
Chapter 5

Polyconvex, quasiconvex
and rank one convex
functions

5.1 Introduction

We now turn our attention to the vectorial case. Recall that we are considering
integrals of the form

I (u) =
∫

Ω

f (x, u (x) ,∇u (x)) dx

where
- Ω ⊂ R

n is an open set;
- u : Ω → R

N and hence ∇u ∈ R
N×n;

- f : Ω × R
N × R

N×n → R, f = f (x, u, ξ) , is a Carathéodory function.
While in Part I we were essentially concerned with the scalar case (N = 1

or n = 1), we now deal with the vectorial case (N,n > 1). The convexity of
ξ → f (x, u, ξ) played the central role in the scalar case (N = 1 or n = 1),
see Chapter 3. In the vectorial case, it is still a sufficient condition to ensure
weak lower semicontinuity of I in W 1,p

(
Ω; RN

)
; it is, however, far from being

a necessary one. Such a condition is the so-called quasiconvexity introduced by
Morrey. It turns out (see Chapter 8) that

f quasiconvex ⇔ I weakly lower semicontinuous.

Since the notion of quasiconvexity is not a pointwise condition, it is hard to
verify if a given function f is quasiconvex. Therefore one is led to introduce
a slightly weaker condition, known as rank one convexity, that is equivalent
to the ellipticity of the Euler-Lagrange system of equations associated to the



156 Polyconvex, quasiconvex and rank one convex functions

functional I. We also define a stronger condition, called polyconvexity, that
naturally arises when we try to generalize the notions of duality for convex
functions to the vectorial context. One can relate all these definitions through
the following diagram

f convex ⇒ f polyconvex ⇒ f quasiconvex ⇒ f rank one convex.

We should again emphasize that in the scalar case all these notions are equivalent
to the usual convexity condition.

The definitions and main properties of these generalized notions of convexity
are discussed in Section 5.2.

In Section 5.3, we give several examples. In particular we show that all the
reverse implications are false.

Finally, in an appendix (Section 5.4), we gather certain elementary properties
of determinants.

5.2 Definitions and main properties

5.2.1 Definitions and notations

Recall that, if ξ ∈ R
N×n, we write

ξ =

⎛
⎜⎝

ξ11 · · · ξ1n
...

. . .
...

ξN1 · · · ξNn

⎞
⎟⎠ =

⎛
⎜⎝

ξ1

...
ξN

⎞
⎟⎠ = (ξ1, · · · , ξn) =

(
ξiα
)1≤i≤N
1≤α≤n .

In particular if u : R
n → R

N we write

∇u =

⎛
⎜⎜⎜⎜⎜⎝

∂u1

∂x1
· · · ∂u1

∂xn
...

. . .
...

∂uN

∂x1
· · · ∂uN

∂xn

⎞
⎟⎟⎟⎟⎟⎠
.

We may now define all the notions introduced above.

Definition 5.1 (i) A function f : R
N×n → R ∪ {+∞} is said to be rank one

convex if
f (λξ + (1 − λ) η) ≤ λf (ξ) + (1 − λ) f (η)

for every λ ∈ [0, 1] , ξ, η ∈ R
N×n with rank {ξ − η} ≤ 1.

(ii) A Borel measurable and locally bounded function f : R
N×n → R is said

to be quasiconvex if

f (ξ) ≤ 1
measD

∫
D

f (ξ + ∇ϕ (x)) dx
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for every bounded open set D ⊂ R
n, for every ξ ∈ R

N×n and for every ϕ ∈
W 1,∞

0

(
D; RN

)
.

(iii) A function f : R
N×n → R ∪ {+∞} is said to be polyconvex if there

exists F : R
τ(n,N) → R ∪ {+∞} convex, such that

f (ξ) = F (T (ξ)) ,

where T : R
N×n → R

τ(n,N) is such that

T (ξ) := (ξ, adj2 ξ, · · · , adjn∧N ξ) .

In the preceding definition, adjs ξ stands for the matrix of all s × s minors of
the matrix ξ ∈ R

N×n, 2 ≤ s ≤ n ∧N = min {n,N} and

τ (n,N) :=
n∧N∑
s=1

σ (s) , where σ (s) :=
(
N
s

)(
n
s

)
=

N !n!
(s!)2 (N − s)! (n− s)!

.

(iv) A function f : R
m → R ∪ {+∞} is said to be separately convex, or

convex in each variable, if the function

xi → f (x1, · · · , xi−1, xi, xi+1, · · · , xm) is convex for every i = 1, · · · ,m,

for every fixed (x1, · · · , xi−1, xi+1, · · · , xm) ∈ R
m−1.

(v) A function f is called polyaffine, quasiaffine or rank one affine if f and
−f are, respectively, polyconvex, quasiconvex or rank one convex.

Remark 5.2 (i) The concepts were introduced by Morrey [453], but the ter-
minology is that of Ball [53]; note, however, that Ball calls quasiaffine functions
null Lagrangians.

(ii) If we adopt the tensorial notation, the notion of rank one convexity can
be read as follows: the function ϕ : R → R ∪ {+∞} , ϕ = ϕ (t) , defined by

ϕ (t) := f (ξ + ta⊗ b)

is convex for every ξ ∈ R
N×n and for every a ∈ R

N , b ∈ R
n, where we have

denoted by
a⊗ b =

(
aibα

)1≤i≤N
1≤α≤n .

(iii) It is easily seen that in the definition of quasiconvexity, one can replace
the set of test functions W 1,∞

0 by C∞
0

(
D; RN

)
.

(iv) We will see in Proposition 5.11 that if in the definition of quasiconvexity
the inequality holds for one bounded open set D, it holds for any such set.

(v) We did not give a definition of quasiconvex functions f that may take
the value +∞, contrary to polyconvexity and rank one convexity. There have
been such definitions given, for example by Ball-Murat [65] and Dacorogna-
Fusco [186] (see also Wagner [594]), in the case where f is allowed to take the
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value +∞. However, although such definitions have been shown to be necessary
for weak lower semicontinuity, it has not been proved that they were sufficient
and this seems to be a difficult problem. The notion of quasiconvexity being
useful only as an equivalent to weak lower semicontinuity we have disregarded
the extension to the case R∪{+∞} ; while those of polyconvexity and rank one
convexity will be shown to be useful.

(vi) We have gathered in Section 5.4 some elementary facts about determi-
nants and adjs of matrices. Note that in the case N = n = 2, the notion of
polyconvexity can be read as follows

{
σ (1) = 4, σ (2) = 1, τ (n,N) = τ (2, 2) = 5,
T (ξ) = (ξ, det ξ) , f (ξ) = F (ξ, det ξ) .

(vii) In the definition of polyconvexity of a given function f, the associated
function F (i.e. f (ξ) = F (T (ξ))) in general is not unique. For example, let
N = n = 2,

ξ =

(
ξ11 ξ12

ξ21 ξ22

)

and
f (ξ) = |ξ|2 =

(
ξ11
)2 +

(
ξ21
)2 +

(
ξ12
)2 +

(
ξ22
)2

=
(
ξ11 − ξ22

)2 +
(
ξ12 + ξ21

)2 + 2 det ξ.

Let F1, F2 : R
5 → R be defined by

F1 (ξ, a) := |ξ|2 and F2 (ξ, a) :=
(
ξ11 − ξ22

)2
+
(
ξ12 + ξ21

)2
+ 2a.

Then F1 and F2 are convex, F1 
= F2 and

f (ξ) = F1 (T (ξ)) = F1 (ξ, det ξ) = F2 (T (ξ)) = F2 (ξ, det ξ) .

We will see, after Theorem 5.6, that using either Carathéodory theorem or the
separation theorem one can privilege one among the numerous functions F.

(viii) The notion of separate convexity does not play any direct role in the
calculus of variations. However it can serve as a model for better understanding
of the more difficult notion of rank one convexity.

(ix) We will see (see Theorem 5.20) that the notions of polyaffine, quasiaffine
or rank one affine are equivalent. Therefore the first and third concepts will not
be used anymore. ♦

5.2.2 Main properties

In Section 5.3, we give several examples of polyconvex, quasiconvex and rank
one convex functions, but before that we show the relationship between these
notions. The following result is essentially due to Morrey [453], [455].
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Theorem 5.3 (i) Let f : R
N×n → R. Then

f convex ⇒ f polyconvex ⇒ f quasiconvex ⇒ f rank one convex.

If f : R
N×n → R ∪ {+∞} , then

f convex ⇒ f polyconvex ⇒ f rank one convex.

(ii) If N = 1 or n = 1, then all these notions are equivalent.
(iii) If f ∈ C2

(
R
N×n) , then rank one convexity is equivalent to Legendre-

Hadamard condition (or ellipticity condition)

N∑
i,j=1

n∑
α,β=1

∂2f (ξ)
∂ξiα∂ξ

j
β

λiλjµαµβ ≥ 0

for every λ ∈ R
N , µ ∈ R

n, ξ =
(
ξiα
)1≤i≤N
1≤α≤n ∈ R

N×n.

(iv) If f : R
N×n → R is convex, polyconvex, quasiconvex or rank one convex,

then f is locally Lipschitz.

Remark 5.4 (i) We will show later that all the counter implications are false.
- The fact that

f polyconvex 
⇒ f convex

is elementary. For example, when N = n = 2, the function

f (ξ) := det ξ

is polyconvex but not convex.
- We will see several examples (with N,n ≥ 2), notably in Sections 5.3.2,

5.3.8 and 5.3.9, of quasiconvex functions that are not polyconvex so that we
have

f quasiconvex 
⇒ f polyconvex.

However, there are no elementary examples of this fact.
- The result that

f rank one convex 
⇒ f quasiconvex

is the fundamental example of Sverak (see Section 5.3.7), which is valid for
n ≥ 2 and N ≥ 3. However it is still an open problem to know whether f
rank one convex implies f quasiconvex, when N = 2 (so, in particular, the case
N = n = 2 is open).

(ii) The Legendre-Hadamard condition is the usual inequality required for
the Euler-Lagrange system of equations and is known in this case as ellipticity
(see Agmon-Douglis-Nirenberg [7]).
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(iii) It is straightforward to see that

f rank one convex ⇒ f separately convex.

However, the reverse implication is false, as the following example shows. Let
N = n = 2 and

f (ξ) := ξ11ξ
1
2 .

This function is clearly separately convex but not rank one convex. ♦
Before proceeding with the proof of the theorem, we give a lemma involving

some elementary properties of the determinants.

Lemma 5.5 Let ξ ∈ R
N×n and T (ξ) be defined as above.

(i) For every ξ, η ∈ R
N×n with rank {ξ − η} ≤ 1 and for every λ ∈ [0, 1] ,

the following identity holds:

T (λξ + (1 − λ) η) = λT (ξ) + (1 − λ) T (η) .

(ii) For every D ⊂ R
n a bounded open set, ξ ∈ R

N×n, ϕ ∈ W 1,∞
0

(
D; RN

)
,

the following result is valid:

T (ξ) =
1

measD

∫
D

T (ξ + ∇ϕ (x)) dx.

Proof. The proof is elementary and can be found in Proposition 5.65 and
Theorem 8.35. We give here, for the sake of illustration, the proof in the case
N = n = 2. We then have

ξ =

(
ξ11 ξ12

ξ21 ξ22

)

and
T (ξ) = (ξ, det ξ) =

(
ξ11 , ξ

1
2 , ξ

2
1 , ξ

2
2 , ξ

1
1ξ

2
2 − ξ12ξ

2
1

)
.

(i) Since rank{ξ − η} ≤ 1, there exist a, b ∈ R
2 such that

η = ξ + a⊗ b =

(
ξ11 + a1b1 ξ12 + a1b2

ξ21 + a2b1 ξ22 + a2b2

)
.

We therefore get that

det (λξ + (1 − λ) η) = det (ξ + (1 − λ) a⊗ b)
= λdet ξ + (1 − λ) det η.

We then deduce that, whenever rank {ξ − η} ≤ 1,

T (λξ + (1 − λ) η) = (λξ + (1 − λ) η, det (λξ + (1 − λ) η))
= λT (ξ) + (1 − λ)T (η) .
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(ii) The proof is similar to the preceding one. Note first that if ϕ ∈
C2

(
D; R2

)
, then

det∇ϕ =
∂ϕ1

∂x1

∂ϕ2

∂x2
− ∂ϕ1

∂x2

∂ϕ2

∂x1
=

∂

∂x1
(ϕ1 ∂ϕ

2

∂x2
) − ∂

∂x2
(ϕ1 ∂ϕ

2

∂x1
).

Integrating by part the above identity, we have that, if ϕ ∈ C2
0

(
D; R2

)
, then

det ξ measD =
∫
D

[det ξ + ξ11
∂ϕ2

∂x2
+ ξ22

∂ϕ1

∂x1
− ξ12

∂ϕ2

∂x1
− ξ21

∂ϕ1

∂x2
+ det∇ϕ]dx

=
∫
D

det (ξ + ∇ϕ (x)) dx.

By density, the above identity holds also if ϕ ∈ W 1,∞
0

(
D; R2

)
. We then deduce

that for every ϕ ∈ W 1,∞
0

(
D; R2

)
, we must have

T (ξ) measD = (
∫
D

(ξ + ∇ϕ (x)) dx,
∫
D

det (ξ + ∇ϕ (x)) dx)

=
∫
D

T (ξ + ∇ϕ (x)) dx.

This concludes the proof of the lemma.

We may now proceed with the proof of Theorem 5.3.

Proof. Part 1 : f convex ⇒ f polyconvex. This implication is trivial.

Part 2 : f polyconvex ⇒ f quasiconvex. Since f is polyconvex, there exists
F : R

τ(n,N) → R convex, such that

f (ξ) = F (T (ξ)) .

Using Lemma 5.5 and Jensen inequality we obtain

1
measD

∫
D

f (ξ + ∇ϕ (x)) dx =
1

measD

∫
D

F (T (ξ + ∇ϕ (x))) dx

≥ F (
1

measD

∫
D

T (ξ + ∇ϕ (x)) dx) = F (T (ξ)) = f (ξ) ,

for every bounded open set D ⊂ R
n, for every ξ ∈ R

N×n and for every ϕ ∈
W 1,∞

0

(
D; RN

)
. The inequality is precisely the definition of quasiconvexity.

Part 3 : f quasiconvex ⇒ f rank one convex. The proof is similar to that
of Theorem 3.13 of Chapter 3. Recall that we want to show that

f (λξ + (1 − λ) η) ≤ λf (ξ) + (1 − λ) f (η)

for every λ ∈ [0, 1] , ξ, η ∈ R
N×n with rank {ξ − η} ≤ 1. To achieve this goal

we let ε > 0 and we apply Lemma 3.11. We therefore find disjoint open sets
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Dξ , Dη ⊂ D and ϕ ∈W 1,∞
0

(
D; RN

)
such that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|measDξ − λmeasD| ≤ ε, |measDη − (1 − λ) measD| ≤ ε

∇ϕ (x) =

{
(1 − λ) (ξ − η) if x ∈ Dξ

−λ (ξ − η) if x ∈ Dη

‖∇ϕ‖L∞ ≤ γ

where γ = γ (ξ, η,D) is a constant independent of ε. We may then use the
quasiconvexity of f to get
∫
D

f (λξ + (1 − λ) η + ∇ϕ (x)) dx

=
∫
Dξ

f (ξ) dx+
∫
Dη

f (η) dx+
∫
D−(Dξ∪Dη)

f (λξ + (1 − λ) η + ∇ϕ (x)) dx

≥ f (λξ + (1 − λ) η)measD.

Using the properties of the function ϕ and the fact that ε is arbitrary, we have
indeed obtained that f is rank one convex.

Part 4. If we now consider the case where f : R
N×n → R ∪ {+∞} , the

first implication: f convex ⇒ f polyconvex is still trivial. The implication
f polyconvex ⇒ f rank one convex is also elementary if we use Lemma 5.5.
Indeed since f is polyconvex, there exists F : R

τ(n,N) → R ∪ {+∞} convex so
that

f (ξ) = F (T (ξ)) .

Let λ ∈ [0, 1] , ξ, η ∈ R
N×n with rank {ξ − η} ≤ 1, then, using Lemma 5.5,

we get

f (λξ + (1 − λ) η) = F (T (λξ + (1 − λ) η)) = F (λT (ξ) + (1 − λ) T (η))
≤ λF (T (ξ)) + (1 − λ)F (T (η)) = λf (ξ) + (1 − λ) f (η)

which is precisely the rank one convexity of f.

(ii) The second statement of the theorem, asserting that if N = 1 or n = 1,
then all the notions are equivalent, is trivial.

(iii) We now assume that f is C2 and rank one convex, that is

ϕ (t) := f (ξ + tλ⊗ µ)

is convex in t ∈ R for every ξ ∈ R
N×n and for every λ ∈ R

N , µ ∈ R
n. Since ϕ is

also C2, we obtain immediately Legendre-Hadamard condition, by computing
ϕ′′ (t) and using the convexity of ϕ.

(iv) The last part of Theorem 5.3 is an immediate consequence of Theorem
2.31 of Chapter 2, since a rank one convex function is evidently separately
convex.
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5.2.3 Further properties of polyconvex functions

We now give different characterizations of polyconvex functions that are based
on Carathéodory theorem and separation theorems. The next result is due to
Dacorogna [177] and [179], following earlier results of Ball [53].

We first recall the notation that for any integer I

ΛI := {λ = (λ1, · · · , λI) : λi ≥ 0 and
∑I

i=1 λi = 1}.

Theorem 5.6 Part 1. Let f : R
N×n → R ∪ {+∞} , then the following two

statements are equivalent:
(i) f is polyconvex;
(ii) the next two properties hold:
• there exists a convex function c : R

τ → R ∪ {+∞} , where τ = τ (n,N) ,
such that

f (ξ) ≥ c (T (ξ)) for every ξ ∈ R
N×n; (5.1)

• for every ξi ∈ R
N×n, λ ∈ Λτ+1 , satisfying∑τ+1

i=1 λiT (ξi) = T (
∑τ+1
i=1 λiξi ), (5.2)

then
f(

∑τ+1
i=1 λiξi ) ≤

∑τ+1
i=1 λif (ξi) . (5.3)

Part 2. If (ii) is satisfied and if F : R
τ → R ∪ {+∞} is defined by

F (X) := inf{∑τ+1
i=1 λif (ξi) : λ ∈ Λτ+1 ,

∑τ+1
i=1 λiT (ξi) = X }, (5.4)

then F is convex and

f (ξ) = F (T (ξ)) for every ξ ∈ R
N×n. (5.5)

Moreover, for every X ∈ R
τ ,

F (X) = sup{G (X) : G : R
τ → R ∪ {+∞} convex

and f (ξ) = G (T (ξ)) , ∀ ξ ∈ R
N×n }.

Part 3. Let f : R
N×n → R, i.e. f takes only finite values. Then the following

conditions are equivalent:
(i) f is polyconvex;
(iii) for every ξ ∈ R

N×n, there exists β = β (ξ) ∈ R
τ such that

f (η) ≥ f (ξ) + 〈β (ξ) ;T (η) − T (ξ)〉 (5.6)

for every η ∈ R
N×n and where 〈·; ·〉 denotes the scalar product in R

τ .

Part 4. If (iii) is satisfied, then the function

h (X) := sup
ξ∈RN×n

{〈β (ξ) ;X − T (ξ)〉 + f (ξ)} (5.7)

is convex, takes only finite values and satisfies

f (ξ) = h (T (ξ)) for every ξ ∈ R
N×n. (5.8)
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Example 5.7 Let N = n = 2. Then (5.3) and (5.2) become
{

f(
∑6
i=1 λiξi ) ≤

∑6
i=1 λif (ξi) ,∑6

i=1 λi det (ξi) = det(
∑6

i=1 λiξi )

and (5.6) is read

f (η) ≥ f (ξ) + 〈γ (ξ) ; η − ξ〉 + δ (ξ) (det η − det ξ)

where γ (ξ) ∈ R
2×2 and δ (ξ) ∈ R. ♦

Remark 5.8 (i) The above theorem is a direct adaptation of Carathéodory
theorem and the separation theorems for polyconvex functions.

(ii) The condition (5.1) in the theorem implies that F defined in (5.4) does
not take the value −∞.

(iii) The theorem is important for the following reasons.
- It gives an intrinsic definition of polyconvexity, in the sense that it is not

given in terms of convexity properties of an associated function F.
- As already mentioned in the definition of the polyconvexity of a given

function f, the associated convex function F is not unique. Equation (5.4)
allows us to privilege one such function F. A similar remark can be done using
(5.7), as was also observed by Kohn and Strang [373], [374].

- If f : R
N×n → R (i.e. f takes only finite values), then F defined by (5.4)

also takes finite values.
(iv) In view of the above remark we can conclude that if f takes only finite

values then (i), (ii) and (iii) of Theorem 5.6 are equivalent.
(v) Some other properties of polyconvex functions in the cases N = n = 2

or N = n = 3 are given by Aubert [39]. ♦

Proof. We follow here the proof of Dacorogna [177], [179], inspired by earlier
considerations by Ball [53], which were based on results of Busemann-Ewald-
Shephard [110] and Busemann-Shephard [111].

Parts 1 and 2. (i) ⇒ (ii). Since f is polyconvex, there exists F : R
τ →

R ∪ {+∞} , τ = τ (n,N) , convex such that

f (ξ) = F (T (ξ)) . (5.9)

The existence of a function c is trivial, just choose c = F. The convexity of F
coupled with (5.2) gives immediately (5.3).

(ii) ⇒ (i). Assume that (5.3) holds for every (λi, ξi) , 1 ≤ i ≤ τ + 1,
satisfying (5.2). We wish to show that there exists F : R

τ(n,N) → R ∪ {+∞}
convex satisfying (5.9). Let I ≥ τ + 1 (τ = τ (n,N)) be an integer and for
X ∈ R

τ define

FI (X) := inf{∑I
i=1 λif (ξi) : λ ∈ ΛI ,

∑I
i=1 λiT (ξi) = X }. (5.10)
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We will show that FI satisfies (5.9) and that one can choose I = τ + 1, without
loss of generality, establishing hence (5.4). The proof is divided into four steps.

Step 1. We first show that FI is well defined.
Step 2. We next prove that I can be taken to be τ +1 in (5.10) without loss

of generality and we therefore denote FI by F (satisfying then (5.4)).
Step 3. We then show that F is convex.
Step 4. We finally establish that F satisfies (5.5).
We now proceed with the details of these four steps.
Step 1. Let us start by showing that FI is well defined. To do this we must

see that given X ∈ R
τ(n,N) and I ≥ τ + 1, then there exist λ ∈ ΛI and ξi such

that
∑
λiT (ξi) = X. In view of Carathéodory theorem, this is equivalent to

showing that
coT

(
R
N×n) = R

τ(n,N), (5.11)

where coM denotes the convex hull of M and

T
(
R
N×n) =

{
X ∈ R

τ(n,N) : there exists ξ ∈ R
N×n with T (ξ) = X

}
.

In order to establish (5.11), we proceed by contradiction. Assume that

co
(
T
(
R
N×n)) 
= R

τ .

Then from the separation theorems (see Corollary 2.11), there exist 0 
= α ∈
R
τ , β ∈ R, such that

co
(
T
(
R
N×n)) ⊂ V := {X ∈ R

τ : 〈α;X〉 ≤ β} (5.12)

where 〈·; ·〉 denotes the scalar product in R
τ , τ = τ (n,N) . Recall from the

definition of polyconvexity that

τ (n,N) =
n∧N∑
s=1

σ (s)

where σ (s) =
(
N
s

)(
n
s

)
. We then let for X ∈ R

τ(n,N)

X = (X1, X2, · · · , Xn∧N) ∈ R
σ(1) × R

σ(2) × · · · × R
σ(n∧N) = R

τ(n,N)

and similarly for α ∈ R
τ . We may then write

〈α;X〉 =
n∧N∑
s=1

〈αs;Xs〉 .

Since α 
= 0, there exists t ∈ {1, · · · , n ∧N} such that αt 
= 0 while αs = 0
if s < t (if α1 
= 0, then take t = 1). We now show that (5.12) leads to a
contradiction and therefore (5.11) holds. Let ξ ∈ R

N×n and therefore

T (ξ) = (ξ, adj2 ξ, · · · , adjn∧N ξ) ∈ T
(
R
N×n) ⊂ coT

(
R
N×n) .
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We choose ξ ∈ R
N×n such that

〈α;T (ξ)〉 = 〈αt; adjt ξ〉 
= 0.

This is possible by choosing (N − t) lines of ξ to be zero vectors of R
n and

choosing the other t lines of ξ so that 〈αt; adjt ξ〉 is non-zero.
Let λ ∈ R be arbitrary and multiply any of the t non zero lines of ξ

by λ. Denote the obtained matrix by η. We then have T (η) ∈ T
(
R
N×n)

⊂ coT
(
R
N×n) and

〈α;T (η)〉 = 〈αt; adjt η〉 = λ 〈αt; adjt ξ〉 = λ 〈α;T (ξ)〉 .

Using (5.12), we deduce that T (ξ) , T (η) ∈ V, i.e.
{

〈α;T (ξ)〉 ≤ β

〈α;T (η)〉 = λ 〈α;T (ξ)〉 ≤ β.

The arbitrariness of λ and the fact that 〈α;T (ξ)〉 
= 0 lead immediately to a
contradiction. This completes Step 1.

Step 2. We now want to show that in (5.10) we can take I = τ + 1. This is
done as in Theorem 2.13.

So let X ∈ R
τ , ξi ∈ R

N×n and λ ∈ ΛI be such that

X =
I∑
i=1

λiT (ξi) .

We first prove that there is no loss of generality if we choose I = τ + 2. Define

T (epi f) := {(T (ξ) , a) ∈ R
τ × R : f (ξ) ≤ a} ⊂ R

τ+1.

We then trivially have that (T (ξi) , f (ξi)) ∈ T (epi f) and if λ ∈ ΛI , we get

(X,
∑I

i=1 λif (ξi)) =
∑I

i=1 λi (T (ξi) , f (ξi)) ∈ coT (epi f) .

Using Carathéodory theorem, we find that in (5.10) we can take I = τ + 2. It
now remains to reduce I from τ + 2 to τ + 1 and this is done as in Theorem
2.35. We show that given X, T (ξi) ∈ R

τ , 1 ≤ i ≤ τ +2, f : R
N×n → R∪{+∞}

and α ∈ Λτ+2 with
τ+2∑
i=1

αiT (ξi) = X, (5.13)

then there exist β ∈ Λτ+2 such that at least one of the βi = 0 (meaning, upon
relabeling, that β ∈ Λτ+1) and

τ+2∑
i=1

βif (ξi) ≤
τ+2∑
i=1

αif (ξi) with
τ+2∑
i=1

βiT (ξi) = X. (5.14)
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It is clear that (5.14) will imply Step 2. Assume all αi > 0 in (5.13) and (5.14),
otherwise (5.14) would be trivial. Since from (5.13), we have

X ∈ co {T (ξ1) , · · · , T (ξτ+2)} ⊂ R
τ ,

it results, from Carathéodory theorem, that there exists α̃ ∈ Λτ+2 with at least
one of the α̃i = 0 such that

τ+2∑
i=1

α̃iT (ξi) = X.

We may assume without loss of generality that

τ+2∑
i=1

α̃if (ξi) >
τ+2∑
i=1

αif (ξi) , (5.15)

otherwise choosing βi = α̃i we would immediately obtain (5.14). We then let

J := {i ∈ {1, · · · , τ + 2} : αi − α̃i < 0} .

Observe that J 
= ∅, since otherwise αi ≥ α̃i ≥ 0 for every 1 ≤ i ≤ τ + 2 and
since at least one of the α̃i = 0, we would have a contradiction with

∑τ+2
i=1 αi =∑τ+2

i=1 α̃i = 1 and the fact that αi > 0 for every i. We then define

λ := min
i∈J

{ αi
α̃i − αi

}

and we have clearly λ > 0. Finally let

βi := αi + λ (αi − α̃i) , 1 ≤ i ≤ τ + 2.

We therefore have

βi ≥ 0,
τ+2∑
i=1

βi = 1, at least one of the βi = 0,
τ+2∑
i=1

βiT (ξi) = X

and from (5.15)

τ+2∑
i=1

βif (ξi) =
τ+2∑
i=1

αif (ξi) + λ

τ+2∑
i=1

(αi − α̃i) f (ξi)

≤
τ+2∑
i=1

αif (ξi) .

We have therefore obtained (5.14) and this concludes Step 2. Since I can be
taken to be τ + 1, we will then denote FI by F (i.e. (5.10) can be replaced
by (5.4)).
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Step 3. We now show F is convex. Let λ ∈ [0, 1] , X, Y ∈ R
τ . We want to

prove that
λF (X) + (1 − λ)F (Y ) ≥ F (λX (1 − λ) Y ) .

Fix ε > 0. From (5.4) we deduce that there exist λ, µ ∈ Λτ+1 and ξi, ηi ∈ R
N×n

such that

λF (X) + (1 − λ)F (Y ) + ε ≥ λ

τ+1∑
i=1

λif (ξi) + (1 − λ)
τ+1∑
i=1

µif (ηi) , (5.16)

with
τ+1∑
i=1

λiT (ξi) = X,

τ+1∑
i=1

µiT (ηi) = Y. (5.17)

For 1 ≤ i ≤ τ + 1, let

{
λ̃i = λλi Ci = ξi

λ̃i+τ+1 = (1 − λ)µi Ci+τ+1 = ηi .

Then (5.16) and (5.17) can be rewritten as

λF (X) + (1 − λ)F (Y ) + ε ≥
2τ+2∑
i=1

λ̃if (Ci) (5.18)

with λ̃ ∈ Λ2τ+2 and

2τ+2∑
i=1

λ̃iT (Ci) = λX + (1 − λ) Y. (5.19)

Taking the infimum in the right hand side of (5.18) over all λ̃i , Ci satisfying
(5.19), using (5.10) and Step 2 we have

λF (X) + (1 − λ)F (Y ) + ε ≥ F (λX + (1 − λ)Y ) ;

ε > 0 being arbitrary, we have indeed established the convexity of F.

Step 4. It now remains to show (5.5), i.e.

f (ξ) = F (T (ξ))

where F satisfies (5.4), namely

F (X) = inf{∑τ+1
i=1 λif (ξi) :

∑τ+1
i=1 λiT (ξi) = X }.

We have just shown that F is convex. Choosing X = T (ξ) we have from
(5.3), (5.2) and (5.11) that the infimum in (5.4) is attained precisely by f (ξ) ,
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hence (5.5) holds. The fact that F is the supremum over all convex functions
G satisfying

f (ξ) = G (T (ξ)) for every ξ ∈ R
N×n,

follows at once from (5.4). This concludes Part 2.
Parts 3 and 4. (i) ⇒ (iii). Since f is polyconvex and finite we may use

Parts 1 and 2 to find F : R
τ → R convex and finite satisfying (see (5.4)){

f (ξ) = F (T (ξ))

F (X) := inf{∑τ+1
i=1 λif (ξi) :

∑τ+1
i=1 λiT (ξi) = X }.

Since F is convex and finite, it is continuous and therefore (see Corollary 2.51
of Chapter 2), for each X ∈ R

τ , there exists γ (X) ∈ R
τ such that

F (Y ) ≥ F (X) + 〈γ (X) ;Y −X〉

for all Y ∈ R
τ . Choosing Y = T (η) , X = T (ξ) , β (ξ) = γ (T (ξ)) , we get (5.6),

namely
f (η) ≥ f (ξ) + 〈β (ξ) ;T (η) − T (ξ)〉 .

(iii) ⇒ (i). We define h as in (5.7), namely

h (X) := sup
ξ∈RN×n

{〈β (ξ) ;X − T (ξ)〉 + f (ξ)} .

The function h, being a supremum of affine functions, is convex. If X = T (η)
then (5.6) ensures that the supremum in (5.7) is attained by f (η) and therefore
we have

f (η) = h (T (η))

as claimed. Moreover, h takes only finite values, since by Part 2 we have h ≤ F,
where F is as in (5.4).

We now obtain as a corollary that a polyconvex function with subquadratic
growth must be convex. This is in striking contrast with quasiconvex and rank
one convex functions as was established by Sverak [549] (see Theorem 5.54)
and later by Gangbo [300] in an indirect way; see also Section 5.3.10. We also
prove that a polyconvex function cannot have an arbitrary bound from below,
contrary to quasiconvex and rank one convex functions (see Section 5.3.8).

Corollary 5.9 Let f : R
N×n → R be polyconvex.

(i) If there exist α ≥ 0 and 0 ≤ p < 2 such that

f (ξ) ≤ α (1 + |ξ|p) for every ξ ∈ R
N×n,

then f is convex.
(ii) There exists γ ≥ 0 such that

f (ξ) ≥ −γ (1 + |ξ|n∧N ) for every ξ ∈ R
N×n.
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Proof. (i) Since f is polyconvex and finite, we can find, for every ξ ∈ R
N×n,

according to Theorem 5.6 (iii), β = β (ξ) ∈ R
τ such that

f (η) ≥ f (ξ) + 〈β (ξ) ;T (η) − T (ξ)〉 , for every η ∈ R
N×n. (5.20)

Using the growth condition on f, we find that

f (ξ) + 〈β (ξ) ;T (η) − T (ξ)〉 ≤ f (η) ≤ α (1 + |η|p) , for every η ∈ R
N×n.

(5.21)
We can also rewrite it as

f (ξ)+〈β (ξ) ;T (η) − T (ξ)〉 = f (ξ)+〈β1 (ξ) ; η − ξ〉+
n∧N∑
s=2

〈βs (ξ) ; adjs η − adjs ξ〉

and hence, for every η ∈ R
N×n,

g (ξ) + 〈β1 (ξ) ; η〉 +
n∧N∑
s=2

〈βs (ξ) ; adjs η〉 ≤ α (1 + |η|p) (5.22)

where

g (ξ) := f (ξ) − 〈β1 (ξ) ; ξ〉 −
n∧N∑
s=2

〈βs (ξ) ; adjs ξ〉 .

Replacing η by tη, with t ∈ R, in (5.22) we get

g (ξ) + t 〈β1 (ξ) ; η〉 +
n∧N∑
s=2

ts 〈βs (ξ) ; adjs η〉 ≤ α (1 + |t|p |η|p) .

Letting t → ∞, using the fact that η is arbitrary and p < 2, we obtain that
βs (ξ) = 0 for every s = 2, · · · , n∧N. Returning to (5.21) we find that, for every
ξ ∈ R

N×n,

f (ξ) + 〈β1 (ξ) ; η − ξ〉 ≤ f (η) , for every η ∈ R
N×n

which implies that f is convex. Indeed we have that, for λ ∈ [0, 1] ,

f (ξ) ≥ f (λξ + (1 − λ) η) + 〈ξ − (λξ + (1 − λ) η) ;β1 (λξ + (1 − λ) η)〉
f (η) ≥ f (λξ + (1 − λ) η) + 〈η − (λξ + (1 − λ) η) ;β1 (λξ + (1 − λ) η)〉 .

Multiplying the first equation by λ and the second by (1 − λ) and adding them
we obtain the convexity of f.

(ii) The second part of the corollary follows at once from (5.20). More
precisely, we have from (5.20) that, for every ξ ∈ R

N×n,

f (ξ) ≥ f (0) + 〈β (0) ;T (ξ)〉 ≥ −γ (1 + |ξ|n∧N )

for an appropriate γ = γ (f (0) , β (0)) .
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Another direct consequence of Theorem 5.6 is that we can easily construct
(see Dacorogna [177]) rank one convex functions that are not polyconvex. We
will see more sophisticated examples in the next sections.

Let N = n = 2, ξ1, ξ2, ξ3 ∈ R
2×2 and λ1, λ2, λ3 ∈ (0, 1) be such that

{
λ1 + λ2 + λ3 = 1,

∑3
i=1 λi det ξi = det(

∑3
i=1 λiξi)

det (ξ1 − ξ2) 
= 0, det (ξ1 − ξ3) 
= 0, det (ξ2 − ξ3) 
= 0.

For example we can choose λ1 = λ2 = λ3 = 1/3 and

ξ1 =
(

1 0
2 0

)
, ξ2 =

(
0 1
0 1

)
, ξ3 =

( −1 −1
0 0

)
.

We then define f : R
2×2 → R ∪ {+∞} as

f (ξ) :=

{
0 if ξ = ξ1, ξ2, ξ3

+∞ otherwise.

Proposition 5.10 f is rank one convex but not polyconvex.

Proof. Part 1. To show that f is rank one convex, we have to prove that

f (λξ + (1 − λ) η) ≤ λf (ξ) + (1 − λ) f (η) (5.23)

for every λ ∈ [0, 1] and every ξ, η ∈ R
2×2 such that rank {ξ − η} ≤ 1. Three

cases can happen.

Case 1. ξ 
= ξi or η 
= ξi for every i = 1, 2, 3, then f (ξ) = +∞ or f (η) = +∞
and therefore (5.23) is trivially satisfied.

Case 2. ξ = ξi and η = ξj with i 
= j. This case is impossible, since by
construction rank{ξi − ξj} = 2 if i 
= j.

Case 3. ξ = η = ξi , then (5.23) is trivially satisfied.

Part 2. It now remains to show that f is not polyconvex. We proceed by
contradiction. If f were polyconvex, we should have, using Theorem 5.6 and
the construction of (λi, ξi)1≤i≤3 , that

f(
∑3
i=1 λiξi ) ≤

∑3
i=1 λif (ξi) .

This is however impossible since the left hand side takes the value +∞ while
the right hand side is 0.

5.2.4 Further properties of quasiconvex functions

We first show that if in the definition of quasiconvexity the inequality holds for
one bounded open set, it holds for any such set.
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Proposition 5.11 Let f : R
N×n → R be Borel measurable and locally bounded.

Let D ⊂ R
n be a bounded open set and let the inequality

f (ξ)measD ≤
∫
D

f (ξ + ∇ϕ (x)) dx (5.24)

hold for every ξ ∈ R
N×n and for every ϕ ∈W 1,∞

0

(
D; RN

)
. Then the inequality

f (ξ)measE ≤
∫
E

f (ξ + ∇ψ (x)) dx (5.25)

holds for every bounded open set E ⊂ R
n, for every ξ ∈ R

N×n and for every
ψ ∈W 1,∞

0

(
E; RN

)
.

Proof. We wish to show (5.25) assuming that (5.24) holds. So let ψ ∈
W 1,∞

0

(
E; RN

)
be given and choose first a > 0 sufficiently large so that

E ⊂ Qa := (−a, a)n

Define next

v (x) :=

{
ψ (x) if x ∈ E

0 if x ∈ Qa − E

so that v ∈W 1,∞
0

(
Qa; RN

)
.

Let then x0 ∈ D and choose ν sufficiently large so that

x0 +
1
ν
Qa = x0 +

(
−a
ν
,
a

ν

)n
⊂ D.

Define next

ϕ (x) :=

{
1
ν v (ν (x− x0)) if x ∈ x0 + 1

νQa

0 if x ∈ D − [x0 + 1
νQa].

Observe that ϕ ∈W 1,∞
0

(
D; RN

)
and

∫
D

f (ξ + ∇ϕ (x)) dx

= f (ξ)meas(D − [x0 +
1
ν
Qa ]) +

∫
[x0+

1
νQa ]

f (ξ + ∇v (ν (x− x0))) dx

= f (ξ) [meas(D) − measQa
νn

] +
1
νn

∫
Qa

f (ξ + ∇v (y)) dy

= f (ξ) [meas(D) − measQa
νn

+
meas(Qa − E)

νn
] +

1
νn

∫
E

f (ξ + ∇ψ (y)) dy.

Appealing to (5.24), we deduce that

f (ξ)meas(D) ≤ f (ξ) [meas(D) − measE
νn

] +
1
νn

∫
E

f (ξ + ∇ψ (y)) dy
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which is equivalent to the claim, namely (5.25).
In some examples (such as Sverak example in Section 5.3.7), it might be

more convenient to replace the set of test functions W 1,∞
0 by the set of periodic

functions.

Notation 5.12 For D := (0, 1)n , we let

W 1,∞
per

(
D; RN

)
:=

{
u ∈ W 1,∞ (

R
n; RN

)
: u (x+ ei) = u (x) , i = 1, · · · , n}

where {e1, · · · , en} is the standard orthonormal basis. ♦
We therefore have the following.

Proposition 5.13 Let f : R
N×n → R be Borel measurable and locally bounded.

The following two statements are then equivalent:
(i) f is quasiconvex;
(ii) for D = (0, 1)n , the inequality

f (ξ) ≤
∫
D

f (ξ + ∇ψ (x)) dx (5.26)

holds for every ξ ∈ R
N×n and for every ψ ∈W 1,∞

per

(
D; RN

)
.

Proof. (ii) ⇒ (i). This follows at once from Proposition 5.11 and the fact
that

W 1,∞
0

(
D; RN

) ⊂W 1,∞
per

(
D; RN

)
.

(i) ⇒ (ii). Let ψ ∈ W 1,∞
per

(
D; RN

)
and observe first that if ν ∈ N and if

ψν (x) :=
1
ν
ψ (νx)

then, from the periodicity of ψ, we get
∫
D

f (ξ + ∇ψν (x)) dx =
1
νn

∫
νD

f (ξ + ∇ψ (y)) dy =
∫
D

f (ξ + ∇ψ (x)) dx.

(5.27)
Choose then ην ∈ C∞

0 (D) such that 0 ≤ ην ≤ 1 in D,

ην ≡ 1 on Dν :=
(

1
ν
, 1 − 1

ν

)n
and ‖∇ην‖L∞ ≤ c1ν

where c1 > 0 is a constant independent of ν.
Let then

ϕν (x) := ην (x)ψν (x)

and observe that ϕν ∈W 1,∞
0

(
D; RN

)
and

‖∇ϕν −∇ψν‖L∞ = ‖(ην − 1)∇ψν + ∇ην ⊗ ψν‖L∞

≤ c2 ‖ψ‖W 1,∞
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where c2 > 0 is a constant, independent of ν. Since the function f is locally
bounded we can find c3 > 0, independent of ν, so that

‖f (ξ + ∇ψν) − f (ξ + ∇ϕν)‖L∞ ≤ c3 .

Appealing to the quasiconvexity of f, to (5.27) and to the preceding observa-
tions, we find
∫
D

f (ξ + ∇ψ (x)) dx =
∫
D

f (ξ + ∇ϕν (x)) dx

+
∫
D

[f (ξ + ∇ψν (x)) − f (ξ + ∇ϕν (x))] dx

=
∫
D

f (ξ + ∇ϕν (x)) dx

+
∫
D−Dν

[f (ξ + ∇ψν (x)) − f (ξ + ∇ϕν (x))] dx

≥ f (ξ) − c3 meas (D −Dν) .

Letting ν → ∞ we have indeed obtained (5.26), as wished.

5.2.5 Further properties of rank one convex functions

There is no known equivalent to Theorem 5.6 for rank one convex functions.
We, nevertheless, give here a characterization of rank one convex functions that
is in the same spirit as Part 1 of Theorem 5.6, but much weaker. It will turn
out to be useful in Chapter 6.

To characterize rank one convex functions, we give a property of matrices
ξi ∈ R

N×n that will play the same role as (5.2) of Theorem 5.6 for polyconvex
functions. We follow here the presentation of Dacorogna [176] and [179].

We also recall that for any integer I

ΛI := {λ = (λ1, · · · , λI) : λi ≥ 0 and
∑I

i=1 λi = 1}.

Definition 5.14 Let I be an integer and λ ∈ ΛI . Let ξi ∈ R
N×n, 1 ≤ i ≤ I.

We say that (λi, ξi)1≤i≤I satisfy (HI) if

(i) when I = 2, then rank {ξ1 − ξ2} ≤ 1;

(ii) when I > 2, then, up to a permutation, rank{ξ1 − ξ2} ≤ 1 and if, for
every 2 ≤ i ≤ I − 1, we define

⎧⎪⎨
⎪⎩

µ1 = λ1 + λ2 η1 =
λ1ξ1 + λ2ξ2
λ1 + λ2

µi = λi+1 ηi = ξi+1

then (µi, ηi)1≤i≤I−1 satisfy (HI−1) .



Definitions and main properties 175

Example 5.15 (a) When I = 2, λ ∈ Λ2 , then (λ1, ξ1) , (λ2, ξ2) satisfy (H2) if
and only if

rank{ξ1 − ξ2} ≤ 1.

(b) When I = 3, λ ∈ Λ3 , then (λi, ξi)1≤i≤3 satisfy (H3) if, up to a permu-
tation, ⎧⎨

⎩
rank {ξ1 − ξ2} ≤ 1

rank{ξ3 − λ1ξ1 + λ2ξ2
λ1 + λ2

} ≤ 1.

(c) When I = 4, λ ∈ Λ4 , then (λi, ξi)1≤i≤4 satisfy (H4) if, up to a permu-
tation, either one of the conditions

⎧⎪⎪⎨
⎪⎪⎩

rank {ξ1 − ξ2} ≤ 1, rank{ξ3 − λ1ξ1 + λ2ξ2
λ1 + λ2

} ≤ 1

rank{ξ4 − λ1ξ1 + λ2ξ2 + λ3ξ3
λ1 + λ2 + λ3

} ≤ 1

or ⎧⎨
⎩

rank {ξ1 − ξ2} ≤ 1, rank {ξ3 − ξ4} ≤ 1

rank{λ1ξ1 + λ2ξ2
λ1 + λ2

− λ3ξ3 + λ4ξ4
λ3 + λ4

} ≤ 1

holds. ♦
Proposition 5.16 Let f : R

N×n → R ∪ {+∞} , then the following two condi-
tions are equivalent.

(i) f is rank one convex.
(ii) The expression

f(
∑I

i=1 λiξi) ≤
∑I

i=1 λif (ξi) (5.28)

holds whenever (λi, ξi)1≤i≤I satisfy (HI) .

Proof. (ii) ⇒ (i). This is trivial since it suffices to choose I = 2 in (5.28).
(i) ⇒ (ii). We establish (5.28) by induction. By definition of rank one

convexity, (5.28) holds for I = 2; assume therefore that the proposition is true
for I − 1. Observe that

I∑
i=1

λif (ξi) = (λ1 + λ2) (
λ1

λ1 + λ2
f (ξ1) +

λ2

λ1 + λ2
f (ξ2)) +

I∑
i=3

λif (ξi) .

If we now use the rank one convexity of f and the hypothesis (HI) we get

(λ1 + λ2) f(
λ1ξ1 + λ2ξ2
λ1 + λ2

) +
I∑
i=3

λif (ξi) ≤
I∑
i=1

λif (ξi) .

Using again the rank one convexity of f, hypothesis (HI) and the hypothesis of
induction, we have indeed established (5.28).
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The above result is much weaker than Theorem 5.6 in the sense that one
cannot fix an upper bound on I. Two simple examples show that the situation
is intrinsically more complicated for rank one convex functions.. The first one
has been established in Dacorogna [176], [179].

Example 5.17 Let N = n = 2,

A =
(

0 0
0 0

)
, B =

(
1 0
1 0

)
, C =

(
0 −2

1/2 0

)
, D =

( −1/4 4
0 4

)
,

and {
λ1 = λ2 = λ3 = λ4 = λ5 = 1/5

ξ1 = A, ξ2 = B, ξ3 = C, ξ4 = D, ξ5 = A.

It is then easy to see that (λi, ξi)1≤i≤5 satisfy (H5) since

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

det (ξ1 − ξ2) = 0

det{ξ3 − λ1ξ1 + λ2ξ2
λ1 + λ2

} = 0

det{ξ4 − λ1ξ1 + λ2ξ2 + λ3ξ3
λ1 + λ2 + λ3

} = 0

det{ξ5 − λ1ξ1 + λ2ξ2 + λ3ξ3 + λ4ξ4
λ1 + λ2 + λ3 + λ4

} = 0.

However, if we combine together ξ1 and ξ5 and if we consider
{
µ1 = λ1 + λ5 = 2/5, µ2 = µ3 = µ4 = 1/5

η1 = A, η2 = B, η3 = C, η4 = D

then it is easy to see that (µi, ηi)1≤i≤4 do not satisfy (H4) . In other words, if we
use Proposition 5.16, we have the surprising result that if f : R

2×2 → R∪{+∞}
is rank one convex then

f(
2
5
A+

1
5
B +

1
5
C +

1
5
D) ≤ 2

5
f (A) +

1
5
f (B) +

1
5
f (C) +

1
5
f (D)

i.e.
f(

∑4
i=1 µiηi) ≤

∑4
i=1 µif (ηi) (5.29)

even though (µi, ηi)1≤i≤4 do not satisfy (H4) . In order to show (5.28), we have
to write the inequality (with (λi, ξi)1≤i≤5) as

f(
1
5
A+

1
5
B +

1
5
C +

1
5
D +

1
5
A)

≤ 1
5
f (A) +

1
5
f (B) +

1
5
f (C) +

1
5
f (D) +

1
5
f (A) . ♦

The next example is even more striking and has been given by Casadio
Tarabusi [127]. A similar example has also been found by Aumann-Hart [50]
and Tartar [571].
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Example 5.18 Let N = n = 2 and (see Figure 5.1)
⎧⎪⎪⎨
⎪⎪⎩

ξ1 =
( −1 0

0 0

)
, ξ2 =

(
1 0
0 −1

)
, ξ3 =

(
2 0
0 1

)
, ξ4 =

(
0 0
0 2

)

λ1 =
8
15
, λ2 =

4
15
, λ3 =

2
15
, λ4 =

1
15
.

Observe that λ ∈ Λ4 and

×

×

×

×

Figure 5.1: The matrices ξ1, ξ2, ξ3, ξ4

rank {ξi − ξj} = 2, if i 
= j.

Let
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

η1 = ξ1 , η2 = ξ2 , η3 = ξ3 , η4 = ξ4 , η5 = 0 =
(

0 0
0 0

)
=

4∑
i=1

λiξi

µ1 =
8
16
, µ2 =

4
16
, µ3 =

2
16
, µ4 =

1
16
, µ5 =

1
16
.

Observe that (µi, ηi)1≤i≤5 satisfy (H5) , since

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

det (η4 − η5) = 0

det{η3 − µ4η4 + µ5η5
µ4 + µ5

} = 0

det{η2 − µ3η3 + µ4η4 + µ5η5
µ3 + µ4 + µ5

} = 0

det{η1 − µ2η2 + µ3η3 + µ4η4 + µ5η5
µ2 + µ3 + µ4 + µ5

} = 0.
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Therefore, using Proposition 5.16, we obtain for every f : R
2×2 → R

f (0) = f(
∑5

i=1 µiηi) ≤
∑5

i=1 µif (ηi) ;

which means that

16f (0) ≤ 8f (ξ1) + 4f (ξ2) + 2f (ξ3) + f (ξ4) + f (η5) . (5.30)

Noting that η5 = 0 and dividing the above inequality by 15, we have that

f (0) = f(
∑4
i=1 λiξi) ≤

∑4
i=1 λif (ξi) . (5.31)

We have therefore obtained the inequality (5.31) of rank one convexity even
though none of the ξi − ξj differs by rank one. ♦
Remark 5.19 An interesting point should be emphasized if one compares the
two examples, namely the inequalities (5.29) and (5.31) of rank one convexity.
The first one deals with any rank one convex function f : R

2×2 → R ∪ {+∞} ,
while in the second one we have to restrict our analysis to functions f : R

2×2 →
R (i.e. that are finite everywhere), since we subtract f (0) from both sides in
the inequality (5.30).

Indeed, the inequality (5.31) does not hold if we allow the function f to take
the value +∞ as the following example shows. Let

f (ξ) = χ{ξ1, ξ2, ξ3, ξ4} (ξ) =

{
0 if ξ ∈ {ξ1, ξ2, ξ3, ξ4}

+∞ otherwise.

This function is clearly rank one convex, since rank {ξi − ξj} = 2 for i 
= j.
Therefore ∑4

i=1 λif (ξi) = 0 < f(
∑4
i=1 λiξi) = f (0) = +∞. ♦

5.3 Examples

We have seen in Section 5.2 the definitions and the relations between the notions
of convexity, polyconvexity, quasiconvexity and rank one convexity. We now
discuss several examples, the most important being the following.

i) We start in Section 5.3.1 with the complete characterization of the quasi-
affine functions (i.e. the functions f such that f and −f are quasiconvex) by
showing that they are linear combinations of minors of the matrix ∇u.

ii) In Section 5.3.2 we study the case of quadratic functions f. The main
result being that rank one convexity and quasiconvexity are equivalent. Note
that the quadratic case is important in the sense that it leads to associated
linear Euler-Lagrange equations. Therefore, in the linear case, the ellipticity
of the Euler-Lagrange equations corresponds exactly to the quasiconvexity of
the integrand and thus, anticipating the results of Chapter 8, to the weak lower
semicontinuity of the associated variational problem.
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iii) The third important result is considered in Sections 5.3.3 and 5.3.4. We
study functions invariant under rotations, notably those depending on singular
values. We characterize their convexity and polyconvexity.

iv) In Section 5.3.7, we present the celebrated example of Sverak that pro-
vides, in dimensions N ≥ 3 and n ≥ 2, an example of a rank one convex function
that is not quasiconvex.

v) In Section 5.3.8, we consider the example of Alibert-Dacorogna-Marcellini,
which is valid when N = n = 2. It characterizes for a homogeneous polynomial
of degree four the different notions of convexity encountered in Section 5.2.

5.3.1 Quasiaffine functions

We start with a result established by Ball [53], that is an extension of results
of Edelen [255], Ericksen [265] and Rund [520]. It characterizes completely
the quasiaffine functions (see also Anderson-Duchamp [27], Ball-Curie-Olver
[59], Sivaloganathan [541] and Vasilenko [588]). We follow here the proof of
Dacorogna [179].

Theorem 5.20 Let f : R
N×n → R. The following conditions are equivalent.

(i) f is quasiaffine.
(ii) f is rank one affine, meaning that f and −f are rank one convex, i.e.

f (λξ + (1 − λ) η) = λf (ξ) + (1 − λ) f (η)

for every λ ∈ [0, 1] , ξ, η ∈ R
N×n with rank {ξ − η} ≤ 1.

(ii’) The function f ∈ C1 and for every ξ ∈ R
N×n, a ∈ R

N , b ∈ R
n,

f (ξ + a⊗ b) = f (ξ) + 〈∇f (ξ) ; a⊗ b〉 ,

where 〈·; ·〉 denotes the scalar product in R
N×n.

(iii) f is polyaffine, i.e. f and −f are polyconvex.
(iii’) There exists β ∈ R

τ(n,N) such that

f (ξ) = f (0) + 〈β;T (ξ)〉

for every ξ ∈ R
N×n and where 〈·; ·〉 denotes the scalar product in R

τ(n,N) and
T is as in Definition 5.1.

Example 5.21 (i) If N = n = 2, then the theorem asserts that the only quasi-
affine functions are of the type

f (ξ) = f (0) + 〈β; ξ〉 + γ det ξ.

In particular the only fully non-linear quasiaffine function is det ξ.
(ii) More generally if n,N > 1, then the only non-linear quasiaffine functions

are linear combinations of the s × s minors of the matrix ξ ∈ R
N×n, where

2 ≤ s ≤ n ∧N = min {n,N} . ♦
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Before proceeding with the proof of the theorem, we mention two corollaries.
The first one is a straightforward combination of Theorems 5.20 and 8.35.

Corollary 5.22 Let Ω ⊂ R
n be a bounded open set and f : R

N×n → R be
quasiaffine. Let v ∈ u+W 1,p

0 (Ω), with p ≥ n ∧N, then
∫

Ω

f (∇u (x)) dx =
∫

Ω

f (∇v (x)) dx.

The second one was established by Dacorogna-Ribeiro [212] and we will use
it in Theorems 6.24 and 7.47.

Corollary 5.23 Let f : R
N×n → R be quasiaffine.

(i) If f is locally constant, then it is constant.
(ii) If f has a local extremum, then it is constant.

Proof. (Corollary 5.23). (i) We show that if f is locally constant around
a point ξ ∈ R

N×n then f is constant everywhere, establishing the result. So
assume that there exists ε > 0 such that

f(ξ + v) = f(ξ), ∀ v ∈ R
N×n with

∣∣vij∣∣ ≤ ε (5.32)

and let us show that

f(ξ + w) = f(ξ), ∀ w ∈ R
N×n. (5.33)

The procedure consists in working component by component. We start to show
that for every w1

1 ∈ R and
∣∣vij∣∣ ≤ ε we have (denoting by

{
e1, · · · , eN} and

{e1, · · · , en} the standard basis of R
N and R

n respectively)

f(ξ + w1
1e

1 ⊗ e1 +
∑

(i,j) �=(1,1) v
i
je
i ⊗ ej) = f(ξ + w1

1e
1 ⊗ e1) = f(ξ). (5.34)

Indeed if
∣∣w1

1

∣∣ ≤ ε this is nothing else than (5.32) so we may assume that
∣∣w1

1

∣∣ > ε
and use the fact that f is quasiaffine, to deduce that

f(ξ +
εw1

1

|w1
1 |
e1 ⊗ e1 +

∑
(i,j) �=(1,1) v

i
je
i ⊗ ej)

=
ε

|w1
1 |
f(ξ + w1

1e
1 ⊗ e1 +

∑
(i,j) �=(1,1) v

i
je
i ⊗ ej)

+(1 − ε

|w1
1 |

)f(ξ +
∑

(i,j) �=(1,1) v
i
je
i ⊗ ej).

Therefore appealing to (5.32) and to the preceding identity we have indeed
established (5.34). Proceeding iteratively in a similar manner with the other
components (w1

2 , w
1
3 , · · · ) we have indeed obtained (5.33) and thus the proof of

(i) is complete.
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(ii) We now show that if ξ is a local extremum point of f, then f is constant
in a neighborhood of ξ and thus applying (i) we have the result.

Assume that ξ is a local minimum point of f (the case of a local maximizer
being handled similarly). We therefore have that there exists ε > 0 so that

f(ξ) ≤ f(ξ + v), for every v ∈ R
N×n so that

∣∣vij∣∣ ≤ ε. (5.35)

Let us show that this implies that

f(ξ) = f(ξ + v), for every v ∈ R
N×n so that

∣∣vij∣∣ ≤ ε. (5.36)

We write

v =
N∑
i=1

n∑
j=1

vije
i ⊗ ej

and observe that, since f is quasiaffine,

f(ξ) =
1
2
f(ξ + v1

1e
1 ⊗ e1) +

1
2
f(ξ − v1

1e
1 ⊗ e1)

and since (5.35) is satisfied we deduce that

f(ξ ± v1
1e

1 ⊗ e1) = f(ξ),
∣∣v1

1

∣∣ ≤ ε. (5.37)

We next write, using again the fact that f is quasiaffine,

f(ξ+ v1
1e

1 ⊗ e1) =
1
2
f(ξ+ v1

1e
1 ⊗ e1 + v1

2e
1 ⊗ e2)+

1
2
f(ξ+ v1

1e
1 ⊗ e1 − v1

2e
1 ⊗ e2)

and since (5.35) and (5.37) hold, we deduce that

f(ξ + v1
1e

1 ⊗ e1 ± v1
2e

1 ⊗ e2) = f(ξ + v1
1e

1 ⊗ e1) = f(ξ),
∣∣v1

1

∣∣ , ∣∣v1
2

∣∣ ≤ ε.

Iterating the procedure we have indeed established (5.36). Appealing to (i), we
have therefore proved the corollary.

We should mention that some of the results of Theorem 5.20 will be proved
in a more straightforward way in Sections 5.4 and 8.5. Indeed, the implication
(iii’) ⇒ (ii) can also be found in Proposition 5.65, while the implication (iii’)
⇒ (i) is also established in Theorem 8.35.

We now turn to the proof of Theorem 5.20.
Proof. (i) ⇒ (ii). This implication follows immediately from Theorem 5.3.

(ii’) ⇒ (ii). This case is trivial.
(ii) ⇒ (ii’). We fix ξ ∈ R

N×n, a ∈ R
N , b ∈ R

n and let for t ∈ [0, 1]

ϕ (t) := f (ξ + ta⊗ b) .

Since f is rank one affine then ϕ is affine and thus ϕ ∈ C1 and

ϕ (t) = ϕ (0) + tϕ′ (0) .
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Since ϕ ∈ C1, then, obviously, f ∈ C1 and the result immediately follows from
the above identity.

(iii’) ⇒ (iii). This implication follows from the definition of polyconvexity.
(iii) ⇒ (i). The result follows from Theorem 5.3.
(ii’) ⇒ (iii’). This is the only non trivial implication. So recall that

ξ =

⎛
⎜⎜⎜⎜⎝

ξ11 · · · ξ1n

...
. . .

...

ξN1 · · · ξNn

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎝

ξ1

...
ξN

⎞
⎟⎟⎠ = (ξ1, · · · , ξn) .

Assume also that f is such that

f (ξ + a⊗ b) − f (ξ) = 〈∇f (ξ) ; a⊗ b〉 , (5.38)

for every ξ ∈ R
N×n, a ∈ R

N , b ∈ R
n. We wish to show that there exists

β ∈ R
τ(n,N) such that

f (ξ) − f (0) = 〈β;T (ξ)〉 , for every ξ ∈ R
N×n. (5.39)

In the sequel we assume that n ≥ N, otherwise we reverse the roles of n and N.
We then proceed by induction on N.

Step 1. N = 1. Since N = 1, (5.38) can be read as

f (ξ + η) − f (ξ) = 〈∇f (ξ) ; η〉

for every ξ, η ∈ R
n. It is then trivial to see that the above identity implies that

f is affine and therefore if we choose β = ∇f (0) , we have immediately (5.39).
Step 2. N = 2. This step is unnecessary but we prove it for the sake of

illustration. Let

ξ =

(
ξ11 · · · ξ1n

ξ21 · · · ξ2n

)
=

(
ξ1

ξ2

)
= (ξ1, · · · , ξn)

and for a ∈ R
2, b ∈ R

n

a⊗ b =

(
a1b

a2b

)
=

(
a1b1 · · · a1bn

a2b1 · · · a2bn

)
.

We want to show that if f is rank one affine, i.e.

f (ξ + a⊗ b) − f (ξ) = 〈∇f (ξ) ; a⊗ b〉

then there exists β ∈ R
τ(n,2) such that

f (ξ) = f (0) + 〈β;T (ξ)〉
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where

T (ξ) = (ξ, adj2 ξ) ∈ R
2×n × R

( n
2

)

= R
τ(n,2).

For the notations concerning adj2 ξ, see Section 5.4. But note that, up to a
sign and the ordering, an element of the matrix adj2 ξ is essentially det (ξk, ξl) ,
1 ≤ k < l ≤ n. We then fix ξ2 and choose a = e1 = (1, 0) in (5.38) and define

g
(
ξ1
)

:= f

(
ξ1

ξ2

)
.

Thus the function

t→ g
(
ξ1 + tb

)
= f

(
ξ1 + tb

ξ2

)

is affine and we may then use Step 1 to find γ = γ
(
ξ2
) ∈ R

n such that

g
(
ξ1
)

= g (0) +
〈
γ
(
ξ2
)
; ξ1

〉
= f

(
0
ξ2

)
+
〈
γ
(
ξ2
)
; ξ1

〉
.

Repeating the argument when ξ1 = 0 for f
(

0
ξ2

)
, we have

f

(
0
ξ2

)
= f (0) +

〈
β2; ξ2

〉
.

Combining the above two identities, we obtain

f

(
ξ1

ξ2

)
= f (0) +

〈
β2; ξ2

〉
+
〈
γ
(
ξ2
)
; ξ1

〉
. (5.40)

Since f is rank one affine, it is affine (when ξ1 is fixed) with respect to ξ2

and therefore γ
(
ξ2
)

=
(
γ1

(
ξ2
)
, · · · , γn

(
ξ2
))

is affine and hence there exist
β1 =

(
β1

1 , · · · , β1
n

) ∈ R
n, δ1, · · · , δn ∈ R

n such that

γl
(
ξ2
)

= β1
l +

〈
δl; ξ2

〉
, l = 1, · · · , n.

Returning to (5.40), we therefore get

f

(
ξ1

ξ2

)
= f (0) +

〈
β1; ξ1

〉
+
〈
β2; ξ2

〉
+

n∑
l=1

ξ1l
〈
δl; ξ2

〉

or in other words

f

(
ξ1

ξ2

)
= f (0) +

〈
β1; ξ1

〉
+
〈
β2; ξ2

〉
+

n∑
l=1

n∑
α=1

δlαξ
1
l ξ

2
α . (5.41)

Since f is rank one affine we have from (5.41) that if

h (ξ) :=
n∑
l=1

n∑
α=1

δlαξ
1
l ξ

2
α
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then h is rank one affine and therefore using Lemma 5.24 we must have

δlα = −δαl .

Thus there exists ε ∈ R

(
n
2

)
such that

h (ξ) =
∑

1≤l<α≤n
δlα

(
ξ1l ξ

2
α − ξ1αξ

2
l

)
= 〈ε; adj2 ξ〉 .

Combining (5.41) with the above identity, we deduce (5.39) and this concludes
Step 2.

Step N. We now proceed with the general case. Assume that we have proved
the theorem for every l < N. Fixing ξ2, · · · , ξN and using the fact that f is rank
one affine, then f is affine in ξ1, for ξ2, · · · , ξN fixed. Therefore there exist

ψ

⎛
⎜⎝

ξ2

...
ξN

⎞
⎟⎠ = (ψ1, · · · , ψn) ∈ R

n and χ

⎛
⎜⎝

ξ2

...
ξN

⎞
⎟⎠ ∈ R,

such that

f (ξ) = 〈ψ

⎛
⎜⎝

ξ2

...
ξN

⎞
⎟⎠ ; ξ1

〉
+ χ

⎛
⎜⎝

ξ2

...
ξN

⎞
⎟⎠ . (5.42)

Using the hypothesis of induction and proceeding as in Step 2 we find that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ

⎛
⎜⎝

ξ2

...
ξN

⎞
⎟⎠ = f (0) +

〈
β0; T

⎛
⎜⎝

ξ2

...
ξN

⎞
⎟⎠ 〉

ψl

⎛
⎜⎝

ξ2

...
ξN

⎞
⎟⎠ = βl + 〈γl; T

⎛
⎜⎝

ξ2

...
ξN

⎞
⎟⎠ 〉 , l = 1, · · · , n

(5.43)

for some β0, γ1, · · · , γn ∈ R
τ(n,N−1) and β1 = (β1, · · · , βn) ∈ R

n. Combining
(5.42) and (5.43) we have that

f (ξ) = f (0) +
〈
β0; T

⎛
⎜⎝

ξ2

...
ξN

⎞
⎟⎠ 〉 +

〈
β1; ξ1

〉
+

n∑
l=1

ξ1l 〈γl; T

⎛
⎜⎝

ξ2

...
ξN

⎞
⎟⎠ 〉
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which can be rewritten as

f (ξ) = f (0) +
〈
β0; T

⎛
⎜⎝

ξ2

...
ξN

⎞
⎟⎠ 〉 +

〈
β1; ξ1

〉

+
N−1∑
s=1

n∑
l=1

(
n
s

)
∑
α=1

(
N−1
s

)
∑
i=1

γislαξ
1
l

⎛
⎜⎝adjs

⎛
⎜⎝

ξ2

...
ξN

⎞
⎟⎠
⎞
⎟⎠
i

α

.

(5.44)

Letting

h (ξ) :=
N−1∑
s=1

hs (ξ) where hs (ξ) :=
n∑
l=1

(
n
s

)
∑
α=1

(
N−1
s

)
∑
i=1

γislαξ
1
l

⎛
⎜⎝adjs

⎛
⎜⎝

ξ2

...
ξN

⎞
⎟⎠
⎞
⎟⎠
i

α

we deduce from the fact that f is rank one affine and from (5.44) that h is rank
one affine. Since h is rank one affine, we deduce that so is hs . Indeed let us first
show this for h1 . Write

h1 (ξ) =
N∑
i=2

hi1 (ξ) where hi1 (ξ) :=
n∑
l=1

n∑
α=1

γi1lαξ
1
l ξ
i
α .

By first choosing ξ3 = · · · = ξN = 0, we obtain that h2
1 is rank one affine (since

then h = h2
1); iterating this process we find that all the hi1 are rank one affine

and thus h1 is rank one affine. We then infer that so is h− h1 . With the same
reasoning, we get that all the hs , 1 ≤ s ≤ N − 1, are rank one affine.

We may then use Lemma 5.24 to deduce that there exist

δjsβ ∈ R, 1 ≤ s ≤ N − 1, 1 ≤ β ≤ (
n
s+1

)
, 1 ≤ j ≤ (

N
s+1

)

such that

h (ξ) =
N−1∑
s=1

(
n
s+1

)
∑
β=1

(
N
s+1

)
∑
j=1

δjsβ
(
adjs+1 ξ

)j
β
.

Combining (5.44) and the above identity, we have indeed found β ∈ R
τ(n,N)

such that

f (ξ) = f (0) + 〈β;T (ξ)〉 ,

which is the claimed result.

In the above proof we have used the following lemma.
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Lemma 5.24 Let n ≥ N and ξ ∈ R
N×n,

ξ =

⎛
⎜⎜⎜⎜⎝

ξ11 · · · ξ1n

...
. . .

...

ξN1 · · · ξNn

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎝

ξ1

...
ξN

⎞
⎟⎟⎠ = (ξ1, · · · , ξn) .

For 1 ≤ s ≤ N − 1, let

g (ξ) :=
n∑
l=1

(
n
s

)
∑
α=1

(
N−1
s

)
∑
i=1

γilαξ
1
l

⎛
⎜⎝adjs

⎛
⎜⎝

ξ2

...
ξN

⎞
⎟⎠
⎞
⎟⎠
i

α

.

If g is rank one affine, meaning that

g (ξ + a⊗ b) = g (ξ) + 〈∇g (ξ) ; a⊗ b〉 ,

then there exist δjβ ∈ R, 1 ≤ β ≤ (
n
s+1

)
, 1 ≤ j ≤ (

N
s+1

)
such that

g (ξ) =

(
n
s+1

)
∑
β=1

(
N
s+1

)
∑
j=1

δjβ

⎛
⎜⎝adjs+1

⎛
⎜⎝

ξ1

...
ξN

⎞
⎟⎠
⎞
⎟⎠
j

β

=
〈
δ; adjs+1 ξ

〉
.

Proof. Part 1. We start, for the sake of illustration, with the case N = 2,
therefore s = 1 and

g (ξ) =
n∑
l=1

n∑
α=1

γlαξ
1
l ξ

2
α .

Since g is rank one affine and quadratic then

d2

dt2
g (ξ + ta⊗ b) = g (a⊗ b) =

n∑
l,α=1

γlαa
1a2blbα = 0,

for every a =
(
a1, a2

) ∈ R
2, b = (b1, · · · , bn) ∈ R

n. We therefore immediately
deduce that γlα = −γαl and hence

g (ξ) =
∑

1≤l<α≤n
γlα

(
ξ1l ξ

2
α − ξ1αξ

2
l

)
=

∑
1≤l<α≤n

γlα det

(
ξ1l ξ1α

ξ2l ξ2α

)

=

( n
2

)
∑
β=1

δβ (adj2 ξ)β = 〈δ; adj2 ξ〉 ,

since adj2 ξ is a vector of R

( n
2

)
composed of elements of the form det (ξl, ξα) ,

1 ≤ l < α ≤ n and therefore δβ is essentially γlα with the appropriate sign.
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Part 2. We now proceed with the general case. Let

g (ξ) =

(
N−1
s

)
∑
i=1

gi (ξ) where gi (ξ) :=
n∑
l=1

(
n
s

)
∑
α=1

γilαξ
1
l

⎛
⎜⎝adjs

⎛
⎜⎝

ξ2

...
ξN

⎞
⎟⎠
⎞
⎟⎠
i

α

.

As in the theorem, it is easy to see that g is rank one affine if and only if gi is
rank one affine. Therefore it is enough to prove, the stronger version, that for
every i, 1 ≤ i ≤

(
N−1
s

)
there exists j, 1 ≤ j ≤

(
N
s+1

)
, and δjβ ∈ R, so that if

gi (ξ) :=
n∑
l=1

( n
s

)
∑
α=1

γilαξ
1
l

⎛
⎜⎝adjs

⎛
⎜⎝

ξ2

...
ξN

⎞
⎟⎠
⎞
⎟⎠
i

α

is rank one affine, then

gi (ξ) =

( n
s+1

)
∑
β=1

δjβ

⎛
⎜⎝adjs+1

⎛
⎜⎝

ξ1

...
ξN

⎞
⎟⎠
⎞
⎟⎠
j

β

.

It is clear that the above identities imply the lemma. We should draw the
attention that all the δjβ corresponding to

⎛
⎜⎝adjs+1

⎛
⎜⎝

ξ1

...
ξN

⎞
⎟⎠
⎞
⎟⎠
j

β

which do not contain the row ξ1 are chosen to be 0.

For notational convenience, we show the above result only when i =
(
N−1
s

)
,

the general case being handled similarly. So let i =
(
N−1
s

)
, which corresponds

to j =
(

N
s+1

)
and we therefore have

⎛
⎜⎝adjs

⎛
⎜⎝

ξ2

...
ξN

⎞
⎟⎠
⎞
⎟⎠
i

α

= (−1)i+1

⎛
⎜⎝adjs

⎛
⎜⎝

ξ2

...
ξs+1

⎞
⎟⎠
⎞
⎟⎠
α

, 1 ≤ α ≤ (
n
s

)
.

We also, from now on, drop the indices i and j and write, to simplify the
notations, γilα = (−1)i+1 γlα in this case. We therefore have to show that if

g (ξ) :=
n∑
l=1

( n
s

)
∑
α=1

γlαξ
1
l

⎛
⎜⎝adjs

⎛
⎜⎝

ξ2

...
ξs+1

⎞
⎟⎠
⎞
⎟⎠
α
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is rank one affine then there exists δβ ∈ R, 1 ≤ β ≤
(

n
s+1

)
, such that

g (ξ) =

(
n
s+1

)
∑
β=1

δβ

⎛
⎜⎜⎜⎝adjs+1

⎛
⎜⎜⎜⎝

ξ1

ξ2

...
ξs+1

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠
β

. (5.45)

Recall that for given α, 1 ≤ α ≤ (
n
s

)
, there exists a unique s-tuple

(λ1, λ2, · · · , λs) with 1 ≤ λ1 < λ2 < · · · < λs ≤ n, such that

⎛
⎜⎝adjs

⎛
⎜⎝

ξ2

...
ξs+1

⎞
⎟⎠
⎞
⎟⎠
α

= (−1)1+α det

⎛
⎜⎝

ξ2λ1
· · · ξ2λs

...
. . .

...
ξs+1
λ1

· · · ξs+1
λs

⎞
⎟⎠ . (5.46)

We now fix an arbitrary (s+ 1)-tuple (λ1, · · · , λs+1) , where 1 ≤ λ1 < · · · <
λs+1 ≤ n and we denote by β the associate integer (as in (5.46)), more precisely

⎛
⎜⎝adjs

⎛
⎜⎝

ξ1

...
ξs+1

⎞
⎟⎠
⎞
⎟⎠
β

= (−1)1+β det

⎛
⎜⎝

ξ1λ1
· · · ξ1λs+1

...
. . .

...
ξs+1
λ1

· · · ξs+1
λs+1

⎞
⎟⎠ .

Note that there are
(

n
s+1

)
such (s+ 1)-tuple. Denote by α1 the integer cor-

responding (as in (5.46)) to the s-tuple (λ1, · · · , λs) , by αk the integer corre-
sponding to the s-tuple (λ1, · · · , λk−1, λk+1, · · · ., λs+1) , 2 ≤ k ≤ s and by αs+1

the integer corresponding to the s-tuple (λ2, · · · , λs+1) . Finally let

Xβ (ξ) :=
n∑

l1=1

(−1)1+α1 γl1α1ξ
1
l1

det

⎛
⎜⎝

ξ2λ1
· · · ξ2λs

...
. . .

...
ξs+1
λ1

· · · ξs+1
λs

⎞
⎟⎠

+
s∑

k=2

n∑
lk=1

(−1)1+αk γlkαk
ξ1lk

det

⎛
⎜⎝

ξ2λ1
· · · ξ2λk−1

ξ2λk+1
· · · ξ2λs+1

...
. . .

...
...

. . .
...

ξs+1
λ1

· · · ξs+1
λk−1

ξs+1
λk+1

· · · ξs+1
λs+1

⎞
⎟⎠

+
n∑

ls+1=1

(−1)1+αs+1 γls+1αs+1ξ
1
ls+1

det

⎛
⎜⎝

ξ2λ2
· · · ξ2λs+1

...
. . .

...
ξs+1
λ2

· · · ξs+1
λs+1

⎞
⎟⎠ .

(5.47)
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We then obviously have that

g (ξ) =

( n
s+1

)
∑
β=1

Xβ (ξ) .

Since g is rank one affine, then so is Xβ . Therefore in order to show (5.45) it is

then sufficient to find δβ ∈ R, 1 ≤ β ≤
(

n
s+1

)
such that

Xβ (ξ) = δβ det

⎛
⎜⎜⎜⎜⎝

ξ1λ1
· · · ξ1λs+1

...
. . .

...

ξs+1
λ1

· · · ξs+1
λs+1

⎞
⎟⎟⎟⎟⎠ . (5.48)

To deduce the claim we will use the fact that the function t → Xβ (ξ + ta⊗ b)
is affine for every ξ ∈ R

N×n, a ∈ R
N , b ∈ R

n. We will always choose

a1 = a2 = 1 and a3 = · · · = aN = 0

and we will make several different choices of ξ ∈ R
N×n and b ∈ R

n.

1) We first choose ξλ1 = ξλs+1 , meaning that

ξλ1 =

⎛
⎜⎜⎝

ξ2λ1

...

ξs+1
λ1

⎞
⎟⎟⎠ = ξλs+1 =

⎛
⎜⎜⎝

ξ2λs+1

...

ξs+1
λs+1

⎞
⎟⎟⎠ . (5.49)

For such a choice of ξ, we have

Xβ (ξ) =
n∑

l1=1

(−1)1+α1 γl1α1ξ
1
l1

det

⎛
⎜⎝

ξ2λ1
· · · ξ2λs

...
. . .

...
ξs+1
λ1

· · · ξs+1
λs

⎞
⎟⎠

+
n∑

ls+1=1

(−1)1+αs+1 γls+1αs+1ξ
1
ls+1

det

⎛
⎜⎝

ξ2λ2
· · · ξ2λs+1

...
. . .

...
ξs+1
λ2

· · · ξs+1
λs+1

⎞
⎟⎠ .

We then let

bl = 0 if l = λ2, · · · , λs . (5.50)

Using the fact that the function t → Xβ (ξ + ta⊗ b) is affine, we deduce that
the coefficient of the term in t2 must be 0 for every above choices of ξ and b.
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We thus obtain that

[
n∑

l1=1

(−1)1+α1 γl1α1bl1bλ1 +
n∑

ls+1=1

(−1)1+αs+1 (−1)s+1 γls+1αs+1bls+1bλs+1 ]

det

⎛
⎜⎝

ξ3λ2
· · · ξ3λs

...
. . .

...
ξs+1
λ2

· · · ξs+1
λs

⎞
⎟⎠ = 0.

Since ξ ∈ R
N×n and b ∈ R

n are arbitrary, letting aside (5.49) and (5.50), we
find that

{
γl1α1 = 0 if l1 
= λs+1 and γls+1αs+1 = 0 if ls+1 
= λ1

(−1)
1+αs+1

γλ1αs+1 = (−1)s+1+α1 γλs+1α1 .
(5.51)

2) We proceed in a similar manner with the other coefficients, namely we
let, if 2 ≤ k ≤ s,

ξλk
= ξλs+1 and bl = 0 if l = λ1, · · · , λk−1, λk+1, · · · , λs . (5.52)

We then use the fact that the function t → Xβ (ξ + ta⊗ b) is affine and thus
the coefficient of the term in t2 must be 0 for every ξ and b as in (5.52). We
therefore get that

[
n∑

l1=1

(−1)1+α1 γl1α1bl1 (−1)k+1
bλk

+
n∑

lk=1

(−1)1+αk γlkαk
blk (−1)s+1

bλs+1 ]

det

⎛
⎜⎝

ξ3λ1
· · · ξ3λk−1

ξ3λk+1
· · · ξ3λs

...
. . .

...
...

. . .
...

ξs+1
λ1

· · · ξs+1
λk−1

ξs+1
λk+1

· · · ξs+1
λs

⎞
⎟⎠ = 0.

As above we can then deduce that, for every 2 ≤ k ≤ s,

{
γl1α1 = 0 if l1 
= λs+1 and γlkαk

= 0 if lk 
= λk

(−1)1+αk γλkαk
= (−1)s+k+α1 γλs+1α1 .

(5.53)
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Combining (5.47), (5.51) and (5.53), we have

Xβ (ξ) = (−1)1+α1 γλs+1α1ξ
1
λs+1

det

⎛
⎜⎝

ξ2λ1
· · · ξ2λs

...
. . .

...
ξs+1
λ1

· · · ξs+1
λs

⎞
⎟⎠

+
s∑

k=2

(−1)1+α1 (−1)s+k+1
γλs+1α1ξ

1
λk

det

⎛
⎜⎝

ξ2λ1
· · · ξ2λk−1

ξ2λk+1
· · · ξ2λs+1

...
. . .

...
...

. . .
...

ξs+1
λ1

· · · ξs+1
λk−1

ξs+1
λk+1

· · · ξs+1
λs+1

⎞
⎟⎠

+ (−1)s (−1)1+α1 γλs+1α1ξ
1
λ1

det

⎛
⎜⎝

ξ2λ2
· · · ξ2λs+1

...
. . .

...
ξs+1
λ2

· · · ξs+1
λs+1

⎞
⎟⎠ .

Letting, in the above computation,

δβ := (−1)s+1+α1 γλs+1α1

we have indeed obtained (5.48). This completes the proof of the lemma.

5.3.2 Quadratic case

We now turn our attention to the case where f is quadratic. This case is of
particular interest since the associated Euler-Lagrange equations are linear. It
has therefore received much attention. Let us first mention the theorem.

Theorem 5.25 Let M be a symmetric matrix in R
(N×n)×(N×n). Let

f (ξ) := 〈Mξ; ξ〉 ,

where ξ ∈ R
N×n and 〈·; ·〉 denotes the scalar product in R

N×n. The following
statements then hold.

(i) f is rank one convex if and only if f is quasiconvex.
(ii) If N = 2 or n = 2, then

f polyconvex ⇔ f quasiconvex ⇔ f rank one convex.

(iii) If N,n ≥ 3, then in general

f rank one convex � f polyconvex.

Remark 5.26 (i) The proof of (i) of Theorem 5.25 was given by Van Hove
[585], [586], although it was implicitly known earlier.
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(ii) The second part of the theorem has received considerable attention. The
question was raised in 1937 by Bliss and received a progressive answer through
the works of Albert [9], Hestenes-MacShane [338], MacShane [411], Marcellini
[422], Reid [506], Serre [530] and Terpstra [575]. The proof of (ii) of Theorem
5.25 relies on an algebraic lemma whose importance is summarized in Uhlig
[582].

(iii) A counterexample to the third part of the theorem was given by Terpstra
[575] and later by Serre [530] (see also Ball [56]).

(iv) Note also that even if N = n = 2 and f is quadratic, then in general

f polyconvex � f convex,

as the trivial example f (ξ) = det ξ shows. ♦

Before proceeding with the proof of the theorem we mention two simple facts
that are summarized in the next lemmas.

Lemma 5.27 Let M be a symmetric matrix in R
(N×n)×(N×n) and let

f (ξ) := 〈Mξ; ξ〉 .

Then the following results hold.

(i) f is convex if and only if

f (ξ) ≥ 0

for every ξ ∈ R
N×n.

(ii) f is polyconvex if and only if there exists α ∈ R
σ(2) such that

f (ξ) ≥ 〈α; adj2 ξ〉

for every ξ ∈ R
N×n and where 〈·; ·〉 denotes the scalar product in R

σ(2) and
σ (2) =

(
N
2

) (
n
2

)
.

(iii) f is quasiconvex if and only if
∫
D

f (∇ϕ (x)) dx ≥ 0

for every bounded open set D ⊂ R
n and for every ϕ ∈ W 1,∞

0

(
D; RN

)
.

(iv) f is rank one convex if and only if

f (a⊗ b) ≥ 0

for every a ∈ R
N , b ∈ R

n.
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Proof. (Lemma 5.27). Parts (i), (iii) and (iv) are trivial. The fact that

f (ξ) ≥ 〈α; adj2 ξ〉 (5.54)

implies that f is polyconvex follows immediately from the following observation.
Let

g (ξ) := f (ξ) − 〈α; adj2 ξ〉

then by (5.54) and (i) of the lemma, we deduce that g is convex. Thus f (ξ) =
g (ξ) + 〈α; adj2 ξ〉 is polyconvex.

Assume now that f is polyconvex. We wish to show that (5.54) holds for
some α ∈ R

σ(2). Using Theorem 5.6, bearing in mind that f (0) = 0, we find
that there exists β = (βσ(1), βσ(2), · · · , βσ(n∧N) ) ∈ R

τ(n,N) such that

f (ξ) ≥ 〈β;T (ξ)〉 =
n∧N∑
s=1

〈 βσ(s); adjs ξ 〉 .

Multiplying ξ by ε > 0, we get

f (εξ) = ε2f (ξ) ≥ ε 〈 βσ(1); ξ 〉 + ε2 〈 βσ(2); adj2 ξ 〉 +O
(
ε3
)
. (5.55)

Dividing by ε and letting ε→ 0, we obtain

〈 βσ(1); ξ 〉 ≤ 0

for every ξ ∈ R
N×n, thus βσ(1) = 0. Returning to (5.55), dividing by ε2 and

letting ε→ 0 we have indeed obtained (5.54) with α = βσ(2) .

The second important point that we wish to mention is the following lemma
concerning Fourier transforms for which the proof is straightforward.

Lemma 5.28 Let Ω ⊂ R
n be a bounded open set. Let ϕ ∈ W 1,∞

0

(
Ω; RN

)
be

extended by ϕ ≡ 0 outside of Ω. Define for ξ ∈ R
n

ϕ̂α (ξ) :=
∫

Rn

ϕα (x) e−2πi〈ξ;x〉dx, 1 ≤ α ≤ N.

Then
∇̂ϕ = 2πi

(
ϕ̂αξj

)1≤α≤N
1≤j≤n = 2πi ϕ̂⊗ ξ,

in particular rank{Re(∇̂ϕ)}, rank{Im(∇̂ϕ)} ≤ 1.

Remark 5.29 Lemma 5.28 explains in a way other than that of Theorem 5.3
why matrices of rank one play such an important role in quasiconvex analysis.♦

We now proceed with the proof of Theorem 5.25.
Proof. (i) Recall that

f (ξ) = 〈Mξ; ξ〉 .
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Theorem 5.3 implies that if f is quasiconvex then f is rank one convex. We now
prove the converse. By Lemma 5.27 we have to show that

∫
Ω

〈M∇ϕ (x) ;∇ϕ (x)〉 dx ≥ 0 (5.56)

for every bounded open set Ω, for every ϕ ∈ W 1,∞
0

(
Ω; RN

)
(we will set ϕ ≡ 0

outside of Ω), knowing that

f (a⊗ b) = 〈Ma⊗ b; a⊗ b〉 ≥ 0. (5.57)

We then use Plancherel formula (we write ξ for the complex conjugate of ξ) to
get

∫
Ω

〈M∇ϕ (x) ;∇ϕ (x)〉 dx =
∫

Rn

〈M∇ϕ (x) ;∇ϕ (x)〉 dx

=
∫

Rn

〈M∇̂ϕ (ξ) ; ∇̂ϕ (ξ) 〉 dξ.
(5.58)

Using Lemma 5.28 and (5.57) in (5.58), we obtain (5.56).
(ii) We do not prove this result and we refer to the above bibliography.
(iii) We now want to show that if N = n = 3, then there exists f rank one

convex which is not polyconvex. We give here an example due to Serre [530].
Let

ξ =

⎛
⎜⎜⎜⎝

ξ11 ξ12 ξ13

ξ21 ξ22 ξ23

ξ31 ξ32 ξ33

⎞
⎟⎟⎟⎠

and let
f (ξ) :=

(
ξ11 − ξ32 − ξ23

)2 +
(
ξ12 − ξ31 + ξ13

)2
+
(
ξ21 − ξ31 − ξ13

)2 +
(
ξ22
)2 +

(
ξ33
)2
.

We divide the proof into two steps.
Step 1. We first show that there exists ε > 0 such that

f (a⊗ b) − ε |a⊗ b|2 ≥ 0 (5.59)

for every a, b ∈ R
3 and where |ξ|2 := 〈ξ; ξ〉 denotes the Euclidean norm. Lemma

5.27 will then ensure that

g (ξ) = f (ξ) − ε |ξ|2 (5.60)

is rank one convex. In Step 2 we then prove that this g is not polyconvex and
this will end the proof of the theorem. We first let

ε0 := inf
{
f (a⊗ b) : a, b ∈ R

3, |a⊗ b| = 1
}
. (5.61)
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Then, since f ≥ 0, we have ε0 ≥ 0. In order to prove (5.59) it is sufficient to
prove that ε0 > 0.We proceed by contradiction and assume that ε0 = 0. Observe
that in (5.61) the minimum is attained and therefore there exist a, b ∈ R

3 such
that

f (a⊗ b) = ε0 = 0 and |a⊗ b| = 1. (5.62)

Recall that

a⊗ b =

⎛
⎜⎜⎜⎝

a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

⎞
⎟⎟⎟⎠ ,

therefore the first equation of (5.62) becomes
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a1b1 = a2b3 + a3b2

a1b2 = a3b1 − a1b3

a2b1 = a1b3 + a3b1

a2b2 = 0
a3b3 = 0.

(5.63)

We then show that (5.63) is in contradiction with the fact that |a⊗ b| = 1. To
do so, we carefully examine (5.63) and separate the discussion in several cases.

Case 1. a2 = a3 = 0 (cf. the two last equations of (5.63)), then (5.63)
becomes ⎧⎪⎨

⎪⎩
a2 = a3 = 0

a1b1 = a1b3 = 0
a1b2 = −a1b3 .

(5.64)

Case 1a. a1 = 0, therefore a1 = a2 = a3 = 0 and hence |a⊗ b| = 0,
contradiction.

Case 1b. b1 = 0, hence from (5.64), a1b3 = 0 and thus a1b2 = 0. We then
also conclude that |a⊗ b| = 0 and this is a contradiction.

Case 2. a2 = b3 = 0 (cf. the two last equations of (5.63)), then (5.63)
becomes ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

a2 = b3 = 0
a1b1 = a3b2

a1b2 = a3b1

a3b1 = 0.

Case 2a. a3 = 0, then a1b1 = a1b2 = 0 and therefore |a⊗ b| = 0, contradic-
tion.

Case 2b. b1 = 0, then a3b2 = a1b2 = 0 and therefore |a⊗ b| = 0, contradic-
tion.

Similarly for the case a3 = b2 = 0 and b2 = b3 = 0. Thus ε0 > 0 and hence
Step 1, i.e. g defined by (5.60), is rank one convex for every 0 < ε ≤ ε0 .
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Step 2. We now show that g is not polyconvex. In view of Lemma 5.27 it is
sufficient to show that for every α ∈ R

3×3, there exists ξ ∈ R
3×3 such that

g (ξ) + 〈α; adj2 ξ〉 < 0.

We prove that the above inequality holds for matrices ξ of the following form

ξ :=

⎛
⎝ b+ d c− a a

c+ a 0 b
c d 0

⎞
⎠ .

For such matrices we have f (ξ) = 0 and therefore

g (ξ) = −ε |ξ|2
= −ε[ (b+ d)2 + (c− a)2 + a2 + (c+ a)2 + b2 + c2 + d2 ]

and

adj2 ξ =

⎛
⎜⎜⎜⎝

−bd bc cd+ ad

ad −ac − (
bd+ d2 − c2 + ac

)

bc− ab ac+ a2 − b2 − bd a2 − c2

⎞
⎟⎟⎟⎠ .

Therefore

〈α; adj2 ξ〉 = −α1bd+ α2bc+ α3 (cd+ ad)
+α4ad− α5ac− α6

(
bd+ d2 − c2 + ac

)
+α7 (bc− ab) + α8

(
ac+ a2 − b2 − bd

)
+ α9

(
a2 − c2

)
.

As in Step 1 we consider several cases.
Case 1. If α8 > 0, then take a = c = d = 0 and b 
= 0, to get

g (ξ) + 〈α; adj2 ξ〉 = −ε |ξ|2 + 〈α; adj2 ξ〉
= −ε (2b2)− α8b

2 < 0.

Case 2. If α6 > 0, then take a = b = c = 0 and d 
= 0, to get

g (ξ) + 〈α; adj2 ξ〉 = −ε (2d2
)− α6d

2 < 0.

We therefore can assume that α8 ≤ 0 and α6 ≤ 0.
Case 3. If α9 −α6 > 0 (α8 ≤ 0, α6 ≤ 0) , then take a = b = d = 0 and c 
= 0

to get
g (ξ) + 〈α; adj2 ξ〉 = −ε (3c2) + (α6 − α9) c2 < 0.

We therefore assume α8 ≤ 0, α6 ≤ 0 and α9 − α6 ≤ 0. From these three
inequalities we deduce that α8 + α9 ≤ 0, and then taking b = c = d = 0 and
a 
= 0, we get

g (ξ) + 〈α; adj2 ξ〉 = −ε (3a2
)

+ (α8 + α9) a2 < 0.

And this concludes the proof of the theorem.
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5.3.3 Convexity of SO (n) × SO (n) and O (N) × O (n)
invariant functions

We now discuss the different notions of convexity for functions having some
symmetries and follow the presentation of Dacorogna-Maréchal [204].

Let f : R
N×n → R ∪ {+∞} and let Γ1 ⊂ R

N×N be a subgroup of GL (N)
(the set of invertible matrices) and Γ2 ⊂ R

n×n be a subgroup of GL (n) . Assume
that f is Γ1 × Γ2-invariant, meaning that

f (UξV ) = f (ξ) , ∀U ∈ Γ1 , ∀V ∈ Γ2 .

We will be concerned with groups Γ that are either O (n) (the set of orthogonal
matrices) or SO (n) (the set of special orthogonal matrices); see Chapter 13 for
precise definitions.

We start with some notation and we refer to Chapter 13 for more details.
In the whole of this section, we assume that N ≥ n, but all the results can be
carried in a straightforward way to the case where N ≤ n.

Notation 5.30 (i) Let N ≥ n and ξ ∈ R
N×n. The singular values of ξ,

denoted by
0 ≤ λ1 (ξ) ≤ · · · ≤ λn (ξ) ,

are defined to be the square root of the eigenvalues of the symmetric and positive
semidefinite matrix ξtξ ∈ R

n×n. A similar definition holds when N ≤ n. We let

λ (ξ) = (λ1 (ξ) , · · · , λn (ξ)) .

(ii) When N = n, we denote by

0 ≤ µ1 (ξ) ≤ · · · ≤ µn (ξ) ,

the signed singular values of ξ ∈ R
n×n; they are defined as

µ1 (ξ) = λ1 (ξ) sign (det ξ) and µj (ξ) = λj (ξ) , j = 2, · · · , n.

We let
µ (ξ) = (µ1 (ξ) , · · · , µn (ξ)) .

(iii) We denote, for every integer m ≥ 1 :

- Π (m) the subgroup of O (m) that consists of the matrices having exactly
one nonzero entry per row and per column, moreover each entry belongs to
{−1, 1};

- Πe (m) the subgroup of Π (m) that consists of the matrices having an even
number of entries equal to −1;

- S (m) the subgroup of Πe (m) of all permutation matrices.
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We therefore have

S (m) ⊂ Πe (m) ⊂ Π(m) ⊂ O (m) ⊂ GL (m) .

(iv) We let R
N×n
d be the subspace of R

N×n consisting of diagonal matrices,
meaning that

ξ ∈ R
N×n
d ⇒ ξij = 0 if i 
= j.

(v) For a vector x = (x1, · · · , xn) ∈ R
n, we denote by diagN×n (when N = n

we simply write diag) the matrix ξ ∈ R
N×n
d such that

ξii = xi . ♦
We start with some simple observations. The first proposition is an immedi-

ate consequence of the singular values decomposition theorem (see Theorem 13.3).

Proposition 5.31 (i) Let f : R
n×n → R∪{+∞} . Then f is SO (n)×SO (n)-

invariant if and only if f satisfies

f = f ◦ diag ◦µ,

and
g := f ◦ diag

is then the unique Πe (n)-invariant function such that f = g ◦ µ.
(ii) Let f : R

N×n → R ∪ {+∞} , where N ≥ n. Then f is O(N) × O (n)-
invariant if and only if f satisfies

f = f ◦ diagN×n ◦λ,

and
g := f ◦ diagN×n

is then the unique Π(n)-invariant function such that f = g ◦ λ.
It is clear that, if N = n, the notions of O (N)×O (n) , SO (N)×O (n) and

O (N) × SO (n)-invariance coincide but differ from that of SO (N) × SO (n)-
invariance. However, if N 
= n, all four notions coincide as we now show.

Proposition 5.32 Let f : R
N×n → R∪{+∞} , where N > n. Then the follow-

ing are equivalent:
(i) f is O(N) ×O (n)-invariant;
(ii) f is SO (N) × SO (n)-invariant.

Proof. Obviously, we need only prove that (ii) implies (i). We will see that,
if f is SO (N) × SO (n)-invariant, then

f = f ◦ diagN×n ◦λ. (5.65)
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The conclusion will then follow from Proposition 5.31.

Let ξ ∈ R
N×n. By the singular values decomposition theorem (Theorem

13.3), there exist U ∈ O(N), V ∈ O (n) such that

ξ = UΛV t, where Λ := diagN×n(λ1 (ξ) , · · · , λn (ξ)).

So we have to consider several cases. First of all let us introduce the following
notation. If m ≥ 1 is an integer, we let

Hm := diag(−1, 1, · · · , 1) ∈ R
m×m and Km := diag(1, · · · , 1,−1) ∈ R

m×m.

- If U ∈ SO (N) and V ∈ SO (n) , then, from (ii) the conclusion follows,
namely

f(ξ) = f(Λ) = (f ◦ diagN×n ◦λ)(ξ).

- If U ∈ O(N)−SO (N) and V ∈ O (n)−SO (n) , we may write Λ = HNΛHn ,
so that

UΛV t = (UHN )Λ(V Hn)t

with UHN ∈ SO (N) and V Hn ∈ SO (n) . Thus (5.65) holds by (ii).

- If U ∈ O(N) − SO (N) and V ∈ SO (n) , we may write Λ = KNΛ, so that

UΛV t = (UKN )ΛV t

with UKN ∈ SO (N) . Equation (5.65) then follows from (ii).

- If U ∈ SO (N) and V ∈ O (n) − SO (n) , we may write Λ = HNKNΛHn ,
so that

UΛV t = (UHNKN )Λ(V Hn)t,

with UHNKN ∈ SO (N) and V Hn ∈ SO (n) . Thus (5.65) holds.

We have therefore shown the claim, namely that f = f ◦ diagN×n ◦λ.
The main result concerns the convexity of such functions.

Theorem 5.33 (A) Let f : R
n×n → R∪ {+∞} be SO (n)× SO (n)-invariant,

f 
≡ +∞, and let g : R
n → R ∪ {+∞} be the unique Πe (n)-invariant function

such that
f = g ◦ µ.

Then the following are equivalent:

(i) f is lower semicontinuous and convex;

(ii) the restriction of f to R
n×n
d , the subspace of R

n×n of diagonal matrices,
is lower semicontinuous and convex;

(iii) g is lower semicontinuous and convex.
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(B) Let N > n, let f : R
N×n → R ∪ {+∞} be SO (N) × SO (n)-invariant

or, equivalently, O(N)×O (n)-invariant, f 
≡ +∞, and let g : R
n → R∪ {+∞}

to be the unique Π(n)-invariant function such that

f = g ◦ λ.

Then the following are equivalent:
(i) f is lower semicontinuous and convex;
(ii) the restriction of f to R

N×n
d , the subspace of R

N×n of diagonal matrices,
is lower semicontinuous and convex;

(iii) g is lower semicontinuous and convex.

Remark 5.34 (i) We discuss now the history of this theorem first in the case
where N = n and in the O(n) × O (n)-invariant case. The result was estab-
lished by Ball [53], Hill [341] and Thompson-Freede [577]; see also Dacorogna-
Marcellini [202] and Le Dret [397]. In elasticity, an O(n) × O (n)-invariant
function is called isotropic.

(ii) The case N = n and SO (n)× SO (n)-invariant, was first established by
Dacorogna-Koshigoe [192] in the case n = 2, and later by Vincent [589] when
n ≥ 3, as a consequence of the convexity theorem of Kostant [377]. A different
proof, inspired by Rosakis [516] and based on the notion of signed singular
values and a generalized Von Neumann inequality (see Theorem 13.10), was
given by Dacorogna-Maréchal [204]. In this last paper, the case N 
= n was also
handled. ♦
Proof. (A) The fact that (i) implies (ii) is clear. The fact that (ii) implies
(iii) results immediately from the equality g = f ◦ diag . Finally, suppose that
(iii) holds. Then g∗∗ = g, and Theorem 6.17 (i) implies that

f∗∗ = g∗∗ ◦ µ = g ◦ µ = f,

which shows that f is lower semicontinuous and convex.
(B) The fact that (i) implies (ii) is clear. The fact that (ii) implies (iii)

results immediately from the equality g = f ◦ diagN×n . Finally, suppose that
(iii) holds. Theorem 6.17 (ii) then implies that

f∗∗ = g∗∗ ◦ λ = g ◦ λ = f,

which shows that f is lower semicontinuous and convex.
In the case of O (n) × O (n)-invariant functions, the analogous statement

can be derived in several ways from the above results and we do not discuss the
details.

Corollary 5.35 Let f : R
n×n → R∪{+∞} be O (n)×O (n)-invariant, f 
≡ +∞,

and let g : R
n → R ∪ {+∞} be the unique Π(n)-invariant function such that

f = g ◦ λ.
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Then the following are equivalent:

(i) f is lower semicontinuous and convex;

(ii) the restriction of f to R
n×n
d is lower semicontinuous and convex;

(iii) g is lower semicontinuous and convex.

Remark 5.36 As a convex Π (n)-invariant function, the function g appearing
in Theorem 5.33 (B) or in Corollary 5.35 must be such that each function

xk → g(x1, · · · , xn), k = 1, · · · , n

is non-decreasing on R+ . We now prove this only when k = 1, the other cases
being handled similarly. As a matter of fact, for all x = (x1, · · · , xn) ∈ R

n with
x1 ≥ 0,

g(0, x2, · · · , xn) ≤ 1
2
g(−x1, x2, · · · , xn) +

1
2
g(x1, x2, · · · , xn) = g(x),

and if z > 0, we see, using the above inequality, that

g(x) ≤ x1

x1 + z
g(x1 + z, x2, · · · , xn) +

z

x1 + z
g(0, x2, · · · , xn)

≤ x1

x1 + z
g(x1 + z, x2, · · · , xn) +

z

x1 + z
g(x1 + z, x2, · · · , xn)

= g(x1 + z, x2, · · · , xn).

Thus x1 → g(x1, · · · , xn) is non-decreasing on R+ . ♦

We now give a simple corollary, which follows from Theorem 5.33 and in a
more direct way from Theorem 13.10. It will be used in Theorems 5.39, 5.43
and 7.43.

Corollary 5.37 Let ξ ∈ R
n×n and

0 ≤ b1 ≤ · · · ≤ bn .

The functions

fν (ξ) =
n∑
i=ν

biλi (ξ)

are convex for every ν = 1, · · · , n.
If |b1| ≤ b2 ≤ · · · ≤ bn , then the following functions are also convex

gν (ξ) =
n∑
i=ν

biµi (ξ) , ν = 1, · · · , n.
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5.3.4 Polyconvexity and rank one convexity of SO (n) ×
SO (n) and O (N) × O (n) invariant functions

We now discuss the polyconvexity and rank one convexity of functions having
the symmetries considered in the previous section. We first discuss the case
of a O (N) × O (n)-invariant function and then the SO (2) × SO (2)-invariant
case. We also assume, as in the previous section, that N ≥ n, but all the results
immediately extend to the case where N ≤ n.

We start with some notation.

Notation 5.38 Let N ≥ n.

(i) We let
R
n
+ := {x ∈ R

n : xi ≥ 0, i = 1, · · · , n} ,

Kn
+ := {x ∈ R

n : 0 ≤ x1 ≤ · · · ≤ xn} .

In particular, when n = 1, K+ = R+ .

(ii) For X ∈ R

(
N
s

)
×
(
n
s

)
, 1 ≤ s ≤ n − 1, we denote by Λs (X) ∈ K

(
n
s

)
+ its

singular values. In particular, when s = 1, we have

Λ1 (ξ) = (λ1 (ξ) , · · · , λn (ξ)) .

In the notation of Section 5.3.3 we have Λ1 (ξ) = λ (ξ) .
(iii) For every x ∈ Kn

+ , we adopt the following notation.
- If s = 2, we let

adj2 x ∈ K

(
n
2

)
+

the vector in R

(
n
2

)
composed of every xixj with i < j rearranged in an increasing

way (for example if n = 3 then adj2 x = (x1x2, x1x3, x2x3)). Note that, unless
n = 2, 3, the ordering of adj2 x depends on x itself. For example, if n = 4, then
for some x we can have

adj2 x = (x1x2, x1x3, x1x4, x2x3, x2x4, x3x4)

and for others

adj2 x = (x1x2, x1x3, x2x3, x1x4, x2x4, x3x4) .

- Similarly, if 2 < s < n, we let

adjs x ∈ K

(
n
s

)
+

to be the vector in R

(
n
s

)
composed of every xi1 · · ·xis , i1 < · · · < is rearranged

in an increasing way.
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- Finally, when s = n, we denote by either of the following symbols

adjn x = detx =
n∏
i=1

xi .

Note that with these notations we have for every ξ ∈ R
N×n and every

1 ≤ s ≤ n that
Λs (adjs ξ) = adjs Λ1 (ξ) . ♦

The next theorem is stated, for the convenience of the reader, first when
N = n = 2, then when N = n = 3 and finally in the general case N ≥ n.

Theorem 5.39 Let N ≥ n,

0 ≤ λ1 (ξ) ≤ · · · ≤ λn (ξ) ,

be the singular values of ξ ∈ R
N×n. Let f : R

N×n → R and g : R
n
+ → R be such

that
f (ξ) = g (λ1 (ξ) , · · · , λn (ξ)) .

(i) Let N = n = 2. Assume that there exists

G : R
2
+ × R+ → R, G = G (x, δ) = G (x1, x2, δ) ,

convex, non-decreasing in each variable, symmetric with respect to the first two
variables, meaning that

G (x2, x1, δ) = G (x1, x2, δ) ,

and such that
g (x1, x2) = G (x1, x2, x1x2) ,

then f is polyconvex.
(ii) Let N = n = 3. Assume that there exists

G : R
3
+ × R

3
+ × R+ → R

G = G (x, y, δ) = G (x1, x2, x3, y1, y2, y3, δ)

convex, non-decreasing in each variable and symmetric in the variables x and y
separately, meaning that for every permutation P and P ′ of three elements

G (Px, P ′y, δ) = G (x, y, δ) ,

and such that

g (x1, x2, x3) = G (x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3) .
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Then f is polyconvex.

(iii) General case: N ≥ n. Assume that there exists

G : R
n
+ × R

(
n
2

)
+ × · · · × R

(
n
n−1

)
+ × R+ → R

G = G (z) = G
(
z1, z2, · · · , zn−1, zn

)

convex, non-decreasing in each variable and symmetric in each of the variables
zi separately, i.e., for every permutation Pi of

(
n
i

)
elements

G
(
P1Λ1, P2Λ2, · · · , Pn−1Λn−1,Λn

)
= G

(
Λ1,Λ2, · · · ,Λn−1,Λn

)

and such that

g (x) = G
(
x, adj2 x, · · · , adjn−1 x, adjn x

)
.

Then f is polyconvex.

Remark 5.40 (i) The above result is due to Ball [53] when N = n = 2 and
N = n = 3 and to Dacorogna-Marcellini [202] when N = n. Here we follow this
last proof. A different approach, more in the spirit of Section 5.3.3, has been
given by Dacorogna-Maréchal [205]. One can also consult Mielke [443].

(ii) The above sufficient condition is in some sense also necessary, once we
have taken care of the appropriate symmetries implied by the fact that f depends
only on singular values. For example, since the function f does not see changes
of signs of the determinant, then G should not see it either (and the function
F, defined in the proof, as well). This will be achieved in Theorem 5.43 when
N = n = 2. ♦

Proof. We first proceed, just for the sake of better understanding the proof,
with the case N = n = 2.

Case: N = n = 2. We divide the proof into two steps.

Step 1. We start with the following preliminary observation. Since G is
convex over R

2
+ × R+ we have (cf. Corollary 2.51)

G (x, δ) = sup
b0, b2 ∈ R

b1 ∈ R
2

{
b0 + 〈b1;x〉 + b2δ :

b0 + 〈b1; y〉 + b2ε ≤ G (y, ε) , ∀ (y, ε) ∈ R
2
+ × R+

}
.

It is easy to see (cf. below) that since x ∈ K2
+ and δ ≥ 0 and since G is non

decreasing in each variable and symmetric in the x variable, there is no loss of
generality in considering the supremum only on b2 ≥ 0 and b1 ∈ K2

+ . Hence,
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for every (x, δ) ∈ K2
+ × R+ , we have

G (x, δ) = sup
b0 ∈ R

b2 ≥ 0
b1 ∈ K2

+

{
b0 + 〈b1;x〉 + b2δ :

b0 + 〈b1; y〉 + b2ε ≤ G (y, ε) , ∀ (y, ε) ∈ K2
+ × R+

}
.

Let us now prove that we can indeed restrict the supremum to (b1, b2) ∈ K2
+ ×

R+ . Define
L (b0, b1, b2, x, δ) := b0 + 〈b1;x〉 + b2δ.

1) Assume first that we have b2 < 0 and

L (b0, b1, b2, y, ε) ≤ G (y, ε) , ∀ (y, ε) ∈ K2
+ × R+

and let us show that we can increase the value by considering b2 = 0. Indeed,
since δ ≥ 0, we surely have

L (b0, b1, b2, x, δ) ≤ L (b0, b1, 0, x, δ)

and moreover, since G is non decreasing in the variable ε,

L (b0, b1, 0, y, ε) = L (b0, b1, b2, y, 0) ≤ G (y, 0)
≤ G (y, ε) , ∀ (y, ε) ∈ K2

+ × R+ .

We have therefore shown that the supremum can be restricted to b2 ≥ 0.
2) A completely analogous argument shows that we can also restrict our

attention to b1 ∈ R
2
+ . Once this is achieved, we can further consider only b1 ∈

K2
+ , since x itself belongs to K2

+ and G is symmetric with respect to the two
first variables.

Step 2. Let F : R
2×2 × R → R be defined by

F (ξ, δ) := G
(
Λ1 (ξ) , |δ|) = G (λ1 (ξ) , λ2 (ξ) , |δ|) .

Observe that

F (ξ, det ξ) = G (λ1 (ξ) , λ2 (ξ) , λ1 (ξ) λ2 (ξ))
= g (λ1 (ξ) , λ2 (ξ)) = f (ξ) .

Hence if we prove that F is convex, we will have established that f is polyconvex.
We have by Step 1 that, for every (x, δ) ∈ K2

+ × R+ ,

G (x, δ) = sup
b0 ∈ R

b2 ≥ 0
b1 ∈ K2

+

{
b0 + 〈b1;x〉 + b2δ :

b0 + 〈b1; y〉 + b2ε ≤ G (y, ε) , ∀ (y, ε) ∈ K2
+ × R+

}
.
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Since for every y ∈ K2
+ , we can find η ∈ R

2×2 so that

Λ1 (η) = y

(just choose η = diag (y1, y2)), we deduce that

F (ξ, δ) = sup
b0 ∈ R, b2 ≥ 0

b1 ∈ K2
+

⎧⎪⎨
⎪⎩

b0 +
〈
b1; Λ1 (ξ)

〉
+ b2 |δ| :

b0 +
〈
b1; Λ1 (η)

〉
+ b2 |ε| ≤ F (η, ε) ,

∀ (η, ε) ∈ R
2×2 × R

⎫⎪⎬
⎪⎭ .

Since the function (η, ε) → b0 +
〈
b1; Λ1 (η)

〉
+ b2 |ε| is convex (by Corollary 5.37

and since b2 ≥ 0 and b1 ∈ K2
+), we deduce that F is convex. The proof, in the

case N = n = 2, is therefore complete.
General case: N ≥ n. Recall first the notations of Sections 5.2 and 5.4. Let

τ (n,N) :=
n∑
s=1

(
N
s

)(
n
s

)

and T : R
N×n → R

τ(n,N) be such that

T (ξ) := (ξ, adj2 ξ, · · · , adjn ξ)

where

R
τ(n,N) := R

N×n × R

(
N
2

)
×
(
n
2

)
× · · · × R

(
N
n−1

)
×
(
n
n−1

)
× R

(
N
n

)
.

For X =
(
X1, X2, · · · , Xn−1, Xn

) ∈ R
τ(n,N) we denote by

Λ (X) :=
(
Λ1

(
X1

)
,Λ2

(
X2

)
, · · · ,Λn−1

(
Xn−1

)
,Λn (Xn)

) ∈ K
θ(n)
+

where
K
θ(n)
+ := Kn

+ ×K
(n
2)

+ × · · · ×K
( n

n−1)
+ ×K+ .

Finally define F : R
τ(n,N) → R by

F (X) := G (Λ (X)) .

Observe that, for ξ ∈ R
N×n,

F (T (ξ)) = G (Λ (T (ξ)))
= G

(
Λ1 (ξ) ,Λ2 (adj2 ξ) , · · · ,Λn−1

(
adjn−1 ξ

)
,Λn (adjn ξ)

)
= G

(
Λ1 (ξ) , adj2 Λ1 (ξ) , · · · , adjn−1 Λ1 (ξ) , adjn Λ1 (ξ)

)
= g

(
Λ1 (ξ)

)
= g (λ1 (ξ) , · · · , λn (ξ)) = f (ξ) .

Hence to prove the polyconvexity of f it remains only to prove the convexity of
F. We then use the convexity of G to deduce, for every z =

(
z1, · · · , zn) ∈ K

θ(n)
+ ,
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that

G (z) = sup
b0, bν∈R

(n
ν)

{
b0 +

∑n
ν=1 〈bν ; zν〉 :

b0 +
∑n

ν=1 〈bν ; yν〉 ≤ G (y) , ∀y ∈ R
θ(n)
+

}
.

The facts that G is non decreasing in each variable and symmetric in each of

the variables but the last one, that zν ∈ K
(n

ν)
+ , for every ν = 1, · · · , n, allow (as

in Step 1 of the case where N = n = 2) to restrict the above supremum to

G (z) = sup

b0∈R, bν∈K(n
ν)

+

{
b0 +

∑n
ν=1 〈bν ; zν〉 :

b0 +
∑n
ν=1 〈bν ; yν〉 ≤ G (y) , ∀y ∈ K

θ(n)
+

}
.

Since for every yν ∈ K
(n

ν)
+ and every ν = 1, · · · , n, we can find ην ∈ R

(N
ν )×(n

ν)

so that
Λν (ην) = yν

(just choose ην a diagonal matrix with the appropriate entries), we obtain that
for every X =

(
X1, · · · , , Xn

) ∈ R
τ(n,N),

F (X) = G (Λ (X))

= sup

b0∈R, bν∈K(n
ν)

+

{
b0 +

∑n
ν=1 〈bν ; Λν (Xν)〉 :

b0 +
∑n

ν=1 〈bν ; Λν (ην)〉 ≤ F (η) , ∀η ∈ R
τ(n,N)

}

Observe that since bν ∈ K
(n

ν)
+ for ν = 1, · · · , n, we have that the function

η =
(
η1, · · · , ηn) ∈ R

τ(n,N) → b0 +
n∑
ν=1

〈bν ; Λν (ην)〉

is convex (cf. Corollary 5.37) and hence F is convex. Thus the function f is
polyconvex and this achieves the proof of the theorem.

The next example will turn out, in the subsequent chapters, to be useful.

Example 5.41 Let ξ ∈ R
n×n, then the functions

fν (ξ) :=
n∏
i=ν

λi (ξ)

are polyconvex for every ν = 1, · · · , n. The proof follows from the theorem, but
it can be seen in a more straightforward way from the following argument. For
1 ≤ s ≤ n, the function

X ∈ R

(
n
s

)
×
(
n
s

)
→ λ(n

s

) (X)

is convex, according to Corollary 5.37. Hence the function

ξ → λ(n
s

) (adjs ξ)
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is polyconvex. Since

λ(n
s) (adjs ξ) =

n∏
i=n−s+1

λi (ξ) ,

we have the claim. ♦

We now turn our attention to the SO (2) × SO (2)-invariant case and give
here a theorem due to Dacorogna-Koshigoe [192], which shows, in particular,
that at least when N = n = 2, the sufficient condition of Theorem 5.39 is also
necessary. We here follow the proof of Dacorogna-Maréchal [205]; but let us
first introduce the following definition of polyconvexity for vectors.

Definition 5.42 A function g : R
2 → R ∪ {+∞} is said to be polyconvex if

there exists G : R
3 → R ∪ {+∞} convex such that

g (x1, x2) = G (x1, x2, x1x2) .

There is of course a similar definition for polyconvex functions over R
n (for

details see [205]), but we will not need this extension here.
In the next theorem we use the notations of Section 5.3.3.

Theorem 5.43 Let f : R
2×2 → R be SO (2)×SO (2)-invariant and let g : R

2 →
R be the unique Πe (2)-invariant function such that

f = g ◦ µ.

The following statements are all equivalent.
(i) f is polyconvex.
(ii) g is polyconvex.
(iii) For every (ai, bi) ∈ R

2, ti ≥ 0, i = 1, 2, 3, 4 with

∑4
i=1 ti = 1 and

∑4
i=1 tiaibi = (

∑4
i=1 tiai )(

∑4
i=1 tibi )

the following inequality holds

g(
∑4

i=1 ti (ai, bi)) ≤
∑4

i=1 tig (ai, bi) .

In particular, if G : R
3 → R is defined by

G (a, b, δ) := inf

{ ∑4
i=1 tig (ai, bi) :∑4

i=1 ti (ai, bi, aibi) = (a, b, δ) and
∑4
i=1 ti = 1

}
,

then G is well defined. Moreover if g satisfies the above condition, then G is
convex and

g (a, b) = G (a, b, ab)
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for every (a, b) ∈ R
2.

(iv) For every (a, b) ∈ R
2, there exists β = β (a, b) ∈ R

3 such that

g (x, y) ≥ g (a, b) + 〈β (a, b) ; (x, y, xy) − (a, b, ab)〉

for every (x, y) ∈ R
2 and where 〈·; ·〉 denotes the scalar product in R

3.

Remark 5.44 (i) The equivalence between (i) and (ii) can be restated as:

f |
R

2×2
d

is polyconvex ⇔ f is polyconvex,

where R
2×2
d is the subspace of diagonal matrices of R

2×2 and f |
R

2×2
d

is the
restriction of f to this subspace.

(ii) The same result holds if f : R
2×2 → R is O (2) × O (2)-invariant and

g : R
2 → R is the unique Π (2)-invariant function such that

f = g ◦ λ.

(iii) The result can be, in part, extended to the case where f : R
2×2 →

R ∪ {+∞} , see Dacorogna-Maréchal [205] for details.

(iv) We recall that when we say that a function g : R
2 → R is Πe (2)-invariant

we mean that, for every x1, x2 ∈ R,

g (x1, x2) = g (x2, x1) = g (−x1,−x2) = g (−x2,−x1) . ♦

Proof. The equivalence between (ii), (iii) and (iv) is proved in exactly the
same way as the one of Theorem 5.6 and we will therefore omit the proof.

(i) ⇒ (ii). Since f is polyconvex, we can find a convex function

F : R
2×2 × R → R

so that
f (ξ) = F (ξ, det ξ) .

Let (x1, x2, δ) ∈ R
3 and let

G (x1, x2, δ) := F (ξ, δ)

where ξ = diag (x1, x2) ∈ R
2×2. Observe that G : R

3 → R is convex and, since
g is Πe (2)-invariant, we have

g (x1, x2) = G (x1, x2, x1x2) .

Thus g is polyconvex.

(ii) ⇒ (i). We divide the proof into two steps.
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Step 1. Since g is polyconvex, we can find G : R
3 → R convex such that

g (x1, x2) = G (x1, x2, x1x2) .

In general the function (x1, x2) → G (x1, x2, δ) is not Πe (2)-invariant, although
g is. To remedy to this difficulty, we let H : R

3 → R be defined by

H (x1, x2, δ) :=
1
4

[G (x1, x2, δ) +G (x2, x1, δ) +G (−x1,−x2, δ)

+G (−x2,−x1, δ)] .

The function H is convex and furthermore (x1, x2) → H (x1, x2, δ) is Πe (2)-
invariant. Moreover, since g is Πe (2)-invariant we also have

g (x1, x2) = H (x1, x2, x1x2) .

We then define, for ξ ∈ R
2×2,

F (ξ, δ) := H (µ1 (ξ) , µ2 (ξ) , δ) .

Since we clearly have
f (ξ) = F (ξ, det ξ) ,

we will deduce the claim, namely that f is polyconvex, once we will have shown
that F : R

2×2 × R → R is convex.
This is done in a completely analogous manner to the one of Theorem 5.39.

Indeed since H is convex over R
3 we have (cf. Corollary 2.51)

H (x1, x2, δ) = sup
b0,b1,b2,b3∈R

⎧⎪⎨
⎪⎩

b0 + b1x1 + b2x2 + b3δ :
b0 + b1y1 + b2y2 + b3ε ≤ H (y1, y2, ε) ,

∀ (y1, y2, ε) ∈ R
3

⎫⎪⎬
⎪⎭ .

It is easy to see (cf. Step 2 below) that, if |x1| ≤ x2 , we have

H (x1, x2, δ) = sup
b0, b3 ∈ R

|b1| ≤ b2

⎧⎪⎨
⎪⎩

b0 + b1x1 + b2x2 + b3δ :
b0 + b1y1 + b2y2 + b3ε ≤ H (y1, y2, ε) ,

for every |y1| ≤ y2 and ε ∈ R

⎫⎪⎬
⎪⎭ .

(5.66)
since (x1, x2) → H (x1, x2, δ) is Πe (2)-invariant.

Since for every |y1| ≤ y2 , we can find η ∈ R
2×2 so that

µ1 (η) = y1 and µ2 (η) = y2

(just choose η = diag (y1, y2)), we deduce that

F (ξ, δ) = sup
b0, b3 ∈ R

|b1| ≤ b2

⎧⎪⎨
⎪⎩

b0 + b1µ1 (ξ) + b2µ2 (ξ) + b3δ :
b0 + b1µ1 (η) + b2µ2 (η) + b3ε ≤ F (η, ε) ,

∀ (η, ε) ∈ R
2×2 × R

⎫⎪⎬
⎪⎭ .



Examples 211

Since |b1| ≤ b2 , we find that the function

(η, ε) → b0 + b1µ1 (η) + b2µ2 (η) + b3ε

is convex (by Corollary 5.37) and we thus deduce that F is convex. The proof
is therefore complete.

Step 2. Let us now prove that (5.66) holds. So let, for |x1| ≤ x2 and
b0, b1, b2, b3, δ ∈ R,

L (b1, b2, x1, x2, δ) := b0 + b1x1 + b2x2 + b3δ

(we do not denote in L the dependence on b0, b3, since they will not change in
the following computations) be such that

L (b1, b2, y1, y2, ε) ≤ H (y1, y2, ε) , ∀ (y1, y2, ε) ∈ R
3. (5.67)

The claim (5.66) will follow, if we can find |c1| ≤ c2 so that

L (b1, b2, x1, x2, δ) ≤ L (c1, c2, x1, x2, δ) (5.68)

while
L (c1, c2, y1, y2, ε) ≤ H (y1, y2, ε) , ∀ (y1, y2, ε) ∈ R

3. (5.69)

This is done as follows. Let

σ (b1, b2) :=

⎧⎪⎨
⎪⎩

1 if b1b2 > 0
0 if b1b2 = 0
−1 if b1b2 < 0.

Let τ be a permutation of {1, 2} such that
∣∣bτ(1)∣∣ ≤ ∣∣bτ(2)∣∣

and
c1 := σ (b1, b2)

∣∣bτ(1)∣∣ and c2 :=
∣∣bτ(2)∣∣ .

According to Proposition 13.9, the inequality (5.68) is satisfied. Observe that,
for every y1, y2 ∈ R,

c1y1 + c2y2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b1y1 + b2y2 if b2 ≥ |b1|
−b1y1 − b2y2 if − b2 ≥ |b1|
b2y1 + b1y2 if b1 ≥ |b2|
−b2y1 − b1y2 if − b1 ≥ |b2| .

This implies that

L (c1, c2, y1, y2, ε) ≤ max{L (b1, b2, y1, y2, ε) , L (b1, b2,−y1,−y2, ε) ,
L (b1, b2, y2, y1, ε) , L (b1, b2,−y2,−y1, ε)}.
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Since (5.67) holds and (x1, x2) → H (x1, x2, δ) is Πe (2)-invariant, we get (5.69)
and hence the claim (5.66) is established.

Having discussed the convexity and the polyconvexity of SO (2)×SO (2) or
O (N) × O (n)-invariant functions, one would be tempted to think that similar
results exist for rank one and quasiconvex functions. This is not the case as was
first observed by Dacorogna-Koshigoe [192] (see Example 5.45) for rank one
convex functions. Later Müller [463] showed the same result for quasiconvex
functions.

Example 5.45 The examples are based on computations of Dacorogna-
Douchet-Gangbo-Rappaz in [185]. In both examples, N = n = 2 and b ≥ 0.

(i) Let α > 2 +
√

2 and

fα,b (ξ) = |ξ|2α − 2α−1b |det ξ|α .

(ii) Let α > (9 + 5
√

5 )/4 and

fα,b (ξ) = |ξ|2α ( |ξ|2 − 2b det ξ ).

Note that both functions are SO (2) × SO (2)-invariant. In both cases, there
exist b2 < b1 (for the precise values of b1 , b2 see [185]) such that

fα,b is rank one convex ⇔ b ≤ b2 ,

fα,b|R2×2
d

is rank one convex ⇔ b ≤ b1 . ♦

We finally conclude this section by mentioning other results on rank one
convexity of O (n)×O (n)-invariant functions. As seen in Proposition 5.31, any
such function is necessarily of the form

f (ξ) = g (λ1 (ξ) , · · · , λn (ξ))

where 0 ≤ λ1 (ξ) ≤ · · · ≤ λn (ξ) are the singular values of the matrix ξ ∈ R
n×n.

Assuming that the function f is twice differentiable, it is therefore natural to
ask conditions on the derivatives of g that ensure the rank one convexity of
the function f. This was achieved by Knowles-Sternberg [371] when n = 2 and
then in various different ways by Aubert [41], Aubert-Tahraoui [48], Ball [55],
Dacorogna-Marcellini [202] and Davies [223]. When n = 3, Aubert-Tahraoui
in [47] gave also some necessary conditions and, although in a slightly different
context, necessary and sufficient conditions were derived by Simpson-Spector
[540] (see also Zee-Sternberg [613]). In the case of general n, certain results
exist but are less explicit; see Dacorogna [182] and Silhavy [536].

5.3.5 Functions depending on a quasiaffine function

The following theorem was established in Dacorogna [173].
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Theorem 5.46 Let f : R
N×n → R, Φ : R

N×n → R be quasiaffine but not
identically constant and g : R → R be such that

f (ξ) = g (Φ (ξ))

(in particular, if N = n, one can take Φ (ξ) = det ξ). Then

f polyconvex ⇔ f quasiconvex ⇔ f rank one convex ⇔ g convex.

Proof. The implications

g convex ⇒ f polyconvex ⇒ f quasiconvex ⇒ f rank one convex

follow immediately from Theorem 5.3. It therefore remains to show that

f rank one convex ⇒ g convex.

We want to prove that for t ∈ (0, 1) , α, β ∈ R, then

g (tα+ (1 − t)β) ≤ tg (α) + (1 − t) g (β)

provided f is rank one convex. Following Theorem 5.20, we have that

Φ (ξ) = a0 + 〈a;T (ξ)〉 = a0 + 〈a1; ξ〉 +
n∧N∑
j=2

〈
aj ; adjj ξ

〉
,

where a0 ∈ R, a1 ∈ R
N×n and aj ∈ R

σ(j) where σ (j) =
(
N
j

)(
n
j

)
. Since Φ is not

identically constant, then at least one of the aj , 1 ≤ j ≤ n∧N is not zero. Let
s be such that as 
= 0 but as−1 = as−2 = · · · = a1 = 0 (if a1 
= 0, we then take
s = 1). Since as 
= 0

(∈ R
σ(s)

)
we have that at least one of the components of

as = (a1
s, · · · , aσ(s)

s ) is non-zero. For notational convenience, we take aσ(s)
s 
= 0.
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First choose η ∈ R
N×n in the following way

η =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

η1
1 · · · η1

s η1
s+1 · · · η1

n
...

. . .
...

...
. . .

...
ηs1 · · · ηss ηss+1 · · · ηsn

ηs+1
1 · · · ηs+1

s ηs+1
s+1 · · · ηs+1

n
...

. . .
...

...
. . .

...
ηN1 · · · ηNs ηNs+1 · · · ηNn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α− a0

a
σ(s)
s

· · · 0 0 · · · 0

...
. . .

...
...

. . .
...

0 · · · 1 0 · · · 0
0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

More precisely, we take all components to be zero but the following ones:

η1
1 =

α− a0

a
σ(s)
s

, ηii = 1 for 2 ≤ i ≤ s.

We next choose λ ∈ R
N×n in exactly the same manner except that we replace

the first component by (β − a0 )/aσ(s)
s . We then immediately have

{
Φ (η) = α, Φ (λ) = β

rank {η − λ} ≤ 1

since aj = 0 if j < s,

adjs η = (0, · · · , 0, α− a0

a
σ(s)
s

) and adjs λ = (0, · · · , 0, β − a0

a
σ(s)
s

)

and adjj η = adjj λ = 0 if j ≥ s+ 1.
We also clearly have from Theorem 5.20 that

Φ (tη + (1 − t)λ) = tα+ (1 − t)β.

Using the rank one convexity of f and the above construction we get

g (tα+ (1 − t)β) = g (Φ (tη + (1 − t)λ)) = f (tη + (1 − t)λ)
≤ tf (η) + (1 − t) f (λ) = tg (Φ (η)) + (1 − t) g (Φ (λ))
= tg (α) + (1 − t) g (β)

which is the desired result.
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5.3.6 The area type case

The next result is due to Morrey [453], but we follow a different proof, estab-
lished in Dacorogna [171].

Theorem 5.47 Let N = n+ 1 and for ξ ∈ R
(n+1)×n let

adjn ξ = (det ξ̂ 1,− det ξ̂ 2, · · · , (−1)k+1 det ξ̂ k, · · · , (−1)n+2 det ξ̂ n+1),

where ξ̂ k is the n × n matrix obtained from ξ by suppressing the k th row. Let
f : R

(n+1)×n → R and g : R
n+1 → R be such that

f (ξ) = g (adjn ξ) .

Then

f polyconvex ⇔ f quasiconvex ⇔ f rank one convex ⇔ g convex.

Remark 5.48 It is clear that if u : R
n → R

n+1, then adjn∇u represents the
normal to the surface

{u (x) : x ∈ R
n} .

In the case n = 2, u (x1, x2) =
(
u1, u2, u3

)
we have

adj2 ∇u =

⎛
⎜⎜⎝

∂u2

∂x1

∂u3

∂x2
− ∂u2

∂x2

∂u3

∂x1

∂u3

∂x1

∂u1

∂x2
− ∂u1

∂x1

∂u3

∂x2

∂u1

∂x1

∂u2

∂x2
− ∂u1

∂x2

∂u2

∂x1

⎞
⎟⎟⎠ . ♦

Before proceeding with the proof of the theorem, we mention an algebraic
lemma, stronger than needed, that will be fully used in Section 6.6.4. We will
prove the lemma, established in Dacorogna [171], after the proof of Theorem
5.47.

Lemma 5.49 Let 0 < t < 1, a, b ∈ R
n+1 and ξ ∈ R

(n+1)×n be such that

adjn ξ = ta+ (1 − t) b 
= 0.

Then there exist α, β ∈ R
(n+1)×n such that
⎧⎪⎨
⎪⎩

ξ = tα+ (1 − t)β
adjn α = a, adjn β = b

rank {α− β} ≤ 1.

Proof. (Theorem 5.47). The implications

g convex ⇒ f polyconvex ⇒ f quasiconvex ⇒ f rank one convex
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follow immediately from Theorem 5.3.
It therefore remains to show that

f rank one convex ⇒ g convex.

We let t ∈ (0, 1) , a, b ∈ R
n+1 and we wish to show that

g (ta+ (1 − t) b) ≤ tg (a) + (1 − t) g (b) (5.70)

provided f is rank one convex and f (ξ) = g (adjn ξ) . We divide the proof into
two cases.

Case 1 : ta+ (1 − t) b 
= 0. We let

c := ta+ (1 − t) b =
(
c1, · · · , cn+1

) ∈ R
n+1.

Since c 
= 0, we assume, for notational convenience, that c1 
= 0 (the general
case is handled similarly). We then let

ξ :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ξ11 ξ12 · · · ξ1n

ξ21 ξ22 · · · ξ2n

ξ31 ξ32 · · · ξ3n
...

...
. . .

...
ξn+1
1 ξn+1

2 · · · ξn+1
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−c2 −c
3

c1
· · · −c

n+1

c1

c1 0 · · · 0

0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

It is then easy to see that

adjn ξ = c = ta+ (1 − t) b 
= 0.

We may now apply Lemma 5.49 to get α, β ∈ R
(n+1)×n such that

⎧⎪⎨
⎪⎩

ξ = tα+ (1 − t)β
adjn α = a, adjn β = b

rank {α− β} ≤ 1.

Returning to (5.70), using the rank one convexity of f , we obtain

g (ta+ (1 − t) b) = g (adjn ξ) = f (ξ) = f (tα+ (1 − t)β)
≤ tf (α) + (1 − t) f (β) = tg (a) + (1 − t) g (b) ,

which is precisely the result.
Case 2 : ta + (1 − t) b = 0. Observe first that the rank one convexity of f

implies that f is continuous (cf. Theorem 5.3), thus from f (ξ) = g (adjn ξ) we
deduce that g is continuous. Therefore using Case 1 for ã = a + (ε, 0, · · · , 0)
and b̃ = b+(ε, 0, · · · , 0) where ε > 0 is arbitrary, we deduce (5.70) by continuity
of g.
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We now conclude this section by proving Lemma 5.49.

Proof. We give here a different proof than the one in Dacorogna [171] or
[179]. We decompose the proof into two steps.

Step 1. We start by assuming that ξ ∈ R
(n+1)×n has the following special

form

ξ = diag(n+1)×n (x1, · · · , xn) =

⎛
⎜⎜⎜⎝

x1 · · · 0
...

. . .
...

0 · · · xn
0 · · · 0

⎞
⎟⎟⎟⎠

with x1, · · · , xn ∈ R, all different from 0, and thus

adjn ξ =

⎛
⎜⎜⎜⎝

0
...
0

(−1)n x1 · · ·xn

⎞
⎟⎟⎟⎠ = ta+ (1 − t) b 
= 0.

We next observe that for every λ ∈ R
n+1 and µ ∈ R

n we have

adjn (ξ + λ⊗ µ) = adjn ξ +
〈
adjn−1 ξ;λ⊗ µ

〉

where

〈
adjn−1 ξ;λ⊗ µ

〉
= (−1)n

⎛
⎜⎜⎜⎜⎜⎝

−λn+1µ1

∏
j �=1 xj

...
−λn+1µn

∏
j �=n xj∑n

s=1 [λsµs
∏
j �=s xj ]

⎞
⎟⎟⎟⎟⎟⎠
.

We then search for α, β ∈ R
(n+1)×n of the form
{
α = ξ + (1 − t)λ⊗ µ

β = ξ − tλ⊗ µ

where λ ∈ R
n+1 and µ ∈ R

n are to be determined. We therefore immediately
deduce that

ξ = tα+ (1 − t) β and rank {α− β} ≤ 1.

We next observe that

adjn α = adjn ξ + (1 − t)
〈
adjn−1 ξ;λ⊗ µ

〉
adjn β = adjn ξ − t

〈
adjn−1 ξ;λ⊗ µ

〉
.

Thus the equations adjn α = a and adjn β = b reduce to the single system of
equations 〈

adjn−1 ξ;λ⊗ µ
〉

= a− b := c (5.71)

that we solve by considering two cases.
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Case 1 : c1 = · · · = cn = 0. We then choose

λ1 = 1, λ2 = · · · = λn+1 = 0, µ2 = · · · = µn = 0

and

µ1 = (−1)n
cn+1∏n
j=2 xj

so as to satisfy (5.71).

Case 2 : there exists k ∈ {1, · · · , n} with ck 
= 0. Equation (5.71) is then
satisfied if we choose

µi = (−1)n+1 ci∏
j �=i xj

, i = 1, · · · , n

and λi = 0 whenever i 
= k, n+ 1, λn+1 = 1 and

λk = (−1)n
cn+1

µk
∏
j �=k xj

=
−cn+1

ck
.

Step 2. We now reduce the general case ξ ∈ R
(n+1)×n to the special form of

the previous step by using the singular values decomposition theorem (cf. The-
orem 13.3). We can indeed find R ∈ O (n+ 1) , Q ∈ SO (n) and x1, · · · , xn ∈ R

so that

ξ̃ := RξQ =

⎛
⎜⎜⎜⎝

x1 · · · 0
...

. . .
...

0 · · · xn
0 · · · 0

⎞
⎟⎟⎟⎠ .

Using Proposition 5.66, and noting that adjnQ = detQ = 1, we find that

adjn ξ̃ = adjnR adjn ξ 
= 0.

Observing that adjnR ∈ O (n+ 1) (by Proposition 5.66), we set

ã := adjnRa and b̃ := adjnRb

and we can find, from Step 1, α̃, β̃ ∈ R
(n+1)×n such that

⎧⎪⎨
⎪⎩

ξ̃ = tα̃+ (1 − t) β̃

adjn α̃ = ã, adjn β̃ = b̃

rank{α̃− β̃} ≤ 1.

Setting
α := Rt α̃ Qt and β := Rt β̃ Qt

we have indeed obtained the claim of the lemma.
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5.3.7 The example of Sverak

We now turn to an example of a rank one convex function that is not quasicon-
vex. This fundamental result was obtained by Sverak [551] when N ≥ 3 and
n ≥ 2 and we follow his presentation here. The question of extending Sverak
example to the case where n ≥ N = 2 is still open.

Theorem 5.50 Let N ≥ 3 and n ≥ 2. Then there exists f : R
N×n → R rank

one convex but not quasiconvex.

Proof. The proof is divided into four steps.
Step 1. Assume that we have already constructed a rank one convex function

g : R
3×2 → R, that is not quasiconvex. In particular (appealing to Proposition

5.13), there exists η ∈ R
3×2 and ψ ∈ W 1,∞

per

(
D2; R3

)
, where D2 = (0, 1)2 such

that ∫
D2

g (η + ∇ψ (x)) dx < g (η) .

Then define π : R
N×n → R

3×2 to be

π (ξ) =

⎛
⎜⎜⎝

ξ11 ξ12

ξ21 ξ22

ξ31 ξ32

⎞
⎟⎟⎠ , for ξ ∈ R

N×n.

Finally, let
f (ξ) = g (π (ξ)) .

This function is clearly rank one convex, since g is. It is also not quasiconvex,
since choosing any ξ ∈ R

N×n so that π (ξ) = η, Dn = (0, 1)n and

ϕi (x1, · · · , xn) :=

{
ψi (x1, x2) if i = 1, 2, 3

0 if not

we get that ϕ ∈W 1,∞
per

(
Dn; RN

)
and

∫
Dn

f (ξ + ∇ϕ (x)) dx < f (ξ) .

Step 2. In view of Step 1, it is therefore sufficient to prove the theorem for
functions f : R

3×2 → R. We first let

L := {ξ ∈ R
3×2 : ξ =

⎛
⎝ x 0

0 y
z z

⎞
⎠ where x, y, z ∈ R}

and P : R
3×2 → L be defined by

P (ξ) :=

⎛
⎜⎜⎝

ξ11 0

0 ξ22(
ξ31 + ξ32

)
/2

(
ξ31 + ξ32

)
/2

⎞
⎟⎟⎠ .
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We next let g : L→ R be defined by

g

⎛
⎝ x 0

0 y
z z

⎞
⎠ = −xyz.

Finally, for ε, γ ≥ 0 let the function fε,γ : R
3×2 → R be such that

fε,γ (ξ) := g (P (ξ)) + ε |ξ|2 + ε |ξ|4 + γ |ξ − P (ξ)|2 .

We claim that we can find ε and γ so that fε,γ is rank one convex (see Step 4)
but not quasiconvex (see Step 3), giving the desired claim.

Step 3. Choose ξ = 0 and

ϕ (x1, x2) =
1
2π

⎛
⎜⎝

sin 2πx1

sin 2πx2

sin 2π (x1 + x2)

⎞
⎟⎠ .

Observe that ϕ ∈ W 1,∞
per

(
D; R3

)
, where D = (0, 1)2 and ∇ϕ ∈ L (hence

P (∇ϕ) = ∇ϕ). Moreover,

∫
D

g (∇ϕ (x)) dx = −
∫ 1

0

∫ 1

0

(cos 2πx1)
2 (cos 2πx2)

2
dx1dx2 < 0.

Therefore (see Proposition 5.13), for every ε ≥ 0 sufficiently small and for every
γ ≥ 0, the function fε,γ is not quasiconvex.

Step 4. We now show that for every ε > 0, we can find γ = γ (ε) > 0 so
that fε,γ is rank one convex. This is equivalent to showing that the Legendre-
Hadamard condition is satisfied, namely

Lf (ξ, η) :=
d2

dt2
[fε,γ (ξ + tη)]

∣∣∣∣
t=0

≥ 0, ∀ξ, η ∈ R
3×2 with rank {η} = 1.

(5.72)
Letting

Lg (ξ, η) :=
d2

dt2
[g (P (ξ + tη))]

∣∣∣∣
t=0

we find

Lf (ξ, η) = Lg (ξ, η) + 2ε |η|2 + 4ε |ξ|2 |η|2 + 8ε (〈ξ; η〉)2 + 2γ |η − P (η)|2 .

We show (5.72) in two substeps.

Step 4’. Observe that since g is a homogeneous polynomial of degree three,
we can find c > 0 such that

Lg (ξ, η) ≥ −c |ξ| |η|2 .
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We therefore deduce that

Lf (ξ, η) ≥ (−c+ 4ε |ξ|) |ξ| |η|2

and thus (5.72) holds for every η ∈ R
3×2 (independently of the fact that

rank {η} = 1) and for every ξ ∈ R
3×2 that satisfies

|ξ| ≥ c

4ε
.

Step 4”. It therefore remains to show (5.72) in the compact set

K :=
{
(ξ, η) ∈ R

3×2 × R
3×2 : |ξ| ≤ c

4ε
, |η| = 1, rank {η} = 1

}

in view of Step 4’ and of the fact that Lf (ξ, η) is homogeneous of degree two in
the variable η.

Moreover, we also find that

Lf (ξ, η) ≥ H (ξ, η, γ) := Lg (ξ, η) + 2ε |η|2 + 2γ |η − P (η)|2

and therefore (5.72) will follow if we can show that for every ε > 0 we can find
γ = γ (ε) so that H ≥ 0 on K.

Assume, for the sake of contradiction, that this is not the case. We can then
find γν → ∞, (ξν , ην) ∈ K so that

Lg (ξν , ην) + 2ε ≤ Lg (ξν , ην) + 2ε+ 2γν |ην − P (ην)|2 < 0.

Since K is compact, we have up to a subsequence (still labeled (ξν , ην)) that

(ξν , ην) → (ξ, η) ∈ K, Lg (ξ, η) + 2ε ≤ 0 and P (η) = η.

However we have ε > 0 and, by construction,

Lg (ξ, η) ≡ 0, ∀ ξ, η ∈ R
3×2 with P (η) = η and rank{η} = 1.

This leads to the desired contradiction and therefore the theorem holds.

5.3.8 The example of Alibert-Dacorogna-Marcellini

We now turn our attention to an example where N = n = 2. It involves a
homogeneous polynomial of degree four. We characterize, with the help of one
single real parameter, the different notions of convexity.

Theorem 5.51 Let γ ∈ R and let fγ : R
2×2 → R be defined as

fγ (ξ) = |ξ|2 ( |ξ|2 − 2γ det ξ ).
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Then

fγ is convex ⇔ |γ| ≤ γc =
2
3

√
2,

fγ is polyconvex ⇔ |γ| ≤ γp = 1,
fγ is quasiconvex ⇔ |γ| ≤ γq and γq > 1,

fγ is rank one convex ⇔ |γ| ≤ γr =
2√
3
.

We now make some comments about this theorem.
(i) The last result and the fact that if fγ is polyconvex, then |γ| ≤ 1, were

established by Dacorogna-Marcellini [193]. All the other results were first proved
in Alibert-Dacorogna [14]. The most interesting fact is the third one.

(ii) The example also provides a quasiconvex function that is not polyconvex
(such an example was already seen in Theorem 5.25 when N,n ≥ 3; see also
when n = N = 2, Theorem 5.54 and Sverak [552]).

(iii) The problem of knowing if γq = 2/
√

3 is still open. If this is not the
case (meaning that γq < 2/

√
3), then this would provide a rank one convex

function that is not quasiconvex, giving a final answer to this long standing
question. However many numerical evidences tend to indicate that γq = 2/

√
3,

see Dacorogna-Douchet-Gangbo-Rappaz [185], Dacorogna-Haeberly [191] and
Gremaud [321].

(iv) The polyconvexity of the function

f1 (ξ) = |ξ|2 ( |ξ|2 − 2 det ξ )

has, since the work of Alibert-Dacorogna [14], been reproved notably by Iwaniec-
Lutoborski [353]. Hartwig [335] also proved this fact exhibiting a convex func-
tion F : R

2×2 × R → R, namely

F (ξ, δ) =

{
[ |ξ|2 + 2 det ξ − 2δ ][ |ξ|2 + 2 det ξ − 4δ ] if |ξ|2 + 2 det ξ ≥ 4δ

0 otherwise,

so that
f1 (ξ) = F (ξ, det ξ) .

We now proceed with the proof of the theorem. But before that we want
to observe that in all four statements we can restrict our attention to the case
where γ ≥ 0. Indeed, observe first that

fγ (Qξ) = f−γ (ξ) for every ξ ∈ R
2×2 and Q ∈ O (2) with detQ = −1.

This easily implies that fγ is convex (respectively polyconvex, quasiconvex, rank
one convex) if and only if f−γ is convex (respectively polyconvex, quasiconvex,
rank one convex). Hence, we may assume throughout, without loss of generality,
that γ ≥ 0.
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We first start with the statement on the convexity of fγ .
Proof. (Theorem 5.51: Convexity). We have to show that

fγ is convex ⇔ γ ≤ γc =
2
3

√
2.

This result was first proved by Alibert-Dacorogna, but we give here the proof
based on Dacorogna-Maréchal [204].

According to Theorem 5.33, it is sufficient to verify the claim only on diag-
onal matrices. So let

g (x, y) :=
(
x2 + y2

) [(
x2 + y2

)− 2γxy
]
.

The Hessian of g is therefore given by

∇2g (x, y) =

(
4
(
x2 + y2

)
+ 8x2 − 12γxy 8xy − 6γ

(
x2 + y2

)
8xy − 6γ

(
x2 + y2

)
4
(
x2 + y2

)
+ 8y2 − 12γxy

)
.

Setting

x = r cos
θ

2
, y = r sin

θ

2

we find that

∇2g (x, y) = 2r2
(

4 + 2 cos θ − 3γ sin θ 2 sin θ − 3γ

2 sin θ − 3γ 4 − 2 cos θ − 3γ sin θ

)
.

The function g is therefore convex if and only if the trace and the determinant
of ∇2g are non negative. This is true if and only if

4 − 3γ sin θ ≥ 0,

12 − 9γ2 − 12γ sin θ + 9γ2 sin2 θ ≥ 0.

Step 1 : (⇐). We first consider the case where γ ≤ γc = 2
√

2/3. This
immediately implies that the first inequality holds. Since the discriminant of
the polynomial (in sin θ) that appears in the second inequality is given by

∆ = 36γ2
(
9γ2 − 8

) ≤ 0,

we have indeed obtained the claim.
Step 2 : (⇒). We now show that if fγ is convex, then γ ≤ γc . We prove the

result by contradiction and write for a certain t > 1

γ = tγc =
2
3

√
2 t.

The polynomial that appears in the second inequality is then transformed into

12 − 8t2 − 8
√

2 t sin θ + 8t2 sin2 θ.
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Observe that the minimum of this polynomial (in sin θ) is attained at

sin θ =
1√
2 t

and its value is then
8
(
1 − t2

)
< 0.

This is the desired contradiction.
We now discuss the rank one convexity of fγ .

Proof. (Theorem 5.51: Rank one convexity). We have to show that

fγ is rank one convex ⇔ 0 ≤ γ ≤ γr = 2/
√

3

and this was established first by Dacorogna-Marcellini [193].
We start with some notations and with the computation of the second

variation.
Notation. To every ξ ∈ R

2×2 we associate ξ̃ ∈ R
2×2 in the following way

ξ =

(
ξ11 ξ12

ξ21 ξ22

)
, ξ̃ =

(
ξ22 −ξ21
−ξ12 ξ11

)
.

We immediately observe that
⎧⎪⎨
⎪⎩

|ξ| = | ξ̃ | , det ξ = det ξ̃

〈 ξ; η̃ 〉 = 〈 ξ̃; η 〉 , 〈 ξ; ξ̃ 〉 = 2 det ξ

det (ξ + η) = det ξ + 〈 ξ̃; η 〉 + det η

where 〈·; ·〉 denotes the scalar product in R
2×2. We also have that

∂

∂ξij
(det ξ) = ξ̃ ij , i.e. ∇ (det ξ) = ξ̃.

(Note that in the notations of Section 5.4 ξ̃ = adj1 ξ).
It will be convenient to decompose any matrix in its ”conformal” and ”anti-

conformal” parts, which are given by

ξ+ :=
1
2
(ξ + ξ̃ ), ξ− :=

1
2
(ξ − ξ̃ ).

We find the following relations. For ξ, η ∈ R
2×2 we have

2 det ξ+ =
∣∣ξ+∣∣2 and 2 det ξ− = − ∣∣ξ−∣∣2

|ξ|2 =
∣∣ξ+∣∣2 +

∣∣ξ−∣∣2 and 2 det ξ =
∣∣ξ+∣∣2 − ∣∣ξ−∣∣2 = 2 det ξ+ + 2 det ξ−

〈 ξ; η 〉 = 〈 ξ+; η+ 〉 + 〈 ξ−; η− 〉 and 〈 ξ+; η− 〉 = 〈 ξ−; η+ 〉 = 0
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|ξ|2 − 2 det ξ = 2
∣∣ξ−∣∣2 and |ξ|2 + 2 det ξ = 2

∣∣ξ+∣∣2 .
Second variation. We next compute the second variation of fγ

ψγ (ξ, η) :=
2∑

i,j=1

2∑
α,β=1

∂2fγ

∂ξiα∂ξ
j
β

ηiαη
j
β .

We first calculate ∇f and find

∂fγ
∂ξiα

= 4 |ξ|2 ξiα − 4γ (det ξ) ξiα − 2γ |ξ|2 ξ̃ iα .

We then deduce that, for 1 ≤ i, j, α, β ≤ 2,

∂2fγ

∂ξiα∂ξ
j
β

= 8ξiαξ
j
β + 4 |ξ|2 δijδαβ − 4γξiαξ̃

j
β

−4γ (det ξ) δijδαβ − 4γξ̃ iαξ
j
β − 2γ |ξ|2 δ̃ ij δ̃αβ ,

where

δij =

{
1 if i = j

0 if i 
= j
, δ̃ ij =

{
(−1)j if i 
= j

0 otherwise

and similarly for δαβ and δ̃αβ . We therefore have that, if

ψγ (ξ, η) =
2∑

i,j,α,β=1

∂2fγ

∂ξiα∂ξ
j
β

ηiαη
j
β ,

then

ψγ (ξ, η) = 8 (〈ξ; η〉)2 + 4 |ξ|2 |η|2 − 8γ 〈ξ; η〉 〈 ξ̃; η〉
−4γ |η|2 det ξ − 4γ |ξ|2 det η.

(5.73)

In terms of the above decomposition we have

1
4ψγ (ξ, η) = 2 (1 − γ) 〈 ξ+; η+ 〉2 + 4 〈 ξ+; η+ 〉 〈 ξ−; η− 〉

+2 (1 + γ) 〈 ξ−; η− 〉2 + (1 − γ) |ξ+|2 |η+|2

+ |ξ+|2 |η−|2 + |ξ−|2 |η+|2 + (1 + γ) |ξ−|2 |η−|2 .
(5.74)

Step 1 : (⇐). We first show that if γ ≤ 2/
√

3, then fγ is rank one convex.
This is equivalent to showing (see Theorem 5.3) that the Legendre-Hadamard
condition holds, i.e.,

ψγ (ξ, η) ≥ 0, for every ξ, η ∈ R
2×2 with det η = 0. (5.75)
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Using (5.74) and the fact that det η = 0 if and only if |η+|2 = |η−|2 , we
immediately obtain

1
4ψγ (ξ, η) = [ (4 − 3γ) 〈 ξ+; η+ 〉2 + 4 〈 ξ+; η+ 〉 〈 ξ−; η− 〉

+ (4 + 3γ) 〈 ξ−; η− 〉2 ]

+[ (2 − γ) (|ξ+|2 |η+|2 − 〈 ξ+; η+ 〉2)
+ (2 + γ) (|ξ−|2 |η−|2 − 〈 ξ−; η− 〉2) ].

Since γ ≤ 2/
√

3 ≤ 2, we deduce that the term in the second bracket is non-
negative. The discriminant of the term in the first bracket is

∆ = 4 [4 − (4 − 3γ) (4 + 3γ)]

and is non-positive if γ ≤ 2/
√

3. Therefore

ψγ (ξ, η) ≥ 0, for every γ ≤ 2√
3
,

as claimed and the proof of Step 1 is complete.
Step 2 : (⇒). We now prove that if fγ is rank one convex, then γ ≤ 2/

√
3.

In order to show the result, we prove that if γ > 2/
√

3, then fγ is not rank one
convex, which is equivalent (see (5.75)) to showing that there exist ξγ , ηγ ∈ R

2×2

with det ηγ = 0 such that ψγ (ξγ , ηγ) < 0. This is easily done. Choose

ξγ =
(
a 0
0 1

)
, ηγ =

(
1 0
0 0

)

with a defined below. A direct computation gives

1
4
ψγ (ξγ , ηγ) = 3a2 − 3γa+ 1.

If the discriminant ∆ = 9γ2 − 12 is positive, and this happens if γ > 2/
√

3, we
can then choose a so that ψγ (ξγ , ηγ) < 0, as wished.

This concludes the study of the rank one convexity of the function fγ .
We next turn our attention to the polyconvexity of fγ .

Proof. (Theorem 5.51: Polyconvexity). We have to prove that

fγ is polyconvex ⇔ 0 ≤ γ ≤ γp = 1.

Step 1 : (⇒). We first show that if fγ is polyconvex, then 0 ≤ γ ≤ 1. Using
Corollary 5.9, we can find c ≥ 0 such that

fγ (ξ) ≥ −c(1 + |ξ|2) for every ξ ∈ R
2×2.

In particular the inequality holds for

ξ = t I, t ∈ R.



Examples 227

We therefore find that

fγ (ξ) = 4 (1 − γ) t4 ≥ −c(1 + 2t2).

Dividing both sides by t4 and letting t→ ∞, we find that

1 − γ ≥ 0,

as wished.
Step 2: (⇐). We start with a preliminary step.
Step 2’. We show that if fγ is polyconvex, then fβ is polyconvex for every

0 ≤ β ≤ γ. We have to prove, according to Theorem 5.6, that

fβ (ξ) ≤
6∑
i=1

λifβ (ξi)

whenever ξ, ξi ∈ R
2×2, λ ∈ Λ6 , satisfy

ξ =
6∑
i=1

λiξi ,

6∑
i=1

λi det ξi = det ξ.

We consider two cases.
Case 1. Assume that

6∑
i=1

λi |ξi|2 det ξi ≤ |ξ|2 det ξ.

Then the claim is trivial since, recalling that β ≥ 0 and observing that the
function ξ → |ξ|4 is convex,

fβ (ξ) = |ξ|4 − 2β |ξ|2 det ξ ≤
6∑
i=1

λi[ |ξi|4 − 2β |ξi|2 det ξi ] =
6∑
i=1

λifβ (ξi) .

Case 2. Assume now that

6∑
i=1

λi |ξi|2 det ξi ≥ |ξ|2 det ξ.

Then the claim follows from the observation

fβ (ξ) = fγ (ξ) − 2 (β − γ) |ξ|2 det ξ,

from the hypothesis 0 ≤ β ≤ γ and from the polyconvexity of fγ .
This achieves the proof of Step 2’.
Step 2”. It therefore remains to show that

f1 (ξ) = |ξ|2 ( |ξ|2 − 2 det ξ )
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is polyconvex and the proof will be complete. As we already mentioned, there
are three proofs of the preceding fact: the original one of Alibert-Dacorogna,
the one of Hartwig and that of Iwaniec-Lutoborski, which is in the same spirit
as the one of Alibert-Dacorogna but slightly simpler, and we will follow here
this last one. We will show that, for every ξ, η ∈ R

2×2,

f1 (η) ≥ f1 (ξ) + 4(|ξ|2 − det ξ) 〈ξ; η − ξ〉 − 2 |ξ|2 [det η − det ξ] .

This last inequality, combined with Theorem 5.6, gives that f1 is polyconvex.

In order to show the inequality, it is sufficient (see Theorem 5.43 and the
remark following it) to verify it on diagonal matrices, so we will set

ξ = diag (a, b) and η = diag (x, y) .

We therefore have to prove that

(x− y)2
(
x2 + y2

) ≥ (a− b)2
(
a2 + b2

)
+ 4

(
a2 + b2 − ab

)
[a (x− a) + b (y − b)]

− 2
(
a2 + b2

)
(xy − ab) .

This can be rewritten, setting X = x− a and Y = y − b, as

αX2 − 2βXY + γY 2 ≥ 0 (5.76)

where

α = (x− y + a)2 + a2 + (a− b)2

β = (a− b) (x− y + a− b)

γ = (x− y − b)2 + b2 + (a− b)2 .

The inequality (5.76), and thus the polyconvexity of f1 , follows from the fact
that α, γ ≥ 0 and from

∆ = αγ − β2

= [ a2 + b2 − (x− y) (a− b) ]2

+ (x− y + a− b)2 [ (x− y)2 + (a− b)2 ]
≥ 0.

This concludes the claim for the polyconvexity.

We finally show the statement on quasiconvexity. It is clearly the most
difficult to prove and we will first start with the following result, proved by
Alibert-Dacorogna [14], which is a consequence of regularity results for Laplace
equation. We will use it twice: once when ξ = 0 and p = 4, in the proof of
Theorem 5.51, and the second time when ξ = 0 and 1 < p < 2 in Theorem 5.54.
The statement with ξ 
= 0 and p = 4 is just a curiosity.
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Theorem 5.52 Let 1 < p <∞ and Ω ⊂ R
2 be a bounded open set. Then there

exists ε = ε (Ω, p) > 0 such that∫

Ω

[ |∇ϕ (x)|2 ± 2 det (∇ϕ (x)) ]p/2dx ≥ ε

∫

Ω

|∇ϕ (x)|p dx (5.77)

for every ϕ ∈ W 1,∞
0

(
Ω; R2

)
.

Moreover, when p = 4, the inequality∫
Ω

[ |ξ + ∇ϕ (x)|2 ± 2 det (ξ + ∇ϕ (x)) ]2dx

≥ (|ξ|2 ± 2 det ξ)2 meas Ω + ε

∫
Ω

|∇ϕ (x)|4 dx
(5.78)

holds for every ξ ∈ R
2×2 and every ϕ ∈W 1,∞

0

(
Ω; R2

)
.

The result (5.77) is clearly non-trivial, except when p = 2 (in this case we
can take ε = 1 and equality, instead of inequality, holds). Observe also that
the inequality (5.77) shows that the functional on the left-hand side of (5.77) is
coercive in W 1,p

0

(
Ω,R2

)
, even though the integrand is not coercive (not even

up to a quasiaffine function, which here can be at most quadratic).
Proof. (Theorem 5.52). We prove (5.77) and (5.78) only for the minus sign,
the proof being identical for the plus sign. For this purpose we adapt an idea
of Sverak [552].

Step 1. We first prove the result for ξ = 0 and 1 < p <∞. We start with an
algebraic relation. We clearly have that there exists a constant α = α (p) such
that for every ξ ∈ R

2×2

[
|ξ|2 − 2 det ξ

]p/2
=

[(
ξ11 − ξ22

)2
+
(
ξ12 + ξ21

)2]p/2

≥ α
[∣∣ξ11 − ξ22

∣∣p +
∣∣ξ12 + ξ21

∣∣p] .
We now turn to the claim and note that it is sufficient to prove the claim for
ϕ =

(
ϕ1, ϕ2

) ∈ C∞
0

(
Ω,R2

)
, the general result being obtained by density. We

also extend the function outside Ω by setting ϕ ≡ 0 there. Then denoting
∂ϕj/∂xi by ∂iϕj , i, j ∈ {1, 2}, we have from the above algebraic relation∫

Ω

[ |∇ϕ (x)|2 − 2 det (∇ϕ (x)) ]p/2dx

≥ α

∫
Ω

[
∣∣∂1ϕ

1 (x) − ∂2ϕ
2 (x)

∣∣p +
∣∣∂2ϕ

1 (x) + ∂1ϕ
2 (x)

∣∣p ]dx.

The classical regularity results for Cauchy-Riemann equations (see, for example,
Proposition 4 on page 60 in Stein [543]) leads to the existence of a constant β > 0
such that

‖∇ϕ‖pLp ≤ β

∫
Ω

[
∣∣∂1ϕ

1 (x) − ∂2ϕ
2 (x)

∣∣p +
∣∣∂2ϕ

1 (x) + ∂1ϕ
2 (x)

∣∣p ]dx.
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Choosing ε ≤ α/β, we have (5.77).
Step 2. We now prove the general case, where ξ is not necessarily 0 but

p = 4. We start with the following algebraic observation

[ 〈 ξ − ξ̃; η 〉 ]2 ≤ | ξ − ξ̃ |2 |η|2 = 2[ |ξ|2 − 2 det ξ ] |η|2 . (5.79)

We next compute

[ |ξ + ∇ϕ|2 − 2 det (ξ + ∇ϕ) ]2

= [ |ξ|2 − 2 det ξ + 2 〈 ξ − ξ̃;∇ϕ 〉 + |∇ϕ|2 − 2 det (∇ϕ) ]2

= [ |ξ|2 − 2 det ξ ]2 + 4[ 〈 ξ − ξ̃;∇ϕ 〉 ]2 + [ |∇ϕ|2 − 2 det (∇ϕ) ]2

+4[ |ξ|2 − 2 det ξ ][ 〈 ξ − ξ̃;∇ϕ 〉 − det (∇ϕ) ]

+2[ |ξ|2 − 2 det ξ ] |∇ϕ|2 + 4[ |∇ϕ|2 − 2 det (∇ϕ) ] 〈 ξ − ξ̃;∇ϕ 〉 .
Using (5.79), we obtain

[ |ξ + ∇ϕ|2 − 2 det (ξ + ∇ϕ) ]2

≥ [ |ξ|2 − 2 det ξ ]2 + 5[ 〈 ξ − ξ̃;∇ϕ 〉 ]2 + [ |∇ϕ|2 − 2 det (∇ϕ) ]2

+4[ |ξ|2 − 2 det ξ ][ 〈 ξ − ξ̃;∇ϕ 〉 − det (∇ϕ) ]

+4[ |∇ϕ|2 − 2 det (∇ϕ) ] 〈 ξ − ξ̃;∇ϕ 〉 .
Noticing that

0 ≤ 5[ 〈 ξ − ξ̃;∇ϕ 〉 ]2

+4[ |∇ϕ|2 − 2 det (∇ϕ) ] 〈 ξ − ξ̃;∇ϕ 〉 +
4
5
[ |∇ϕ|2 − 2 det (∇ϕ) ]2

we deduce that

[ |ξ + ∇ϕ|2 − 2 det (ξ + ∇ϕ) ]2 ≥ [ |ξ|2 − 2 det ξ ]2 + 1
5 [ |∇ϕ|2 − 2 det (∇ϕ) ]2

+4[ |ξ|2 − 2 det ξ ][ 〈 ξ − ξ̃;∇ϕ 〉 − det (∇ϕ) ].

We then integrate the above inequality, bearing in mind that ϕ = 0 on ∂Ω, and
we find∫

Ω

[ |ξ + ∇ϕ|2 − 2 det (ξ + ∇ϕ) ]2dx ≥ [ |ξ|2 − 2 det ξ ]2 measΩ

+
1
5

∫
Ω

[ |∇ϕ|2 − 2 det (∇ϕ) ]2dx.

Using Step 1, with p = 4, we find that
∫

Ω

[ |ξ + ∇ϕ|2−2 det (ξ + ∇ϕ) ]2dx ≥ [ |ξ|2−2 det ξ ]2 measΩ +
α

5β

∫
Ω

|∇ϕ|4 dx.

Choosing ε = α/5β, we have indeed established (5.78) and thus the theorem is
proved.
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We now continue with the proof of the main theorem.
Proof. (Theorem 5.51: Quasiconvexity). We have to establish that

fγ is quasiconvex ⇔ γ ≤ γq and γq > 1.

In the first step, we prove the existence of a γq with the above property; this is
the easy part of the proof. The difficult part, which will be dealt with in Step
2, is to show that γq > 1.

Step 1 : Existence of γq . We start by showing that if fγ is quasiconvex, then
fβ is quasiconvex for every 0 ≤ β ≤ γ. Let

Iγ (ξ, ϕ) :=
∫

Ω

[fγ (ξ + ∇ϕ (x)) − fγ (ξ)] dx

for every ξ ∈ R
2×2 and every ϕ ∈ W 1,∞

0

(
Ω; R2

)
. We have to show that

Iγ (ξ, ϕ) ≥ 0 implies Iβ (ξ, ϕ) ≥ 0. We have to deal with two cases.
Case 1. If∫

Ω

[ |ξ + ∇ϕ (x)|2 det (ξ + ∇ϕ (x)) − |ξ|2 det ξ ]dx ≤ 0,

then the claim is trivial using the convexity of ξ → |ξ|4 and the fact that β ≥ 0.
Case 2. If∫

Ω

[ |ξ + ∇ϕ (x)|2 det (ξ + ∇ϕ (x)) − |ξ|2 det ξ ]dx ≥ 0,

we observe that

Iβ (ξ, ϕ) − Iγ (ξ, ϕ)

= 2 (γ − β)
∫

Ω

[ |ξ + ∇ϕ (x)|2 det (ξ + ∇ϕ (x)) − |ξ|2 det ξ ]dx ≥ 0,

as wished.
We may now define γq by taking the largest γ such that fγ is quasiconvex.

It exists because of the preceding observation and from the fact that

1 = γp ≤ γq ≤ γr =
2√
3

and this completes Step 1.
Step 2 : γq > 1. We therefore have to show that there exists α > 0 small

enough, so that if γ = 1+α, then fγ is quasiconvex. We start with a preliminary
result.

Step 2’. We prove the quasiconvexity of fγ at 0 for γ = 1 + α with α > 0
small enough. We have to prove that

∫
Ω

fγ (∇ϕ (x)) dx ≥ 0
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for every ϕ ∈ W 1,∞
0

(
Ω; R2

)
and for some α > 0. Observe first the following

algebraic inequality (we use the fact that |ξ|2 ≥ 2 det ξ), valid for any ξ ∈ R
2×2,

fγ (ξ) = |ξ|4 − 2 (1 + α) |ξ|2 det ξ

=
1
2
[ |ξ|4 − 4 |ξ|2 det ξ + 4 (det ξ)2 ]

+
1
2
[ |ξ|4 − 4 (det ξ)2 ] − 2α |ξ|2 det ξ

≥ 1
2
[ |ξ|2 − 2 det ξ ]2 − α |ξ|4 .

We then integrate and use Theorem 5.52 to get
∫

Ω

fγ (∇ϕ (x)) dx ≥ (ε− α)
∫

Ω

|∇ϕ (x)|4 dx. (5.80)

Choosing 0 ≤ α ≤ ε, we have indeed obtained the result.

Step 2”. We now proceed with the general case. We already know that
γq ≥ γp = 1, so we will assume throughout this step that γ ≥ 1 and we will set
α = γ − 1.

Expanding fγ , keeping in mind its special structure, we find

fγ (ξ + η) = fγ (ξ) + 〈 ∇fγ (ξ) ; η 〉 +
1
2
〈 ∇2fγ (ξ) η; η 〉

+ 〈 ∇fγ (η) ; ξ 〉 + fγ (η) .

Recall that 〈 ∇2fγ (ξ) η; η 〉 is given by (5.73). We rewrite this as

fγ (ξ + η) − fγ (ξ) = Aγ (ξ, η) +Bγ (ξ, η) + Cγ (ξ, η) +Dγ (η) + Eγ (η) (5.81)

where
Aγ (ξ, η) := 〈 ∇fγ (ξ) ; η 〉 − 2γ |ξ|2 det η

Bγ (ξ, η) := 1
2 〈 ∇2fγ (ξ) η; η 〉 + 2γ |ξ|2 det η

= 4 (〈ξ; η〉)2 + 2 |ξ|2 |η|2 − 4γ 〈ξ; η〉 〈 ξ̃; η〉 − 2γ |η|2 det ξ
Cγ (ξ, η) := 〈 ∇fγ (η) ; ξ 〉

= 4 〈 ξ; η 〉 |η|2 − 4γ 〈 ξ; η 〉det η − 2γ 〈 ξ̃; η 〉 |η|2

Dγ (η) := (1 − ε) f1 (η) +
ε2

2
|η|4

Eγ (η) := εf1 (η) − 2 (γ − 1) |η|2 det η − ε2

2 |η|4

≥ εf1 (η) − (α+ ε2

2 ) |η|4 .
Observe that

Dγ (η) + Eγ (η) = fγ (η) .
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From Step 2’ (applying (5.80) with γ = 1 and hence α = 0), we have that, for
every ϕ ∈W 1,∞

0

(
Ω; R2

)
,

∫
Ω

Eγ (∇ϕ (x)) dx ≥ [ ε2 − (α+
ε2

2
) ]
∫

Ω

|∇ϕ (x)|4 dx

which for α > 0 sufficiently small with respect to ε2 leads to
∫

Ω

Eγ (∇ϕ (x)) dx ≥ 0. (5.82)

We also have that for ε > 0 and α > 0 even smaller (see Lemma 5.53)

σε,α (ξ, η) = Bγ (ξ, η) + Cγ (ξ, η) +Dγ (η) ≥ 0 (5.83)

for every ξ, η ∈ R
2×2.

We are now in a position to conclude by combining (5.81), (5.82) and (5.83).
We therefore have, for every ξ ∈ R

2×2, ϕ ∈ W 1,∞
0

(
Ω; R2

)
,

∫
Ω

[fγ (ξ + ∇ϕ (x)) − fγ (ξ)]dx ≥
∫

Ω

Aγ (ξ,∇ϕ (x)) dx = 0.

This is the desired claim.

The above proof relied on the following algebraic lemma.

Lemma 5.53 Let

σε,α (ξ, η) = Bγ (ξ, η) + Cγ (ξ, η) +Dγ (η)

where γ = 1 + α and

Bγ (ξ, η) = 4 (〈ξ; η〉)2 + 2 |ξ|2 |η|2 − 4γ 〈ξ; η〉 〈 ξ̃; η〉 − 2γ |η|2 det ξ

Cγ (ξ, η) = 4 〈 ξ; η 〉 |η|2 − 4γ 〈 ξ; η 〉det η − 2γ 〈 ξ̃; η 〉 |η|2

Dγ (η) = (1 − ε) [ |η|4 − 2 |η|2 det η ] +
ε2

2
|η|4 .

For every ε > 0 sufficiently small, there exists α0 = α0 (ε) > 0 such that if
0 ≤ α ≤ α0 , then

σε,α (ξ, η) ≥ 0, for every ξ, η ∈ R
2×2.

Proof. The idea of the proof is to show that, for every ε > 0 sufficiently small,
there exists α0 = α0 (ε) > 0 such that if 0 ≤ α ≤ α0 , then

ξ → σε,α (ξ, η)
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is a strictly convex polynomial of degree two for every η ∈ R
2×2. In Step 2

we prove that by choosing both ε sufficiently small and α0 (ε) even smaller
(uniformly with respect to η), then

σε,α
(
ξ, η

) ≥ 0

at the unique minimum point ξ = ξ (η) .
Step 1. We first show that for α = γ − 1 > 0 sufficiently small

Bγ (ξ, η) ≥ 11 − 9γ2

6
|ξ|2 |η|2 for every ξ, η ∈ R

2×2. (5.84)

The case ξ = 0 or η = 0 being trivial, we can assume because of the homogeneity
of Bγ that

|ξ| = |η| = 1.

Moreover, since Q̃ξR = Qξ̃R for every Q,R ∈ SO (2) , we have

Bγ (ξ,QηR) = Bγ
(
QtξRt, η

)

and thus it is enough to prove (5.84) for matrices ξ and η of the form (according
to Theorem 13.3)

ξ =

(
cos θ cosA sinA cosB

sinA sinB sin θ cosA

)
and η =

(
cosϕ 0

0 sinϕ

)
.

We therefore find

Bγ (ξ, η) = 2 + γ sin (2B) sin2A+[
4 cos2 (θ − ϕ) − 4γ cos (θ − ϕ) sin (θ + ϕ) − γ sin (2θ)

]
cos2A.

Since sin (2B) ≥ −1, we find that

Bγ (ξ, η) ≥ 2 − γ+[
γ + 4 cos2 (θ − ϕ) − 4γ cos (θ − ϕ) sin (θ + ϕ) − γ sin (2θ)

]
cos2A.

Since γ > 1 is sufficiently close to 1 and we want to minimize Bγ (ξ, η) , we have
to choose cos2A = 1. We can thus write

Bγ (ξ, η) ≥ 2 + 4 cos2 (θ − ϕ) − 4γ cos (θ − ϕ) sin (θ + ϕ) − γ sin (2θ)

or, writing a = 2θ and b = 2ϕ,

Bγ (ξ, η) ≥ g (a, b) := 4 + 2 cos (a− b) − 3γ sin a− 2γ sin b. (5.85)

We easily have that

∇g (a, b) = 0 ⇔ cos b = −3
2

cos a =
1
γ

sin (a− b) . (5.86)



Examples 235

We can next write that

g (a, b) ≥ min {g (a, b) : ∇g (a, b) = 0} (5.87)

and therefore two cases can happen.
Case 1: cos a = cos b = sin (a− b) = 0. At such a point (recalling that γ is

sufficiently close to 1) we have

g (a, b) ≥ 6 − 5γ. (5.88)

Case 2: cos a 
= 0 and cos b 
= 0. From (5.86), we find

cos b = −3
2

cos a and sin b =
3
2

(γ − sin a) .

We hence deduce that

4
9

=
4
9

cos2 b +
4
9

sin2 b = γ2 + 1 − 2γ sin a.

Therefore at such a point (a, b) we have

g (a, b) = 4 + 2 cos a cos b+ 2 sin a sin b− 3γ sin a− 2γ sin b

= 1 − 3γ2 + 3γ sin a =
11 − 9γ2

6
.

Combining (5.85), (5.87), (5.88) and the above identity, we have indeed obtained
(5.84).

Step 2. We now prove that by choosing both ε sufficiently small and α0 (ε)
even smaller (uniformly with respect to η), then

σε,α (ξ, η) ≥ 0 for every ξ, η ∈ R
2×2.

We start by observing that

σε,α (ξ, 0) = 0 for every ξ ∈ R
2×2.

So from now on we will assume that η 
= 0 and is fixed. From Step 1, we see
that the function

ξ → σε,α (ξ, η)

has a unique minimum, which satisfies

∇ξσε,α (ξ, η) = 0;

i.e.

4 |η|2 η − 4γ (det η) η − 2γ |η|2 η̃ + 4 |η|2 ξ − 2γ |η|2 ξ̃
+8 〈 ξ; η 〉 η − 4γ 〈 ξ; η 〉 η̃ − 4γ 〈 ξ̃; η 〉 η = 0.

(5.89)
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We now multiply (5.89) first by ξ, then by η and finally by η̃ to get

2 〈 ξ; η 〉 (|η|2 − γ det η) − γ 〈 ξ̃; η 〉 |η|2
= 2 |ξ|2 |η|2 − 2γ |η|2 det ξ + 4 (〈 ξ; η 〉)2 − 4γ 〈 ξ; η 〉 〈 ξ̃; η 〉

+4 〈 ξ; η 〉 |η|2 − 4γ 〈 ξ; η 〉det η − 2γ 〈 ξ̃; η 〉 |η|2
(5.90)

−γ 〈 ξ̃; η 〉 |η|2
= − 2

3 |η|4 + 4
3γ |η|2 det η − 2 〈 ξ; η 〉 |η|2 + 4

3γ 〈 ξ; η 〉det η
(5.91)

2 〈 ξ̃; η 〉 (|η|2 − 2γ det η)

= 〈 ξ; η 〉 (3γ |η|2 − 8 det η) + γ |η|4 − 4 |η|2 det η + 4γ (det η)2 .
(5.92)

We next combine (5.89) to (5.92) to show that σε,α ≥ 0 at a stationary point
provided α = γ − 1 and ε are small enough. Combining (5.91) and (5.92), so as
to eliminate 〈 ξ̃; η 〉 , we find that

〈 ξ; η 〉 [ 3
(
4 − 3γ2

) |η|4 − 8γ |η|2 det η + 16γ2 (det η)2 ]

= − |η|2 [
(
4 − 3γ2

) |η|4 − 4γ |η|2 det η + 4γ2 (det η)2 ].
(5.93)

We now use (5.90), (5.91) and (5.93) to compute σε,α at the minimum point.
First appeal to (5.90) to obtain

σε,α = 2 〈 ξ; η 〉 (|η|2 − γ det η) − γ 〈 ξ̃; η 〉 |η|2

+(1 − ε+
ε2

2
) |η|4 − 2 (1 − ε) |η|2 det η.

Replacing the second term, with the help of (5.91), we find

σε,α = − 2
3γ 〈 ξ; η 〉det η + (

1
3
− ε+

ε2

2
) |η|4 − 2

(
1 − ε− 2

3γ
) |η|2 det η.

Inserting (5.93) in the above identity, we obtain

3σε,α
|η|2 [ 3

(
4 − 3γ2

) |η|4 − 8γ |η|2 det η + 16γ2 (det η)2 ]

= [ (1 − 3ε+ 3ε2

2 ) |η|2 − 2 (3 − 3ε− 2γ) det η ]

×[ 3
(
4 − 3γ2

) |η|4 − 8γ |η|2 det η + 16γ2 (det η)2 ]

+2γ det η[
(
4 − 3γ2

) |η|4 − 4γ |η|2 det η + 4γ2 (det η)2 ].

Setting
t = |η| and δ = 2 det (η/ |η|) ( ⇒ |δ| ≤ 1),
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we get

3σε,α
t4

[
3
(
4 − 3γ2

)− 4γδ + 4γ2δ2
]

=
[(

1 − 3ε+ 3
2ε

2
)− (3 − 3ε− 2γ) δ

] [
3
(
4 − 3γ2

)− 4γδ + 4γ2δ2
]

+γδ[
(
4 − 3γ2

)− 2γδ + γ2δ2 ].

Letting α = γ − 1 ≥ 0 and using the fact that |δ| ≤ 1, we find the following
three estimates for α small enough

[ 3
(
4 − 3γ2

) − 4γδ + 4γ2δ2 ]

= [ 3
(
1 − 6α− 3α2

)− 4 (1 + α) δ + 4 (1 + α)2 δ2 ]
≤ [ 3 − 4δ + 4δ2 ] + 1 ≤ 12

[ (1 − 3ε+ 3
2ε

2) − (3 − 3ε− 2γ) δ ] [ 3
(
4 − 3γ2

)− 4γδ + 4γ2δ2 ]

= 3
2ε

2[ 2 + (1 − 2δ)2 ]
+ (1 − 3ε) (1 − δ)

[
3 − 4δ + 4δ2

]
+Oδ (α)

γδ [
(
4 − 3γ2

)− 2γδ + γ2δ2 ]

= (1 + α) δ[
(
1 − 6α− 3α2

)− 2 (1 + α) δ + (1 + α)2 δ2 ]

= δ (1 − δ)2 +Oδ (α)

where Oδ (α) stands for a term that goes to 0 as α tends to 0 uniformly for
|δ| ≤ 1.

Combining these three estimates, we find for ε sufficiently small, since |δ| ≤ 1,

36σε,α
t4

≥ 3ε2 +3 (1 − δ)
[
1 − δ + δ2 − ε

(
3 − 4δ + 4δ2

)]
+Oδ (α) ≥ 3ε2 +Oδ (α) .

Choosing α << ε (recalling that ε is small), we get the result; i.e.

σε,α (ξ, η) ≥ 0, for every ξ, η ∈ R
2×2.

This concludes the proof of the lemma.

5.3.9 Quasiconvex functions with subquadratic growth.

We have seen in Corollary 5.9 that a polyconvex function having a subquadratic
growth, must be convex. This, however, is not the case for quasiconvex and rank
one convex functions. We now give such an example, following Sverak [549] (for
the case p = 1, see Theorem 5.55).

Theorem 5.54 Let 1 < p < 2. Then there exists a function f : R
2×2 → R

quasiconvex, non-convex and satisfying

0 ≤ f (ξ) ≤ γ (1 + |ξ|p) , ∀ ξ ∈ R
2×2

and where γ is a positive constant.
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Proof. We start with the following easily established algebraic inequality valid
for any ξ ∈ R

2×2

min{|ξ − I|2 , |ξ + I|2} ≥ 1
2
[ |ξ|2 − 2 det ξ ] ≥ 0. (5.94)

We next define
g (ξ) := min {|ξ − I|p , |ξ + I|p} .

Anticipating on the definition and properties of the quasiconvex envelope given
in Chapter 6 (see Theorem 6.9), we let

f := Qg

and we claim that f has all the desired properties. By definition it is quasiconvex
and satisfies the growth condition, we therefore only need to show that it is not
convex. This will be proved, once shown that

f (0) = Qg (0) > 0, (5.95)

since clearly
Cg (0) = 0

where Cg denotes the convex envelope of g.
Assume for the sake of contradiction that

Qg (0) = 0

and use Theorem 6.9 to find a sequence ϕν ∈ W 1,∞
0

(
D; R2

)
, here D ⊂ R

2 is a
bounded open set with measD = 1, such that

0 = Qg (0) ≥ −1
ν

+
∫
D

g (∇ϕν (x)) dx. (5.96)

Invoking (5.94), we can deduce from the above inequality that

1
ν
≥ 2−p/2

∫
D

[
|∇ϕν (x)|2 − 2 det (∇ϕν (x))

]p/2
dx.

The estimate of Theorem 5.52 then implies that

ϕν → 0 in W 1,p
(
D; R2

)
.

This therefore leads to

lim
ν→∞

∫
D

g (∇ϕν (x)) dx = 2p/2,

contradicting (5.96). We have therefore proved (5.95) and the theorem follows.
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5.3.10 The case of homogeneous functions of degree one

We would now like to discuss the convexity properties of homogeneous functions
of degree one, f : R

2×2 → R and we have the following theorem.

Theorem 5.55 Let f : R
2×2 → R be positively homogeneous of degree one,

namely
f (tξ) = tf (ξ) for every t ≥ 0 and every ξ ∈ R

2×2. (5.97)

The following three properties hold.
(i) f is polyconvex if and only if it is convex.
(ii) If f is SO (2) × SO (2)-invariant, in the sense that

f (ξ) = f (QξR) for every Q,R ∈ SO (2) ,

then f is rank one convex if and only if it is convex.
(iii) The function

f (ξ) =

⎧⎨
⎩

7 |ξ| + 3(ξ11)
2
+2ξ11ξ

2
2+3(ξ22)

2
+4ξ12ξ

2
1

|ξ| if ξ 
= 0

0 if ξ = 0

is rank one convex but not convex.

Remark 5.56 (i) The first statement follows at once from Corollary 5.9.
(ii) The second assertion has been proved by Dacorogna [181] and the last

one is a particular case of the study undertaken by Dacorogna-Haeberly [190].
(iii) Müller [461] (see also Zhang [618]) produced, in an indirect way similar

to that of Theorem 5.54, an example of a quasiconvex function satisfying (5.97)
and that is not convex.

(iv) It is not presently known if the function given in (iii) of the theorem is
quasiconvex. Numerical evidences given in Dacorogna-Haeberly [191] tend to
indicate that it is quasiconvex. ♦

Before proceeding with the proof we need the following elementary lemma
established in Dacorogna [181], for a different proof see Dacorogna-Maréchal
[206]. The lemma is false if either the function is not everywhere finite or in
dimensions 3 and higher, see [206] for details. Note that in dimension 4, the
function given in Theorem 5.55, being rank one convex, is separately convex
but not convex.

Lemma 5.57 Let g : R
2 → R be positively homogeneous of degree one and

separately convex (meaning that x→ g (x, y) and y → g (x, y) are both convex).
Then g is convex.

Proof. (Lemma 5.57). Since g is homogeneous of degree one, it is clear that
g is convex if and only if

g (x1 + x2, y1 + y2) ≤ g (x1, y1) + g (x2, y2) . (5.98)
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We consider two cases.
Case 1: x1x2 ≥ 0 or y1y2 ≥ 0. Since the hypothesis x1x2 ≥ 0 is handled sim-

ilarly to y1y2 ≥ 0, we will assume that this last one holds. Since g is separately
convex it is continuous (cf. Theorem 2.31) and hence it is enough to prove the
result for y1y2 > 0. Observe then that

σ :=
y1 + y2
|y1 + y2| =

y1
|y1| =

y2
|y2| ∈ {±1} .

We therefore have, using the convexity of g with respect to the first variable,

g (x1 + x2, y1 + y2) = |y1 + y2| g( |y1|
|y1 + y2|

x1

|y1| +
|y2|

|y1 + y2|
x2

|y2| , σ)

≤ |y1| g( x1

|y1| , σ) + |y2| g( x2

|y2| , σ) = g (x1, y1) + g (x2, y2)

as wished.
Case 2: x1x2 < 0 and y1y2 < 0. This case is more involved than the previous

one and we divide the proof into two steps.
Step 1. We first show that

g (x1 + x2, 0) ≤ g (x1, y) + g (x2,−y) , ∀y ∈ R. (5.99)

Since x1x2 < 0, we have either

x1 (x1 + x2) ≥ 0 or x2 (x1 + x2) ≥ 0.

Without loss of generality (otherwise exchange the roles of (x1, y) with that of
(x2,−y)), we will assume that

x1 (x1 + x2) ≥ 0. (5.100)

We then choose ε > 0 sufficiently small and let

a :=
x1 + (1 − 2ε)x2

(1 − ε)
and µ :=

1 − 2ε
1 − ε

.

Observe that ⎧⎪⎨
⎪⎩

−2εµ+ 2 (1 − µ) (1 − 2ε) = 0
µ (x1 + x2) + 2 (1 − µ)x1 = a

2εx2 + (1 − ε) a = x1 + x2 .

Appealing to Case 1, since (−y) .0 ≥ 0, we find

g (x1 + x2,−2εy) = g (2εx2 + (1 − ε) a, 2ε (−y) + (1 − ε) 0)
≤ 2εg (x2,−y) + (1 − ε) g (a, 0) .

Since (5.100) holds, we also have from Case 1

g (a, 0) = g (µ (x1 + x2) + 2 (1 − µ)x1, µ (−2εy) + 2 (1 − µ) (1 − 2ε) y)
≤ µg (x1 + x2,−2εy) + (1 − µ) g (2x1, 2 (1 − 2ε) y)
= µg (x1 + x2,−2εy) + 2 (1 − µ) g (x1, (1 − 2ε) y) .
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Combining the last two inequalities, we find

g (x1 + x2,−2εy) ≤ 2εg (x2,−y) + (1 − 2ε) g (x1 + x2,−2εy)
+2εg (x1, (1 − 2ε) y)

or, in other words,

2εg (x1 + x2,−2εy) ≤ 2εg (x2,−y) + 2εg (x1, (1 − 2ε) y) .

Dividing by 2ε and letting ε tend to 0, using the continuity of g, we have indeed
obtained (5.99).

Step 2. We now prove (5.98). Observe that the hypothesis y1y2 < 0 implies

y1 + y2
y1

≥ 0 or
y1 + y2
y2

≥ 0.

We will assume that the first possibility happens, the second one being handled
similarly.

We can therefore write,

g (x1 + x2, y1 + y2) = g(
y1 + y2
y1

x1 + x2 − y2
y1
x1,

y1 + y2
y1

y1 + 0).

Since (y1 + y2) · 0 ≥ 0, we can apply Case 1 and get

g (x1 + x2, y1 + y2) ≤ y1 + y2
y1

g (x1, y1) + g(x2 − y2
y1
x1, 0). (5.101)

We also have, invoking Step 1,

g(x2 − y2
y1
x1, 0) ≤ g (x2, y2) + g(−y2

y1
x1,−y2

y1
y1)

= g (x2, y2) − y2
y1
g (x1, y1) .

Combining the above inequality and (5.101), we obtain (5.98) and thus the
lemma.

We now proceed with the proof of the theorem.
Proof. (Theorem 5.55). (i) As already mentioned the proof of the first part
immediately follows from Corollary 5.9.

(ii) The implication f convex ⇒ f rank one convex, being always true, we
need only prove the reverse one. According to Theorem 5.33, it is sufficient to
show that f is convex on diagonal matrices. Therefore let

g (x1, x2) := f

(
x1 0
0 x2

)

and observe that the rank one convexity of f implies the separate convexity of
g. Lemma 5.57 gives immediately the claim.
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(iii) We first discuss the fact that f is non convex. We let

ξ =
1√
2

(
1 0
0 1

)
and η =

1√
2

(
0 1
−1 0

)

and for t ∈ R, we define

t→ ϕ (t) := f (ξ + tη) = 5
(
1 + t2

)1/2
+ 6

(
1 + t2

)−1/2
.

A direct computation shows that

ϕ′′ (t) =
(
17t2 − 1

) (
1 + t2

)−5/2

and hence ϕ′′ (0) = −1 < 0, which implies that f is non convex.
It therefore remains only to show that f is rank one convex. We divide the

proof of this fact into three steps.
Step 1. The rank one convexity of f is equivalent to showing that for every

fixed ξ ∈ R
2×2, a, b ∈ R

2 the function

t→ ϕξ,a,b (t) := f (ξ + ta⊗ b)

is convex in t ∈ R.
Since f (ξ) ≥ 0, we have that if there exists α ∈ R such that

ξ = αa⊗ b,

then
f (ξ + ta⊗ b) = f ((α+ t) a⊗ b) = |α+ t| f (a⊗ b)

and thus ϕξ,a,b is convex in t. From now on we may therefore assume that ξ is
not parallel to a⊗b. The function ϕξ,a,b is then twice continuously differentiable
and its convexity is therefore equivalent to the Legendre-Hadamard condition,
namely

〈 ∇2f (ξ) a⊗ b; a⊗ b 〉 ≥ 0 (5.102)

for every ξ ∈ R
2×2, a, b ∈ R

2 with ξ not parallel to a⊗ b.

Step 2. We now compute the Hessian of f. It will be more convenient, in
the present analysis, to identify R

2×2 with R
4 and, therefore, a matrix ξ will be

written as a vector (ξ1, ξ2, ξ3, ξ4) . We then let

〈ξ; η〉 =
4∑
i=1

ξiηi, |ξ|2 = 〈ξ; ξ〉 , det ξ = ξ1ξ4 − ξ2ξ3 .

Letting

M =

⎛
⎜⎜⎝

9 0 0 1
0 6 2 0
0 2 6 0
1 0 0 9

⎞
⎟⎟⎠
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we can rewrite f, when ξ 
= 0, as

f (ξ) = |ξ| + 〈Mξ; ξ 〉
|ξ| .

Computing the Hessian of f, when ξ 
= 0, we first find, for α = 1, 2, 3, 4, that

∂f (ξ)
∂ξα

=
ξα
|ξ| +

2 |ξ| (Mξ)α − 〈Mξ; ξ〉 ξα|ξ|
|ξ|2

=
ξα
|ξ| +

2 |ξ|2 (Mξ)α − 〈Mξ; ξ〉 ξα
|ξ|3

and thus

∂2f (ξ)
∂ξα∂ξβ

=
δαβ
|ξ| − ξαξβ

|ξ|3 +
1
|ξ|6 {−3 |ξ| ξβ [ 2 |ξ|2 (Mξ)α − 〈Mξ; ξ〉 ξα ]

+ [ 4 (Mξ)α ξβ + 2 |ξ|2Mαβ − 〈Mξ; ξ〉 δαβ
− 2 (Mξ)β ξα ] |ξ|3},

where δαβ is the Kronecker symbol.
Since the quadratic form 〈 ∇2f (ξ)λ;λ 〉 is homogeneous of degree −1 in ξ

and 2 in λ, we only need to consider the case where |ξ| = |λ| = 1. We hence get
that

4∑
α,β=1

∂2f (ξ)
∂ξα∂ξβ

λαλβ = 1 − (〈ξ;λ〉)2 − 4 〈Mξ;λ〉 〈ξ, λ〉 + 2 〈Mλ;λ〉

− 〈Mξ; ξ〉 + 3 〈Mξ; ξ〉 (〈ξ;λ〉)2 .

We can still transform this expression into a more amenable one, by choosing a
vector η ∈ R

4 and θ ∈ R so that

λ = ξ cos θ + η sin θ, with |η| = 1 and 〈ξ; η〉 = 0.

We therefore obtain that

〈ξ;λ〉 = cos θ, 〈Mξ;λ〉 = 〈Mξ; ξ〉 cos θ + 〈Mξ; η〉 sin θ

〈Mλ;λ〉 = 〈Mξ; ξ〉 cos2 θ + 2 〈Mξ; η〉 cos θ sin θ + 〈Mη; η〉 sin2 θ.

Returning to the quadratic form we therefore find that

〈 ∇2f (ξ)λ;λ 〉 = [1 + 2 〈Mη; η〉 − 〈Mξ; ξ〉] sin2 θ.

Hence (5.102) is equivalent to showing that

1 + 2 〈Mη; η〉 − 〈Mξ; ξ〉 ≥ 0 (5.103)
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for every ξ, η ∈ R
4 and θ ∈ R satisfying

|ξ| = |η| = 1, 〈ξ; η〉 = 0 and det (ξ cos θ + η sin θ) = 0. (5.104)

Step 3. It therefore remains to show (5.103) whenever (5.104) holds. We
start by observing that the matrix M has eigenvalues

µ1 = 4 ≤ µ2 = µ3 = 8 ≤ µ4 = 10

and corresponding orthonormal eigenvectors

ϕ1 = 1√
2

(0, 1,−1, 0) ϕ2 = 1√
2

(0, 1, 1, 0)

ϕ3 = 1√
2

(1, 0, 0,−1) ϕ4 = 1√
2

(1, 0, 0, 1) .

Note that
detϕ1 = detϕ4 = − detϕ2 = − detϕ3 = 1

2 .

Expanding the vectors ξ, η ∈ R
4 in this basis we have

ξ =
4∑
i=1

ξiϕi , η =
4∑
i=1

ηiϕi ,

and from now on ξi and ηi will always denote the components of ξ and η in this
new basis and in particular we find that

det ξ =
1
2
(ξ21 + ξ24 − ξ22 − ξ23).

Moreover, (5.103) is equivalent to showing that

2 〈Mη, η〉 − 〈Mξ, ξ〉 =
4∑
i=1

µi
(
2η2
i − ξ2i

) ≥ −1. (5.105)

Moreover, (5.104) can then be rewritten as

|ξ|2 = ξ21 + ξ22 + ξ23 + ξ24 = |η|2 = η2
1 + η2

2 + η2
3 + η2

4 = 1,

〈ξ; η〉 = 0 ⇔ ξ1η1 + ξ4η4 = − (ξ2η2 + ξ3η3) ,

with

det (ξ cos θ + η sin θ) = 0

⇔ (
ξ21 + ξ24 − ξ22 − ξ23

)
cos2 θ +

(
η2
1 + η2

4 − η2
2 − η2

3

)
sin2 θ

+2 (ξ1η1 + ξ4η4 − ξ2η2 − ξ3η3) cos θ sin θ = 0.

We now argue by contradiction and assume that (5.105) does not hold, meaning
that we can find ξ, η ∈ R

4 and θ ∈ R as above and so that

4∑
i=1

µi
(
2η2
i − ξ2i

)
< −1.
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Observing that

2µ1 |η|2 − µ3 + µ4

2
|ξ|2 = −1,

we can rewrite the above inequality as

12η2
4 + 5ξ21 + 8

(
η2
2 + η2

3

)
< ξ24 − ξ22 − ξ23 . (5.106)

Similarly, writing

4∑
i=1

µi
(
2η2
i − ξ2i

)
< −1 < 2 = (µ1 + µ2) |η|2 − µ4 |ξ|2

we find that
8η2

4 + 6ξ21 + 2
(
ξ22 + ξ23

)
< 4

(
η2
1 − η2

2 − η2
3

)
. (5.107)

From (5.106) and (5.107), we deduce that

8
(
η2
2 + η2

3

)
< ξ24 − ξ22 − ξ23 and

1
2
(
ξ22 + ξ23

)
< η2

1 − η2
2 − η2

3 .

Inserting these inequalities in the identity det (ξ cos θ + η sin θ) = 0 and also
using the fact that ξ1η1 + ξ4η4 = − (ξ2η2 + ξ3η3) leads to the desired contradic-
tion, namely

0 =
(
ξ21 + ξ24 − ξ22 − ξ23

)
cos2 θ +

(
η2
1 + η2

4 − η2
2 − η2

3

)
sin2 θ

+2 (ξ1η1 + ξ4η4 − ξ2η2 − ξ3η3) cos θ sin θ

>
[
ξ21 + 8

(
η2
2 + η2

3

)]
cos2 θ + [ η2

4 +
1
2
(
ξ22 + ξ23

)
] sin2 θ

−4 (ξ2η2 + ξ3η3) cos θ sin θ

≥ 8
(
η2
2 + η2

3

)
cos2 θ +

1
2
(
ξ22 + ξ23

)
sin2 θ − 4 |(ξ2η2 + ξ3η3) cos θ sin θ|

≥ 1
2

[
4 |cos θ|

√
η2
2 + η2

3 − |sin θ|
√
ξ22 + ξ23

]2

≥ 0.

This concludes the proof of the theorem.

5.3.11 Some more examples

We now give some more examples.

Theorem 5.58 Let f : R
N×n → R and let |.| denote the Euclidean norm,

namely, for ξ ∈ R
N×n, we let

|ξ| :=
(∑n

α=1

∑N
i=1

(
ξiα
)2)1/2

.
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(i) Let g : R+ → R be such that

f (ξ) = g (|ξ|) .

Then

f convex ⇔ f polyconvex ⇔ f quasiconvex ⇔ f rank one convex
⇔ g convex and g (0) = inf {g (x) : x ≥ 0} .

(ii) Let N = n, 1 ≤ α < 2n, h : R → R be such that

f (ξ) = |ξ|α + h (det ξ) .

Then

f polyconvex ⇔ f quasiconvex ⇔ f rank one convex ⇔ h convex.

(iii) Let N = n, p > 0, 1 ≤ s ≤ n− 1 and

f (ξ) =

⎧⎨
⎩

(
|adjs ξ|n/s

det ξ

)p
if det ξ > 0

+∞ otherwise.

Then
f polyconvex ⇔ f rank one convex ⇔ p ≥ s

n− s
.

Remark 5.59 (i) The result (i) was established by Dacorogna [176].
(ii) Case (ii) was proved by Ball-Murat [65]. Note that the hypothesis α < 2n

cannot be dropped in general. Indeed, if n = 2 and α = 4, then

f (ξ) = |ξ|4 − 2 (det ξ)2

is even convex.
(iii) Case (iii) is interesting in elasticity for slightly compressible materials

and was established by Charrier-Dacorogna-Hanouzet-Laborde [144]. It was
then generalized by Dacorogna-Maréchal [206]. ♦
Proof. (i) Let ξ ∈ R

N×n and

f (ξ) = g (|ξ|) .

In view of Theorem 5.3, it remains to show that

f rank one convex ⇒ g convex and g (0) = inf {g (x) : x ≥ 0}

which will be proved in Step 1 and

g convex and g (0) = inf {g (x) : x ≥ 0} ⇒ f convex
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which we will establish in Step 2.
Step 1. Let x > 0 and define ξ ∈ R

N×n to be such that

ξ11 = x and ξij = 0 if (i, j) 
= (1, 1) .

We then deduce that

g (0) = f(
ξ − ξ

2
) ≤ 1

2
f (ξ) +

1
2
f (−ξ) = g (x)

as wished.
Let us now show that g is convex. Let λ ∈ [0, 1] , α, β ≥ 0.Define ξ, η ∈ R

N×n

by
ξ11 = α, η1

1 = β and ξij = ηij = 0 if (i, j) 
= (1, 1) .

Observing that rank {ξ − η} ≤ 1 and using the rank one convexity of f we get

g (λα+ (1 − λ)β) = f (λξ + (1 − λ) η)
≤ λf (ξ) + (1 − λ) f (η) = λg (|α|) + (1 − λ) g (|β|)
= λg (α) + (1 − λ) g (β)

which is indeed the claimed convexity inequality.
Step 2. Note that since g is convex and

g (0) = inf {g (x) : x ≥ 0} ,

then g is non decreasing on R+ .
We now want to show that g convex ⇒ f convex. This is immediate since

f (λξ + (1 − λ) η) = g (|λξ + (1 − λ) η|) ≤ g (λ |ξ| + (1 − λ) |η|)
≤ λg (|ξ|) + (1 − λ) g (|η|) = λf (ξ) + (1 − λ) f (η)

and this achieves the proof of the third part of the theorem.
(ii) Let n = N, ξ ∈ R

n×n, 1 ≤ α < 2n and

f (ξ) = |ξ|α + h (det ξ) .

It follows from Theorem 5.3 that it only remains to prove that

f rank one convex ⇒ h convex.

Let λ ∈ (0, 1) , a, b ∈ R, we want to show that

h (λa+ (1 − λ) b) ≤ λh (a) + (1 − λ) h (b) . (5.108)

We will assume, with no loss of generality, that a 
= b and a 
= 0. Let ε 
= 0 with
ε (b− a) > 0 and

ξ := diag(
aε

b− a
,

(
b− a

ε

) 1
n−1

, · · · ,
(
b− a

ε

) 1
n−1

) ∈ R
n×n.
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It is then easy to see that, letting e1 = (1, 0, · · · , 0) ∈ R
n,

{
det ξ = a, det (ξ + ε e1 ⊗ e1) = b

det (ξ + (1 − λ) ε e1 ⊗ e1) = λa+ (1 − λ) b.

Since f is rank one convex, we have

|ξ + (1 − λ) ε e1 ⊗ e1|α + h (λa+ (1 − λ) b)

= f (λξ + (1 − λ) (ξ + ε e1 ⊗ e1))

≤ λf (ξ) + (1 − λ) f (ξ + ε e1 ⊗ e1)

= λ |ξ|α + (1 − λ) |ξ + ε e1 ⊗ e1|α + λh (a) + (1 − λ) h (b) .

(5.109)

Observe that

λ |ξ|α + (1 − λ) |ξ + ε (e1 ⊗ e1)|α − |ξ + (1 − λ) ε (e1 ⊗ e1)|α

= λ[ (
aε

b − a
)2 + (n− 1) (

b− a

ε
)

2
n−1 ]α/2

+ (1 − λ) [ (
aε

b− a
+ ε)2 + (n− 1) (

b− a

ε
)

2
n−1 ]α/2

−[ (
aε

b− a
+ (1 − λ) ε)2 + (n− 1) (

b− a

ε
)

2
n−1 ]α/2

= O(ε
2n−α
n−1 )

where O (t) stands for a term that goes to 0 as t→ 0. It is clear that if 1 ≤ α <
2n, then the right hand side in the above identity tends to zero as ε→ 0. Thus
combining (5.109) and the above identity, as ε → 0, we have indeed obtained
(5.108), i.e. that h is convex.

(iii) We decompose the proof into two steps.

Step 1 : p ≥ s

n− s
⇒ f polyconvex. Define first h : R × R → R by

h (x, δ) :=

{
xnp/sδ−p if x, δ > 0

+∞ otherwise.

It is then easy to see that h is convex if and only if p ≥ s

n− s
. We then let, for

1 ≤ s ≤ n− 1, F : R

(
n
s

)
×
(
n
s

)
× R → R be defined by

F (η, δ) := h (|η| , δ) .

Then from the convexity of h and from the fact that x→ h (x, δ) is non decreas-
ing in R+ , we deduce that F is convex. Observing that

f (ξ) = F (adjs ξ, det ξ)
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we immediately obtain the polyconvexity of f from the fact that p ≥ s

n− s
.

Step 2 : f rank one convex ⇒ p ≥ s

n− s
. Let ξ ∈ R

n×n, a, b ∈ R
n be such

that
det (ξ + ta⊗ b) > 0, for every t > 0.

Then the rank one convexity of f implies that

t→ ϕ (t) := f (ξ + ta⊗ b) =

(
|adjs (ξ + ta⊗ b)|n/s

det (ξ + ta⊗ b)

)p

is convex. We next simplify the notations by letting λ1, · · · , λ5 be such that
{

|adjs (ξ + ta⊗ b)|2 = λ2
1t

2 + λ2t+ λ2
3

det (ξ + ta⊗ b) = λ4t+ λ5 .

Such λ1, · · · , λ5 exist since

t→ adjs (ξ + ta⊗ b) and t→ det (ξ + ta⊗ b)

are linear functions (cf. Proposition 5.65). Combining the above notation with
the definition of ϕ, we find

ϕ (t) =
(
λ2

1t
2 + λ2t+ λ2

3

)np
2s (λ4t+ λ5)

−p
.

After an elementary computation we obtain

ϕ′′ (t) =
(
λ2

1t
2 + λ2t+ λ2

3

)np
2s −2

(λ4t+ λ5)
−p−2

×[λ4
1λ

2
4t

4 p

s2
(n− s)2 (p− s

n− s
) +O

(
t3
)
].

Since ϕ is convex for t > 0 we must have p ≥ s

n− s
.

5.4 Appendix: some basic properties
of determinants

In the whole of Chapter 5, we have seen the importance of determinants in
quasiconvex analysis. We gather in this appendix some well known algebraic
properties of determinants. In the first part, we carefully introduce the notation
for the minors adjs ξ of a given matrix ξ.

We first introduce some notation. Let n ∈ N (the set of positive integers)
and let 1 ≤ s ≤ n. We define

Ins := {(α1, · · · , αs) ∈ N
s : 1 ≤ α1 < α2 < · · · < αs ≤ n} .
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We call the elements of Ins increasing s-tuples. The number of elements of Ins is
then

card Ins =
(
n
s

)
=

n!
s! (n− s)!

.

We next endow Ins with the following ordering relation:

α = (α1, · · · , αs) � (β1, · · · , βs) = β

if and only if
αk < βk ,

where k is the largest integer less than or equal to s such that αk 
= βk and
αl = βl for every l > k. (This is the inverse of the lexicographical order when
read backward.)

Example 5.60 (i) n = 4, s = 2. Then

(1, 2) � (1, 3) � (2, 3) � (1, 4) � (2, 4) � (3, 4) .

(ii) n = 5, s = 3. Then

(1, 2, 3) � (1, 2, 4) � (1, 3, 4) � (2, 3, 4) � (1, 2, 5)
� (1, 3, 5) � (2, 3, 5) � (1, 4, 5) � (2, 4, 5) � (3, 4, 5) .

(iii) s = n− 1. Then

(1, · · · , n− 1) � · · · � (1, · · · , k − 1, k + 1, · · · , n) � · · · � (2, · · · , n) . ♦
We then define the map ϕns

ϕns : {1, 2, 3, · · · , (ns
)} → Ins

as the only bijection that respects the order defined above.

Example 5.61 (i) n = 4, s = 2. Then

ϕ4
2 (1) = (3, 4) , ϕ4

2 (2) = (2, 4) , ϕ4
2 (3) = (1, 4) ,

ϕ4
2 (4) = (2, 3) , ϕ4

2 (5) = (1, 3) , ϕ4
2 (6) = (1, 2) .

(ii) s = n− 1. Then

ϕnn−1 (1) = (2, · · · , n)
ϕnn−1 (k) = (1, · · · , k − 1, k + 1, · · · , n)
ϕnn−1 (n) = (1, · · · , n− 1) . ♦

We are now in a position to define, for a given matrix ξ ∈ R
N×n, the adjugate

matrix of order s, 1 ≤ s ≤ n ∧N = min {n,N} ,

adjs ξ ∈ R

(
N
s

)
×
(
n
s

)
.



Appendix: some basic properties of determinants 251

Let ξ ∈ R
N×n be such that

ξ =

⎛
⎜⎜⎜⎜⎝

ξ11 · · · ξ1n

...
. . .

...

ξN1 · · · ξNn

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎝

ξ1

...
ξN

⎞
⎟⎟⎠ = (ξ1, · · · , ξn) .

We define adjs ξ to be the following matrix in R

(
N
s

)
×
(
n
s

)
:

adjs ξ =

⎛
⎜⎜⎜⎜⎜⎜⎝

(adjs ξ)
1
1 · · · (adjs ξ)

1

(n
s)

...
. . .

...

(adjs ξ)
(N

s )
1 · · · (adjs ξ)

(N
s )

(n
s)

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ R

(
N
s

)
×
(
n
s

)

=

⎛
⎜⎜⎜⎝

(adjs ξ)
1

...

(adjs ξ)
(N

s )

⎞
⎟⎟⎟⎠ =

(
(adjs ξ)1 , · · · , (adjs ξ)(n

s)
)
,

where

(adjs ξ)
i
α = (−1)i+α det

⎛
⎜⎜⎜⎜⎝

ξi1α1
· · · ξi1αs

...
. . .

...

ξisα1
· · · ξisαs

⎞
⎟⎟⎟⎟⎠

and (i1, · · · , is) , (α1, · · · , αs) are the s-tuples corresponding to i and α by the
bijections ϕNs and ϕns , meaning that

ϕNs (i) = (i1, · · · , is) and ϕns (α) = (α1, · · · , αs) .

Notation 5.62 We sometimes, as in examples (iv) and (vii) below, denote by

ξ̂ i1,··· ,ikα1,··· ,αl

the (N − k)×(n− l) matrix obtained from ξ ∈ R
N×n by suppressing the k rows

i1, · · · , ik and the l columns α1, · · · , αl . ♦
Example 5.63 (i) N = n = 2, s = 1. Let

ξ =

(
ξ11 ξ12

ξ21 ξ22

)
.

Then
Ins = INs = {1, 2}
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and the bijection ϕ2
1 : {1, 2} → {2, 1} . Hence

adj1 ξ =

(
(adj1 ξ)

1
1 (adj1 ξ)

1
2

(adj1 ξ)
2
1 (adj1 ξ)

2
2

)
=

(
ξ22 −ξ21
−ξ12 ξ11

)
.

(note that adj1 ξ is exactly ξ̃ defined in Theorem 5.51 above).

(ii) N = n = s = 2. Then

Ins = INs = {(1, 2)}

and ϕ2
2 (1) = (1, 2) . Hence

adj2 ξ = det

(
ξ11 ξ12

ξ21 ξ22

)
= det ξ.

(iii) N = 3, s = n = 2. Then

Ins = I2
2 = {(1, 2)}

and ϕ2
2 (1) = (1, 2) , while

INs = I3
2 = {(1, 2) ; (1, 3) ; (2; 3)}

and ϕ3
2 (1) = (2, 3) , ϕ3

2 (2) = (1, 3) , ϕ3
2 (3) = (1, 2) . Therefore, if

ξ =

⎛
⎜⎜⎝

ξ11 ξ12

ξ21 ξ22

ξ31 ξ32

⎞
⎟⎟⎠ =

⎛
⎜⎝

ξ1

ξ2

ξ3

⎞
⎟⎠ = (ξ1, ξ2) ,

then

adj2 ξ =

⎛
⎜⎝

(adj2 ξ)
1
1

(adj2 ξ)
2
1

(adj2 ξ)
3
1

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

det

(
ξ21 ξ22

ξ31 ξ32

)

− det

(
ξ11 ξ12

ξ31 ξ32

)

det

(
ξ11 ξ12

ξ21 ξ22

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(iv) N = n+ 1, s = n. We let

ξ =

⎛
⎜⎜⎜⎜⎝

ξ11 · · · ξ1n

...
. . .

...

ξn+1
1 · · · ξn+1

n

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎝

ξ1

...
ξn+1

⎞
⎟⎟⎠ = (ξ1, · · · , ξn) .
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Then

adjn ξ =

⎛
⎜⎜⎝

(adjn ξ)
1
1

...

(adjn ξ)
n+1
1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

det

⎛
⎜⎝

ξ21 · · · ξ2n
...

. . .
...

ξn+1
1 · · · ξn+1

n

⎞
⎟⎠

...

(−1)n+2 det

⎛
⎜⎝

ξ11 · · · ξ1n
...

. . .
...

ξn1 · · · ξnn

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝

det ξ̂ 1

...

(−1)n+2 det ξ̂ n+1

⎞
⎟⎟⎠

where ξ̂ k denotes the n× n matrix obtained by suppressing the k th row in the
matrix ξ.

(v) N = n = s = 3. Then I3
3 = {(1, 2, 3)} and therefore

adj3 ξ = det ξ.

(vi) N = n = 3, s = 2. Then

adj2 ξ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

det

(
ξ22 ξ23

ξ32 ξ33

)
− det

(
ξ21 ξ23

ξ31 ξ33

)
det

(
ξ21 ξ22

ξ31 ξ32

)

− det

(
ξ12 ξ13

ξ32 ξ33

)
det

(
ξ11 ξ13

ξ31 ξ33

)
− det

(
ξ11 ξ12

ξ31 ξ32

)

det

(
ξ12 ξ13

ξ22 ξ23

)
− det

(
ξ11 ξ13

ξ21 ξ23

)
det

(
ξ11 ξ12

ξ21 ξ22

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The above expression is the usual transpose of the matrix of cofactors.

(vii) N = n and s = n− 1. Then

adjn−1 ξ ∈ R
n×n

and (
adjn−1 ξ

)i
α

= (−1)i+α det(ξ̂ iα)

where ξ̂ iα is the (n− 1)×(n− 1) matrix obtained from ξ ∈ R
n×n by suppressing

the i th row and the α th column. ♦
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Remark 5.64 Note that one can write the rows of adjs ξ as

(adjs ξ)
i = (−1)i+1 adjs

⎛
⎜⎜⎝

ξi1

...
ξis

⎞
⎟⎟⎠ , 1 ≤ i ≤ (

N
s

)
,

where (i1, · · · , is) = ϕNs (i) is the s-tuple associated to the integer i. So, in
particular,

(adjs ξ)
1 = adjs

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ξN−s+1

ξN−s+2

...
ξN−1

ξN

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, · · · , (adjs ξ)

(
N
s

)
= (−1)

(
N
s

)
+1 adjs

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ξ1

ξ2

...
ξs−1

ξs

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

A similar remark applies to the columns of adjs ξ. ♦

We now give some elementary properties of determinants.

Proposition 5.65 Let ξ ∈ R
N×n.

(i) If N = n, then, for every ξ ∈ R
n×n,

〈
ξµ;

(
adjn−1 ξ

)ν〉 =
〈
ξµ;

(
adjn−1 ξ

)
ν

〉
= δµν det ξ, µ, ν = 1, 2, · · · , n,

where 〈·; ·〉 denotes the scalar product in R
n and δµν denotes the Kronecker

symbol.
(ii) If N = n, then, for every ξ ∈ R

n×n,

ξ
(
adjn−1 ξ

)t = det ξ · I

where I is the identity matrix in R
n×n and ξt denotes the transpose of the matrix

ξ. In particular if det ξ 
= 0, then

ξ−1 =
1

det ξ
(
adjn−1 ξ

)t
.

(iii) If N = n+ 1, then, for every ξ ∈ R
(n+1)×n,

〈ξν ; adjn ξ〉 = 0, ν = 1, · · · , n,

where 〈·; ·〉 denotes the scalar product in R
n+1.

(iv) If N = n− 1, then, for every ξ ∈ R
(n−1)×n,

〈
ξν ; adjn−1 ξ

〉
= 0, ν = 1, · · · , n− 1,

where 〈·; ·〉 denotes the scalar product in R
n.
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(v) If N = n, then, for every ξ ∈ R
n×n,

∂

∂ξiα
(det ξ) =

(
adjn−1 ξ

)i
α
, 1 ≤ i, α ≤ n = N.

(vi) Denote

T (ξ) = (ξ, adj2 ξ, · · · , adjn∧N ξ) ∈ R
τ(n,N)

where n ∧N = min {n,N} and

τ (n,N) =
n∧N∑
s=1

σ (s) =
n∧N∑
s=1

(
n
s

)(
N
s

)
.

Let a ∈ R
n, b ∈ R

N . Define

a⊗ b =
(
aibα

)1≤i≤N
1≤α≤n ∈ R

N×n.

Let t ∈ [0, 1] , then, for every ξ ∈ R
N×n,

T (ξ + (1 − t) a⊗ b) = tT (ξ) + (1 − t)T (ξ + a⊗ b) .

Proof. (i) The case µ = ν is just the way a determinant is computed, by
expanding it along the ν th row or the ν th column. When µ 
= ν, then both〈
ξµ;

(
adjn−1 ξ

)ν〉 and
〈
ξµ;

(
adjn−1 ξ

)
ν

〉
are again determinants of n×nmatrices,

but the first matrix has twice the row ξµ and the second has twice the column
ξµ . Thus both determinants are equal to 0, as claimed.

(ii) This follows at once from (i).
(iii) Let N = n+ 1 and ν ∈ {1, · · · , n} . We have to show that

〈ξν ; adjn ξ〉 = 0.

Define the matrix η = [ξν ; ξ] ∈ R
(n+1)×(n+1) (recall that ξ ∈ R

(n+1)×n). Then
η1 = ην+1 and therefore det η = 0. Using (i), we obtain

0 = det η = 〈η1; (adjn η)1〉 = 〈ξν ; adjn ξ〉 .

(iv) This is established exactly as (iii).
(v) This is a direct consequence of (i).
(vi) We divide the proof into three steps.
Step 1. The result is equivalent to

adjs (ξ + (1 − t) a⊗ b) = t adjs ξ + (1 − t) adjs (ξ + a⊗ b)

for every 1 ≤ s ≤ n ∧N. In terms of components this is equivalent to

(adjs (ξ + (1 − t) a⊗ b))iα
= t (adjs ξ)

i
α + (1 − t) (adjs (ξ + a⊗ b))iα ,

(5.110)
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1 ≤ i ≤ (
N
s

)
, 1 ≤ α ≤ (

n
s

)
. Recall that

(adjs ξ)
i
α = (−1)i+α det

⎛
⎜⎜⎜⎜⎝

ξi1α1
· · · ξi1αs

...
. . .

...

ξisα1
· · · ξisαs

⎞
⎟⎟⎟⎟⎠ .

By abuse of notation, let

ξ =

⎛
⎜⎜⎜⎜⎝

ξi1α1
· · · ξi1αs

...
. . .

...

ξisα1
· · · ξisαs

⎞
⎟⎟⎟⎟⎠ , a⊗ b =

⎛
⎜⎜⎜⎜⎝

ai1bα1 · · · ai1bαs

...
. . .

...

aisbα1 · · · aisbαs

⎞
⎟⎟⎟⎟⎠ .

Therefore (5.110) is equivalent to showing that, for every ξ ∈ R
s×s, a, b ∈ R

s,
t ∈ [0, 1] ,

det (ξ + (1 − t) a⊗ b) = t det ξ + (1 − t) det (ξ + a⊗ b) . (5.111)

This is a standard property of determinants that we prove in the two steps
below.

Step 2. We start by proving (5.111) when

a = b = e1 = e1 = (1, 0, · · · , 0) ∈ R
s.

Note that, for every x ∈ R, we have

(
ξ + xe1 ⊗ e1

)1
= ξ1 + xe1 and

(
adjs−1

(
ξ + xe1 ⊗ e1

))1
=
(
adjs−1 ξ

)1
.

The first identity is obvious and the second one follows since the components of(
adjs−1 ξ

)1 are given by determinants where the first row of ξ does not appear.
We can therefore apply (i) to find

det
(
ξ + (1 − t) e1 ⊗ e1

)
= 〈 (ξ + (1 − t) e1 ⊗ e1

)1
;
(
adjs−1

(
ξ + (1 − t) e1 ⊗ e1

))1 〉
= 〈 ξ1 + (1 − t) e1;

(
adjs−1 ξ

)1 〉
= t 〈 ξ1; (adjs−1 ξ

)1 〉 + (1 − t) 〈 ξ1 + e1;
(
adjs−1 ξ

)1 〉
= t 〈 ξ1; (adjs−1 ξ

)1 〉
+ (1 − t) 〈 ξ1 + e1;

(
adjs−1

(
ξ + e1 ⊗ e1

))1 〉
= t det ξ + (1 − t) det

(
ξ + e1 ⊗ e1

)

which is the claim of Step 2.
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Step 3. The general statement (5.111) follows at once from Step 2 and
Theorem 13.3. Indeed, we can find R,Q ∈ O (s) such that

R
(
e1 ⊗ e1

)
Q = a⊗ b.

We therefore find, using Step 2,

det (ξ + (1 − t) a⊗ b) = det
(
R
(
RtξQt + (1 − t) e1 ⊗ e1

)
Q
)

= detR det
(
RtξQt + (1 − t) e1 ⊗ e1

)
detQ

= t detR det
(
RtξQt

)
detQ

+ (1 − t) detR det
(
RtξQt + e1 ⊗ e1

)
detQ

= t det ξ + (1 − t) det
(
ξ +R

(
e1 ⊗ e1

)
Q
)

= t det ξ + (1 − t) det (ξ + a⊗ b)

which is the claim.
We also have the following useful result (see Buttazzo-Dacorogna-Gangbo

[113] and Dacorogna-Maréchal [205]).

Proposition 5.66 (i) Let ξ ∈ R
N×n, η ∈ R

n×m and

1 ≤ s ≤ N ∧ n ∧m := min {N,n,m} .

Then
adjs (ξη) = adjs ξ adjs η.

(ii) Let ξ ∈ R
N×n and 1 ≤ s ≤ N ∧ n, then

adjs
(
ξt
)

= (adjs ξ)
t
.

(iii) If N = n and R ∈ O (n) (respectively R ∈ SO (n)), then

adjsR ∈ O
((
n
s

))
(respectively adjsR ∈ SO

((
n
s

))
).

(iv) If N = n and ξ ∈ R
n×n is invertible, then adjs ξ ∈ R

(n
s)×(n

s) is invertible
and

(adjs ξ)
−1 = adjs

(
ξ−1

)
.

(v) If N = n and if R ∈ SO (n) , then

adjn−1R = R.

Proof. (i) We have to prove that

(adjs (ξη))ij = (adjs ξ adjs η)
i
j
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for every 1 ≤ i ≤ (
N
s

)
, 1 ≤ j ≤ (

m
s

)
. To simplify the notation, we will write

α := ϕNs , β := ϕns , γ := ϕms .

Let the s-tuples corresponding to i and j (and later k) be given by

α (i) = (i1, · · · , is) , β (k) = (k1, · · · , ks) , γ (j) = (j1, · · · , js) .

For a matrix θ ∈ R
N×m, we let

θ
α(i)
γ(j) :=

⎛
⎜⎜⎜⎜⎝

θi1j1 · · · θi1js

...
. . .

...

θisj1 · · · θisjs

⎞
⎟⎟⎟⎟⎠ ∈ R

s×s

and, for 1 ≤ ν ≤ m,

( θα(i)
γ(j) )ν :=

⎛
⎜⎜⎝

θi1ν
...
θisν

⎞
⎟⎟⎠ ∈ R

s.

For 1 ≤ p, q ≤ s, we have that

( ( ξηα(i)
γ(j) )qp = ( ξη )iqjp =

n∑
ν=1

ξiqν η
ν
jp .

In other words, the p th column vector of the matrix is given by

( (ξη)α(i)
γ(j) )p =

⎛
⎜⎜⎜⎝

( ( ξη )α(i)
γ(j) )1p
...

( ( ξη )α(i)
γ(j) )sp

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

∑n
ν=1 ξ

i1
ν η

ν
jp

...∑n
ν=1 ξ

is
ν η

ν
jp

⎞
⎟⎟⎠

=
n∑
ν=1

ηνjp

⎛
⎜⎜⎝

ξi1ν
...
ξisν

⎞
⎟⎟⎠ =

n∑
ν=1

ηνjp( ξα(i) )ν .

We therefore have, by definition of adjs , that

(adjs (ξη))ij

= (−1)i+j det( (ξη)α(i)
γ(j) )

= (−1)i+j det( ( (ξη)α(i)
γ(j) )1 , · · · , ( (ξη)α(i)

γ(j) )s )

= (−1)i+j det(
∑n

ν=1 η
ν
j1( ξ

α(i) )ν , · · · ,
∑n
ν=1 η

ν
js( ξ

α(i) )ν )

= (−1)i+j det(
∑n

ν1=1 η
ν1
j1

( ξα(i) )ν1 , · · · ,
∑n
νs=1 η

νs

js
( ξα(i) )νs )

= (−1)i+j
n∑

ν1,··· ,νs=1

ην1j1 · · · ηνs

js
det( ( ξα(i) )ν1 , · · · , ( ξα(i) )νs ).
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Now, if νp = νq for two distinct integers p, q ∈ {1, · · · , s} , we clearly have

det( ( ξα(i) )ν1 , · · · , ( ξα(i) )νs ) = 0.

Thus, writing Fn,s for all s-tuples (ν1, · · · , νs) in {1, · · · , n}s such that the νp
are pairwise distinct, we find

(adjs (ξη))ij = (−1)i+j
∑

(ν1,··· ,νs)∈Fn,s

ην1j1 · · · ηνs

js
det( ( ξα(i) )ν1 , · · · , ( ξα(i) )νs ).

(5.112)
On the other hand we can write

(adjs ξ adjs η)
i
j =

(
n
s

)
∑
k=1

(adjs ξ)
i
k (adjs η)

k
j

=

(
n
s

)
∑
k=1

(−1)i+k det( ξα(i)
β(k) ) (−1)k+j det( ηβ(k)

γ(j) )

= (−1)i+j

(
n
s

)
∑
k=1

det( ξα(i)
β(k)η

β(k)
γ(j) ).

Since, for 1 ≤ p, q, r ≤ s,

( ξα(i)
β(k) )qp = ξ

iq
kp

and ( ηβ(k)
γ(j) )pr = η

kp

jr

we find

( ξα(i)
β(k)η

β(k)
γ(j) )qr =

s∑
p=1

ξ
iq
kp
η
kp

jr
.

Phrased differently, we have that the r-th column vector of the matrix is given by

(
ξ
α(i)
β(k)η

β(k)
γ(j)

)
r

=

⎛
⎜⎜⎜⎝

( ξα(i)
β(k)η

β(k)
γ(j) )1r

...

( ξα(i)
β(k)η

β(k)
γ(j) )sr

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

∑s
p=1 ξ

i1
kp
η
kp

jr

...∑s
p=1 ξ

is
kp
η
kp

jr

⎞
⎟⎟⎟⎠

=
s∑

p=1

η
kp

jr

⎛
⎜⎜⎝

ξi1kp

...

ξiskp

⎞
⎟⎟⎠ =

s∑
p=1

η
kp

jr
( ξα(i) )kp .
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We thus deduce that

(adjs ξ adjs η)
i
j

= (−1)i+j
(
n
s

)
∑
k=1

det( ( ξα(i)
β(k)η

β(k)
γ(j) )1 , · · · , ( ξα(i)

β(k)η
β(k)
γ(j) )s )

= (−1)i+j

(
n
s

)
∑
k=1

det(
s∑
p=1

η
kp

j1
( ξα(i) )kp , · · · ,

s∑
p=1

η
kp

js
( ξα(i) )kp )

= (−1)i+j
(
n
s

)
∑
k=1

det(
s∑

p1=1
η
kp1
j1

( ξα(i) )kp1
, · · · ,

s∑
ps=1

η
kps

js
( ξα(i) )kps

)

= (−1)i+j
(
n
s

)
∑
k=1

s∑
p1,··· ,ps=1

η
kp1
j1

· · · ηkps

js
det( ( ξα(i) )kp1

, · · · , ( ξα(i) )kps
).

If (p1, · · · , ps) ∈ {1, · · · , s}s is not a permutation of (1, · · · , s) , then

det( ( ξα(i) )kp1
, · · · , ( ξα(i) )kps

) = 0.

Letting

νr := kpr , r = 1, · · · , s,

we note that, when (p1, · · · , ps) ∈ {1, · · · , s}s is a permutation of (1, · · · , s) and
k ∈ {

1, · · · , (ns
)}
, then (ν1, · · · , νs) ∈ Fn,s , the set of s-tuples (ν1, · · · , νs) in

{1, · · · , n}s such that the νp are pairwise distinct. We therefore get that

(adjs ξ adjs η)
i
j

= (−1)i+j
∑

(ν1,··· ,νs)∈Fn,s

ην1j1 · · · ηνs

js
det( ( ξα(i) )ν1 , · · · , ( ξα(i) )νs ).

The above identity and (5.112) imply the result.

(ii) As above, let

α := ϕNs , β := ϕns .

We clearly have, for 1 ≤ i ≤ (
N
s

)
and 1 ≤ j ≤ (

n
s

)
, that

(
ξt
)α(i)

β(j)
=
(
ξ
β(j)
α(i)

)t
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since, for α (i) = (i1, · · · , is) and β (j) = (j1, · · · , js) , we can write

(
ξt
)α(i)

β(j)
=

⎛
⎜⎜⎜⎜⎜⎝

(ξt)i1j1 · · · (ξt)i1js

...
. . .

...

(ξt)isj1 · · · (ξt)isjs

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

ξj1i1 · · · ξjsi1

...
. . .

...

ξj1is · · · ξjsis

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

ξj1i1 · · · ξj1is

...
. . .

...

ξjsi1 · · · ξjsis

⎞
⎟⎟⎟⎟⎠

t

=
(
ξ
β(j)
α(i)

)t
.

We can therefore deduce that
(
adjs

(
ξt
))i
j

= (−1)i+j det(
(
ξt
)α(i)

β(j)
) = (−1)i+j det( ( ξβ(j)

α(i) )t )

= (−1)i+j det( ξβ(j)
α(i) ) = (adjs ξ)

j
i

which is statement (ii).
(iii) From (i) and (ii) we immediately deduce the claim for R ∈ O (n) , since

adjsR (adjsR)t = adjsR adjsR
t = adjs

(
RRt

)
= adjs In = I(n

s

)

where for any integer m we have let Im to be the identity matrix in R
m×m.

We now discuss the case where R ∈ SO (n) . We already know that

adjsR ∈ O
((
n
s

))
.

It therefore remains to prove that

det (adjsR) = 1.

We observe that SO (n) is a connected manifold, meaning that, for every R ∈
SO (n) , there exists a continuous function

θ : [0, 1] → SO (n) , θ (0) = In , θ (1) = R.

We then define, for t ∈ [0, 1] , the function

f (t) := det (adjs θ (t)) .

We observe that since any Q ∈ SO (n) ⊂ O (n) has

det (adjsQ) ∈ {±1} ,
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then the function f takes only values in {±1} . Since it is a continuous function,
as a composition of three continuous functions, and since f (0) = 1, we deduce
that f (1) = 1, which is the assertion.

(iv) This follows from (i) exactly as above. Indeed

adjs ξ adjs
(
ξ−1

)
= adjs In = I(n

s

) .

(v) From (ii) of Proposition 5.65, we have, since R ∈ SO (n) ,

R
(
adjn−1R

)t = In

and thus the claim.

We now want to write, for every ξ, η ∈ R
n×n, det (ξ + η) . To this aim let us

introduce the following notations.

- Let N{1,··· ,n} be the set of couples (I, J) , each of them ordered, so that

I ∪ J = {1, · · · , n} , I ∩ J = ∅.

- For all (I, J) ∈ N{1,··· ,n} and all matrices ξ, η ∈ R
n×n, we denote by

( ξI , ηJ ) ∈ R
n×n

the n × n matrix whose row of index k is ξk if k ∈ I or ηk if k ∈ J. So, for
example, if n = 3, I = {1, 3} , J = {2} , then

( ξI , ηJ ) =

⎛
⎜⎝

ξ1

η2

ξ3

⎞
⎟⎠ .

Proposition 5.67 Let ξ, η ∈ R
n×n, then

det (ξ + η) =
∑

(I,J)∈N{1,··· ,n}

det( ξI , ηJ ).

Proof. Let us first examine the case n = 2, where we trivially have

det (ξ + η) = det( ξ1, ξ2 ) + det( ξ1, η2 ) + det( η1, ξ2 ) + det( η1, η2 ).

The general case easily follows if we write the determinant as a multilinear form;
namely, for ξ ∈ R

n×n, we write

det ξ = ξ1 ∧ · · · ∧ ξn.
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The claim follows by induction, since

det (ξ + η) = ξ1 ∧ (
ξ2 + η2

) ∧ · · · ∧ (ξn + ηn) + η1 ∧ (
ξ2 + η2

) ∧ · · · ∧ (ξn + ηn)

=
∑

(I,J)∈N{2,··· ,n}

det( ξ1, ξI , ηJ ) +
∑

(I,J)∈N{2,··· ,n}

det( η1, ξI , ηJ )

=
∑

(I,J)∈N{1,··· ,n}

det( ξI , ηJ ).

This finishes the proof of the proposition.


