
these are addressed by the present study. First, is GP useful for the analysis 
of large and high-dimensional datasets? Second, what is the best way to use 
pre-processing? Third, what is the best way to construct more complicated 
fitness functions? Finally, what is the best way to incorporate domain-specific 
knowledge? The goal of this paper is to explore the feasibility of using GP for 
genome-wide genetic analysis in the domain of human genetics. 

The Problem Domain: Human Genetics 
Biological and biomedical sciences are undergoing an information explo­

sion and an understanding implosion. That is, our ability to generate data is far 
outpacing our ability to interpret it. This is especially true in the domain of hu­
man genetics where it is now technically and economically feasible to measure 
thousands of DNA sequence variations from across the human genome. For the 
purposes of this paper we will focus exclusively on the single nucleotide poly­
morphism or SNP which is a single nucleotide or point in the DNA sequence 
that differs among people. It is anticipated that at least one SNP occurs approx­
imately every 100 nucleotides across the 3 * 10^ nucleotide human genome. An 
important goal in human genetics is to determine which of the many thousands 
of SNPs are useful for predicting who is at risk for common diseases such as 
prostate cancer, cardiovascular disease, or bipolar depression. This genome-
wide approach is expected to revolutionize the genetic analysis of common 
human diseases (Hirschhom and Daly, 2005; Wang et al., 2005). 

The charge for computer science and bioinformatics is to develop algorithms 
for the detection and characterization of those SNPs that are predictive of human 



Genome-Wide Genetic Analysis Using Genetic Programming 13 

health and disease. Success in this genome-wide endeavor will be difficult 
due to nonlinearity in the genotype-to-phenotype mapping relationship that is 
due, in part, to epistasis or nonadditive gene-gene interactions. Epistasis was 
recognized by (Bateson, 1909) nearly 100 years ago as playing an important role 
in the mapping between genotype and phenotype. Today, this idea prevails and 
epistasis is believed to be a ubiquitous component of the genetic architecture of 
common human diseases (Moore, 2003). As a result, the identification of genes 
with genotypes that confer an increased susceptibility to a common disease will 
require a research strategy that embraces, rather than ignores, this complexity 
(Moore, 2003; Moore and Williams, 2005; Thornton-Wells et al, 2004). The 
implication of epistasis from a data mining point of view is that SNPs need to 
be considered joindy in learning algorithms rather than individually. Because 
the mapping between the attributes and class is nonlinear, the concept difficulty 
is high. The challenge of modeling attribute interactions has been previously 
described (Freitas, 2001). Due to the combinatorial magnitude of this problem, 
intelligent feature selection strategies are needed. 

A Simple Example of the Concept Difficulty 
Epistasis can be defined as biological or statistical (Moore and Williams, 

2005). Biological epistasis occurs at the cellular level when two or more 
biomolecules physically interact. In contrast, statistical epistasis occurs at the 
population level and is characterized by deviation from additivity in a linear 
mathematical model. Consider the following simple example of statistical epis­
tasis in the form of a penetrance function. Penetrance is simply the probability 
(P) of disease (D) given a particular combination of genotypes (G) that was 
inherited (i.e. P[D|G]). A single genotype is determined by one allele (i.e. a 
specific DNA sequence state) inherited from the mother and one allele inher­
ited from the father. For most single nucleotide polymorphisms or SNPs, only 
two alleles (encoded by A or a) exist in the biological population. Therefore, 
because the order of the alleles is unimportant, a genotype can have one of 
three values: AA, Aa or aa. The model illustrated in Table 2-1 is an extreme 
example of epistasis. Let's assume that genotypes A A, aa, BB, and bb have 
population frequencies of 0.25 while genotypes Aa and Bb have frequencies of 
0.5 (values in parentheses in Table 2-1). What makes this model interesting is 
that disease risk is dependent on the particular combination of genotypes inher­
ited. Individuals have a very high risk of disease if they inherit Aa or Bb but 
not both (i.e. the exclusive OR function). The penetrance for each individual 
genotype in this model is 0.5 and is computed by summing the products of the 
genotype frequencies and penetrance values. Thus, in this model there is no 
difference in disease risk for each single genotype as specified by the single-
genotype penetrance values. This genetic model was first described by (Li and 
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Table 2-1. Penetrance values for genotypes from two SNPs. 

BB (0.25) 
Bb (0.50) 
bb (0.25) 

AA (0.25) 
0 
1 
0 

Aa (0.50) 
1 
0 
1 

aa (0.25) 
0 
1 
0 

Reich, 2000). Heritability or the size of the genetic effect is a function of these 
penetrance values. In this model, the heritability is maximal at 1.0 because the 
probability of disease is completely determined by the genotypes at these two 
DNA sequence variations. This is a special case where all of the heritability is 
due to epistasis. As (Freitas, 2001) reviews this general class of problems has 
high concept difficulty. 

Genome-Wide Genetic Analysis: A Needle-in-a-Haystack 
Problem 

(Moore and Ritchie, 2004) have outlined three significant challenges that 
must be overcome if we are to successfully identify genetic predictors of health 
and disease. First, powerful data mining and machine learning methods will 
need to be developed to statistically model the relationship between combina­
tions of DNA sequence variations and disease susceptibility. Traditional meth­
ods such as logistic regression have limited power for modeling high-order 
nonlinear interactions (Moore and Williams, 2002). A second challenge is the 
selection of genetic variables or attributes that should be included for analysis. 
If interactions between genes explain most of the heritability of common dis­
eases, then combinations of DNA sequence variations will need to be evaluated 
from a list of thousands of candidates. Filter and wrapper methods will play an 
important role here because there are more combinations than can be exhaus­
tively evaluated. A third challenge is the interpretation of gene-gene interaction 
models. Although a statistical model can be used to identify DNA sequence 
variations that confer risk for disease, this approach cannot be translated into 
specific prevention and treatment strategies without interpreting the results in 
the context of human biology. Making etiological inferences from computa­
tional models may be the most important and the most difficult challenge of all 
(Moore and Williams, 2005). 

Combining the concept difficulty described in Section 1.3 with the challenge 
of attribute selection yields what (Goldberg, 2002) calls a needle-in-a-haystack 
problem. That is, there may be a particular combination of SNPs that together 
with the right nonlinear function are a significant predictor of disease suscep­
tibility. However, individually they may not look any different than thousands 
of other SNPs that are not involved in the disease process and are thus noisy. 
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Under these models, the learning algorithm is truly looking for a genetic needle 
in a genomic haystack. A recent report from the International HapMap Con­
sortium (Altshuler et al., 2005) suggests that approximately 300,000 carefully 
selected SNPs may be necessary to capture all of the relevant variation across 
the Caucasian human genome. Assuming this is true (it is probably a lower 
bound), we would need to scan 4.5 * 10^^ pairwise combinations of SNPs to find 
a genetic needle. The number of higher order combinations is astronomical. 
Is GP suitable for a problem like this? At face value the answer is no. There 
is no reason to expect that a GP or any other wrapper method would perform 
better than a random attribute selector because there are no building blocks for 
this problem when accuracy is used as the fitness measure. The fitness of any 
given classifier would look no better than any other with just one of the two 
correct SNPs in the model. Indeed, we have observed this in our preliminary 
work (White et al, 2005). 

Research Questions Addressed 
The goal of the present study was to develop and evaluate a GP approach to 

genetic analysis in the context of genome-wide data. How does GP perform 
in this problem domain? Is GP a good approach for attribute selection? Is 
GP better than a random search when there are no building blocks? Is expert 
knowledge useful for defining building blocks that can be used by the GP? 

The rest of this paper is organized in the following manner. Section 2 de­
scribes the GP algorithm we used. Section 3 describes the multifactor dimen­
sionality reduction (MDR) method used as a function in the GP trees. Section 4 
describes the attribute quality measure that is used as expert knowledge. Section 
5 summarizes the data simulation and data analysis methods used to evaluate 
the GP approaches. 

2. Genetic Programming Methods 
There are two general approaches to selecting attributes for predictive mod­

els. The filter approach pre-processes the data by algorithmically assessing the 
quality of each attribute and then using that information to select a subset for 
classification. The wrapper approach iteratively selects subsets of attributes 
for classification using either a deterministic or stochastic algorithm. The key 
difference between the two approaches is that the classifier plays no role in 
selecting which attributes to consider in the filter approach. As (Freitas, 2002) 
reviews, the advantage of the filter is speed while the wrapper approach has the 
potential to do a better job classifying. For the problem domain considered here, 
there is an additional concern that the filter approach may eliminate important 
attributes from the dataset since no estimator of attribute quality will be perfect 
across all datasets. Thus, a stochastic wrapper or search method such as GP 
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Figure 2-1. Example GP trees for solutions (A). Example of a more complex tree that will be 
considered in future studies (B). 

always maintains some probability of including any attribute in the dataset. The 
goal of the present study is to develop and evaluate a GP approach to genome-
wide genetic analysis. In this initial study, the GP is functioning exclusively 
as an attribute selector. We have intentionally kept the solution representation 
simple as a baseline to demonstrate whether the learning algorithm is perform­
ing better than random search. Future studies will expand the function set to 
more than one function. 

Tree Representation of Solutions 
Figure 2-1A illustrates an example GP tree for this problem. As stated, we 

have kept the initial solution representation simple with one function in the 
root node and two children. We have selected the multifactor dimensionality 
reduction or MDR approach as an attribute constructor for the function set 
because it is able to capture interaction information (see Section 3). Each tree 
has two leaves or terminals consisting of attributes. The terminal set consists 
of 1000 attributes. Although we have started with a simple tree representation. 
Figure 2-IB illustrates what a more complex tree structure for a higher-order 
model derived from a larger function set might look like. Expanding the size 
and complexity of GP trees will be the focus of future studies. 
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Table 2-2. Summary of GP Parameters. 
Population Size 
Generations 
Crossover 
Crossover frequency 
Mutation frequency 
Fitness Function 
Selection 
Function Set 
Terminal Set 
Maximum Tree Depth 

5,000 
10 i 
Single-point subtree 
0.9 
0.0 
a * A-f/?*(5 
Binary tournament 
MDR 
Attributes 1-1000 
1.0 

Fitness Function 
We used a multiobjective fitness function in this study that consisted of two 

pieces in a simple linear combination of the form a * A + /? * Q. Here, A is 
our measure of accuracy obtained from the analysis of the single constructed 
attribute from the GP tree using a naive Bayes classifier. The parameter a 
is used to weight the accuracy measures. Q in this function represents the 
attribute quality estimate obtained from pre-processing the attributes using the 
TuRF algorithm (see Section 4). The parameter /? is used to weight the quality 
measures. We explored parameter settings of a = 1 and f3 = 0, a = 1 and 
(3 = 1, and a = 1 and (3 = 2. When /3 = 0 the fitness is solely determined by 
accuracy. Both A and Q were scaled using a Z transformation. 

Parameter Settings and Implementation 
Table 2-2 summarizes the parameter settings for the GP in a Koza-style 

tableau (Koza, 1992). Since each tree has exactly two attributes, an initial 
population size of 5,000 trees will include 10,000 total attributes. Since there 
are only 1,000 attributes in the terminal set we are confident that each attribute 
will be represented as a building block in the initial population. However, the 
probability of any one tree receiving both functional attributes (i.e. the solution) 
is 0.001 * 0.001 or 10~^. Thus, it is unlikely that any one tree in the initial 
population will be the correct solution. For the random search, we generated an 
initial population of 5,000 * 10 or 50,000 trees and selected the best. The GP 
was implemented in C++ using GAlib (http://lancet.mit.edu/ga/). The crossover 
operator was modified to ensure binary trees of depth one. 
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3. Multifactor Dimensionality Reduction (MDR) for 
Attribute Construction 

Multifactor dimensionality reduction (MDR) was developed as a nonpara-
metric and genetic model-free data mining strategy for identifying combina­
tion of SNPs that are predictive of a discrete clinical endpoint (Ritchie et al., 
2001; Hahn et al, 2003; Ritchie et al., 2003; Hahn and Moore, 2004; Moore, 
2004; Moore et al., 2006). The MDR method has been successfully applied 
to detecting gene-gene interactions for a variety of common human diseases 
including, for example, sporadic breast cancer (Ritchie et al., 2001), essential 
hypertension (Moore and Williams, 2002; Williams et al., 2004), atrial fibril­
lation (Tsai et al., 2004), myocardial infarction (Coffey et al, 2004), type II 
diabetes (Cho et al, 2004), prostate cancer (Xu et al, 2005), bladder cancer 
(Andrew et al, 2006), schizophrenia (Qin et al, 2005), and familial amyloid 
polyneuropathy (Soares et al, 2005). The MDR method has also been suc­
cessfully applied in the context of pharmacogenetics and toxicogenetics e.g. 
(Wilke et al, 2005). At the heart of the MDR approach is an attribute construc­
tion algorithm that creates a new attribute by pooling genotypes from multiple 
SNPs. Constructive induction using the MDR kernel is accomplished in the 
following way. Given a threshold T, a multilocus genotype combination is 
considered high-risk if the ratio of cases (subjects with disease) to controls 
(healthy subjects) exceeds T, else it is considered low-risk. Genotype combina­
tions considered to be high-risk are labeled Gl while those considered low-risk 
are labeled GO. This process constructs a new one-dimensional attribute with 
levels GO and Gl. It is this new single variable that is returned by the MDR 
function in the GP function set. Open-source software in Java and C are freely 
available from http://www.epistasis.org/mdr.html. 

4. Expert Knowledge from T\ined ReliefF 
Our goal was to provide an external measure of attribute quality that could 

be used as expert knowledge by the GR Here, this external measure used was 
statistical but could just as easily be biological, for example. There are many 
different statistical and computational methods for determining the quality of 
attributes. Our goal was to identify a method that is capable of identifying 
attributes that predict class primarily through dependencies or interactions with 
other attributes. (Kira and Rendell, 1992) developed an algorithm called Relief 
that is capable of detecting attribute dependencies. Relief estimates the quality 
of attributes through a type of nearest neighbor algorithm that selects neighbors 
(instances) from the same class and from the different class based on the vector 
of values across attributes. Weights (W) or quality estimates for each attribute 
(A) are estimated based on whether the nearest neighbor (nearest hit, H) of a ran­
domly selected instance (R) from the same class and the nearest neighbor from 
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the other class (nearest miss, M) have the same or different values. This pro­
cess of adjusting weights is repeated for m instances. The algorithm produces 
weights for each attribute ranging from -1 (worst) to +1 (best). (Kononenko, 
1994) improved upon Relief by choosing n nearest neighbors instead of just 
one. This new ReliefF algorithm has been shown to be more robust to noisy 
attributes (Robnik-Sikonja and Kononenko, 2003) and is widely used in data 
mining applications. 

We have previously developed our own extension. Tuned ReliefF (TuRF), 
that is significantly better than ReliefF in this domain (Moore et al., 2006). Re­
liefF is able to capture attribute interactions because it selects nearest neighbors 
using the entire vector of values across all attributes. However, this advan­
tage can also be problematic because the presence of many noisy attributes can 
reduce the signal the algorithm is trying to capture. The TuRF algorithm sys­
tematically removes attributes that have low quality estimates so that the ReliefF 
values in the remaining attributes can be re-estimated. The motivation behind 
this algorithm is that the ReliefF estimates of the true functional attributes will 
improve as the noisy attributes are removed from the dataset. We applied TuRF 
as described by (Moore et al., 2006) to each dataset. 

5. Data Simulation and Analysis 
The goal of the simulation study is to generate artificial datasets with high 

concept difficulty to evaluate the power of GP in the domain of human genet­
ics. We first developed 30 different penetrance functions (see Section 1.3) that 
define a probabilistic relationship between genotype and phenotype where sus­
ceptibility to disease is dependent on genotypes from two SNPs in the absence 
of any independent effects. The 30 penetrance functions include groups of 
five with heritabilities of 0.025, 0.05, 0.1, 0.2, 0.3, or 0.4. These heritabilities 
range from a very small to a large genetic eifect size. Each functional SNP had 
two alleles with frequencies of 0.4 and 0.6. Table 2-3 summarizes the pene­
trance values to three significant digits for one of the 30 models. The values 
in parentheses are the genotype frequencies. All 30 models with full precision 
are available upon request. Each of the 30 models was used to generate 100 
replicate datasets with a sample size of 1600. This is a medium sample size 
for a typical genetic study. Each dataset consisted of an equal number of case 
(disease) and control (no disease) subjects. Each pair of functional SNPs was 
combined within a genome-wide set of 998 randomly generated SNPs for a total 
of 1000 attributes. A total of 3,000 datasets were generated and analyzed. For 
each set of 100 datasets we count the number of times the correct two functional 
attributes are selected as the best model by the GP. This count expressed as a 
percentage is an estimate of the power of the method. That is, how often does 
GP find the right answer that we know is there? We statistically compared these 
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Table 2-3. Penetrance values for an example epistasis model 

BB (0.25) 
Bb(0.50) 
bb (0.25) 

AA (0.25) 
0.137 
0.482 
0.193 

Aa (0.50) 
0.484 
0.166 
0.361 

aa (0.25) 
0.187 
0.365 
0.430 

power estimates between the methods (e.g. random search vs. GP) using a chi-
square test of independence. Results were considered statistically significant 
when the p-value for the chi-square test statistic was < 0.05. 

6. Experimental Results 
Figure 2-2 summarizes the average power for each method and each heri-

tability level. Each bar in the barplots represents the power averaged over the 
five different models for each of the heritabilities. Here, power represents the 
number of times out of 100 replicates the GP found the right two attributes 
(SNPs). Results are shown for random search (R), GP using classification ac­
curacy (A) as the fitness function {a = I and /? = 0), GP with accuracy and 
attribute quality (Ql) with a weight of one as the fitness function (a = 1 and 
(3 = 1), and GP with accuracy and attribute quality (Q2) with a weight of two 
as the fitness function (a = 1 and (3 = 2). 

We find that GP with accuracy (A) as the fitness function does no better than 
random search (R) across all genetic models and all genetic effect sizes. In a few 
select cases random search was significantly better (P < 0.05) than GP using 
just accuracy for fitness. One might expect random search to outperform GP in 
this case because random search consists of one population of 50,000 solutions. 
The GP only works with an initial population of 5,000 that is then processed 
for 10 generations. Thus, random search starts with a greater diversity of trees 
than GP. If GP is truly learning then this difference shouldn't matter. 

At a heritability of 0.05 and greater there is clear difference between the GP 
that uses attribute quality in the fitness function (Ql and Q2) versus the GP that 
just uses accuracy (A). This difference was statistically significant ( P < 0.05) 
across most models and most heritabilities. Here, GP is also outperforming 
random search (P < 0.05). This is clear evidence that leaming is occurring. It 
is interesting to note that increasing the weight of the attribute quality to twice 
that of accuracy (a = 1 and /? = 2) performed no better than equal weighting 
(a = 1 and /? - 1) (P > 0.05). 

7. Discussion and Conclusion 
There are several important conclusions from this study. First, a GP that uses 

classifier accuracy as the fitness function does not perform better than random 
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Figure 2-2. Barplots summarizing the power of random search (R), GP using classification 
accuracy (A) as the fitness function (a — 1 and (3 = 0), GP with accuracy and attribute quality 
(Ql) with a weight of one as the fitness function {a = 1 and /? — 1), and GP with accuracy and 
attribute quality (Q2) with a weight of two as the fitness function (a = 1 and (3 = 2). 
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search in this specific domain. Second, a multi-objective fitness function that 
uses expert knowledge in addition to classifier accuracy improves the ability of 
GP to exploit building blocks and thus learn in a manner that is significantly 
better than a random search. The discussion of these findings is organized 
according to the four questions presented in Section 1.1 that are also listed by 
(Yu et al., 2005). 

Is Genetic Programming Useful for the Analysis of 
Genome-Wide Datasets in the Domain of Human Genetics? 

(Langdon, 1998) reviews three general classes of search methods that can 
be employed for solving large-scale problems. The first and simplest is the 
enumerative approach. The goal of this search method is to explore all possible 
solutions. This is clearly the first choice because it is guaranteed to find the best 
solution. However, it is often the case that the enumerative approach exceeds 
available computer time. The next class of search methods includes calculus 
based algorithms. Calculus-based search methods are often looking for maxima 
or minima using derivatives or gradients. These approaches are also called hill-
climbers because they inch towards a global best solution at the top of a smooth 
hill. The third general class of search algorithms is referred to as stochastic. 
Stochastic algorithms are based on random number generators and probabilities 
rather than deterministic rules. The simplest and most naive stochastic search 
simply generates random solutions that are independently evaluated. Genetic 
programming is an example of a stochastic search algorithm that usually starts 
out random and then uses probability functions to select and recombine solutions 
based on their fitness or value. 

Stochastic search algorithms such as GP are more appealing for the genome-
wide genetic analysis problem because the search space is astronomical and the 
fitness landscape is rugged, perhaps even resembling a needle in a haystack. 
Enumerative approaches aren't computationally feasible and hill-climbers will 
get lost in the local structure of the fitness landscape. Is a stochastic approach 
like GP useful for this type of problem? Is it better than a simple random 
search? Based on the results of the present study we would argue that GP is 
useful for the analysis of complex genetic datasets only when building blocks 
are present. When building blocks are not present or are poorly defined a GP 
may not perform any better than a random search. This is consistent with 
our previous experiments in this domain (White et al., 2005). This is also 
consistent with the idea of a competent genetic algorithm (cGA) reviewed by 
(Goldberg, 2002). Goldberg argues that understanding and exploiting building 
blocks (schemata) is essential to the success of GAs and by extension to GP 
(Sastry et al., 2004). There are two important issues here. The first issue is to 
make sure the building blocks needed to construct good solutions are present. 
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The second is to make sure the good building blocks are used and exploited 
during evolution. The present paper uses pre-processing the quality of the 
attributes to establish building blocks that otherwise don't exist. It was noted 
by (Yu et al., 2005) that providing rewards for building blocks is necessary for 
complex adaptation. This idea came from the artificial life work of (Lenski 
et al., 2003). 

How Important is Pre-Processing to the Success of Genetic 
Programming for Genome-Wide Genetic Analysis? 

As described above, the problem as we have defined it lacks building blocks 
that are critical to GP success. We have approached this problem by first 
estimating the quality of each genetic attribute or SNP using the TuRF algorithm 
that is based on ReliefF (see Section 4). Here, we used the attribute quality 
information as expert knowledge in a multi-objective fitness function. This use 
of the pre-processing information is described below in Sections 7.3 and 7.4. 
Although not implemented here, the attribute quality information could also be 
used to seed an initial GP population as a form of sensible initialization (Ryan 
and Azad, 2003). This is consistent with Goldberg's ideas for a competent GA 
(Goldberg, 2002). The idea behind sensible initialization is to fill the initial 
population with valid solutions. 

Do More Complicated Fitness Functions Improve the Success 
of Genetic Programming for Genome-Wide Genetic Analysis? 

We explored two fitness functions in the present study. First, we used a 
fitness function based exclusively on the estimate of accuracy obtained from 
a naive Bayes classifier. Second, we used a multi-objective fitness function 
that included the TuRF score in addition to accuracy in a linear function. We 
showed that including the expert knowledge in the fitness function significantly 
improved the performance of the GP. In fact, the GP approaches that measured 
fitness only as a function of accuracy did not perform better than a simple 
random search. Both pieces of this fitness function are important. The TuRF 
scores "help" the fitness by exploiting good building blocks. The accuracy 
piece comes into play when the right building blocks come together to form a 
predictive statistical model. One piece of the fitness measure cannot succeed 
without the other. The use of multi-objective fitness functions has been explored 
extensively (Coello et al., 2002; Deb, 2001; Zhang and Rockett, 2006). For 
example, (Koza et al., 2005) used a GP with a multi-objective fitness function 
that had 16 different pieces to design analog circuits. As (Freitas, 2002) reviews, 
others have included pre-computed attribute quality estimates in the fitness 
function for attribute selection e.g. (Bala et al., 1996). Exploring the use of 
Pareto fronts will also be important. 
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What is the Best Way to Include Expert Knowledge in 
Genetic Programming for Genome-Wide Genetic Analysis? 

There are multiple different sources of information that could be 
used as expert knowledge in a GP. In this study, we used a statisti­
cal measure of attribute quality. However, future work needs to ex­
plore ways to include domain specific knowledge in the GP. There are 
a number of different public databases available to geneticists that could 
be mined for expert knowledge. For example, the PubMed database 
(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed) from the U.S. 
National Library of Medicine holds over 16 million citations from life sci­
ence joumal articles. There are a number of computational algorithms and 
tools available now for extracting information such as the co-occurrence of 
keywords from abstracts from the PubMed database (Jensen et al., 2006). If 
two genes co-occur frequently in joumal abstracts then one could infer that 
there is a functional relationship. This type of information could be used to 
guide a GP search for combinations of SNPs that predict disease. 

The availability of domain-specific expert knowledge raises the question of 
the best way to use it in a GP. This is a topic that has received some attention 
in recent years. (Jin, 2005) covers the use of expert knowledge in population 
initialization, recombination, mutation, selection, reproduction, multi-objective 
fitness functions, and human-computer interaction, for example. We focused 
in this study exclusively on the fitness function. It would be interesting to 
see if expert knowledge might play an important role in selection, for example. 
Using TuRF scores for selection might make sense in this domain given accuracy 
doesn't provide any useful information until the right model is found. Similar 
arguments could be made for reproduction, recombination and mutation, for 
example. 

Future Studies 
This study presents preliminary evidence suggesting that GP might be useful 

for the genome-wide genetic analysis of common human diseases that have a 
complex genetic architecture. These results raise numerous questions, some of 
which have been discussed here. It will be important to extend this study to 
higher-order genetic models. How well does GP do when faced with finding 
three, four, or more SNPs that interact in a nonlinear manner to predict disease 
susceptibility? How does extending the function set to additional attribute 
construction functions impact performance? How does extending the attribute 
set impact performance? Is using GP better than available or similar filter 
approaches? To what extent can GP theory help formulate an optimal GP 
approach to this problem? Does GP outperform other evolutionary or non-
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evolutionary search methods? This paper provides a starting point to begin 
addressing some of these questions. 
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