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Elements of Measurement Using the Slitting
Method

2.1 Linear Elasticity and Superposition Principle

All mechanical methods of residual stress measurement are based on the prin-
ciples of elasticity and linear superposition. In particular, the superposition
for the slitting method as shown in Fig. 2.1, is extended from Bueckner’s prin-
ciple for crack propagation [9]. When a cut of depth a is introduced to a part
with residual stress (case A), the stress on the site of cut is released (case B).
This process is the same as imposing a stress field of the same magnitude of
the stress in (case A) with a different sign on the site of the cut (case C),
which leads to a stress-free slit face in case B. To compute the deformation or
the compliance functions due to introduction of the cut in case B, we make
use of case C because there is no change in deformation in case A. Note the
superposition shown in Fig. 2.1 remains valid when external loads are present.
For a body with prescribed displacement boundary conditions, however, the
boundary condition should be properly maintained, as shown in Fig. 2.2. Note
that the displacement at the boundary for case C should be set to zero. The
stress estimated from the deformation measured from case B and the compli-
ance functions computed from case C is due to both the residual stress and
the prescribed boundary condition in case A.

There are situations where the condition of linear elastic deformation may
be violated and the superposition is no longer applicable. For example, when
a cut of size a is introduced to a thick ring with residual stress σo(r) from the
outer surface shown in Fig. 2.3, the change in stress ∆σ(r, a) near the inner
surface 180◦ from the cut may be considerable and exceed the elastic limit
if the increase has the same sign as the original residual stress [45]. In this
case, the superposition shown in Fig. 2.1 will no longer be valid because of the
presence of the plastic deformation. The superposition principle also assumes
that the faces of cut are not in contact during cutting, which may take place
if the cut is made into a zone of high compressive stress.

The use of superposition allows residual stress measurements to be carried
out on several adjacent planes when the change of stress due to previous cuts
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Fig. 2.1. Linear superposition for the slitting method.
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Fig. 2.2. Linear superposition with prescribed displacement conditions for the slit-
ting method.

are included in the final stress estimation. Consider a welded plate, shown in
Fig. 2.4, with a residual stress that varies with distance in both thickness and
length. To obtain residual normal stress distributions on three planes in the
weld and adjacent region, a cut is first made on plane I to measure residual
stresses σI and τI . The release of σI and τI on plane I changes stresses on
planes II and III from σII and σIII to σ′

II and σ′
III , which can be measured

by using the slitting method on each plane. From superposition, the original
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Fig. 2.3. The change of the stress near the inner surface may exceed the elastic
limit for a thick-walled ring.

residual stresses on planes II and III are obtained as

σII = σ
′
II + σIσ

II + σIτ
II

σIII = σ
′
III + σIσ

III + σIτ
III (2.1)

where σIσ
II , σIτ

II , σIσ
III and σIτ

III are the stresses computed on planes II and
III by applying σI and τI respectively on the surfaces exposed by cut I. It is
important to include residual shear stress τI in the computation if the stress
field is not symmetric about plane I.

According to Saint-Venant’s principle, the influence of releasing a residual
stress should be mostly confined in a region of a dimension proportional to the
size of the cut. Thus, for through-thickness measurement the change of the
stress due to cutting is expected to become very small at a distance about one
thickness from the plane of cut. This is confirmed by an analysis presented in
Chapter 4 for a beam with an edge-crack.

2.2 Expressions for Approximation of Residual Stresses

Different measurements require different expressions for residual stresses. For
a simply-connected 2-D body, shown in Fig. 2.5, an expression for residual
normal stresses σ that varies through thickness must satisfy the following
conditions ∫ 1

0
σ(x)dx = 0
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Fig. 2.4. Measurement of residual stresses on several planes in the weld region using
the linear superposition.

∫ 1

0
σ(x)(2x − 1)dx = 0 (2.2)

and for residual shear stresses τ ,∫ 1

0
τ(x)dx = 0

τ(0) = τ(1) = 0 (2.3)

where, for simplicity, the distance x is normalized by the thickness.
It is well known that Legendre polynomials Li(x) of order i ≥ 2 always

satisfy Eq. (2.2). This can be easily verified by considering the orthogonality
which states [70] ∫ 1

0
Li(x)Lj(x)dx =

δij

2i + 1
(2.4)

where δij = 0 if i �= j. Since L0(x) = 1 and L1(x) = 2x − 1, Eq. (2.2) is
guaranteed to hold when σ(x) is replaced with Li(x) with i ≥ 2. A continuous
residual normal stress is thus always expressible by a Legendre polynomial
series over the thickness as

σ(x) =
n∑

i=2

AiLi(x) (2.5)

where Ai is the amplitude coefficient for Li(x). In computing Eq. (2.5), the ac-
tual expression for a Legendre polynomial is rarely used because it quickly be-
comes very lengthy. Instead, the recurrence relation is commonly used, which
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leads to very fast and efficient evaluation of Eq. (2.5). As an example, a sub-
routine in C programming language is given in Appendix C. It is possible
to construct other functions that also satisfy Eq. (2.2) and can be used to
represent a continuous residual normal stress, see Section 9.2 for an example.
For a multiply-connected 2-D body, such as a ring, one or both of the con-
ditions in Eq. (2.2) may not be required for the residual hoop stress through
the wall-thickness.

x

σ(x)
τ(x)

Fig. 2.5. Residual stresses on an arbitrary plane of a free body satisfy the equilib-
rium conditions.

An expression for residual shear stress, to the authors’ knowledge, is not
available in literature until recently probably due to much less attention re-
ceived for the measurement of shear stresses. Its derivation is outlined here.
First a general function that satisfies the second condition in Eq. (2.3) may
be written as

τ(x) = x(1 − x)J(x) (2.6)

which, when substituted into the first condition in Eq. (2.3), gives

∫ 1

0
τ(x)dx =

∫ 1

0
x(1 − x)J(x)dx = 0 (2.7)

This is a special case for the orthogonality of a class of Jacobi polynomials
[70], which for the nth order is given as

Jn(x) =
(−1)n

n!x(1 − x)
dn

dxn
{[x(1 − x)]1+n} =

Qn(x)
x(1 − x)

(2.8)

Thus, a general residual shear stress may be expressed as
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τ(x) =
n∑

i=1

BiQi(x) (2.9)

where Bi is the amplitude coefficient for the ith order term. Again, the sum
can be efficiently evaluated by using the recurrence relation, and a subroutine
in C programming language is also included in Appendix C.

σy(x,-w/2) σy(x,w/2)

τxy(x,-w/2) τxy(x,w/2)

τxy(d,y)
σx(d,y)

w

d

y

x

Fig. 2.6. A complete 2-D residual stress field on the site of a cut of finite width.

For near surface measurement no conditions on the resultant force and
moment are required. However, the expression that describes the residual
stresses released by a cut of finite width is more involved if the cut releases
not only normal but other in-plane stresses.

For a slot of width w and depth d as shown in Fig. 2.6, the variation of
the normal stress σy in a small region that contains the site of the cut may
be sufficiently approximated by a second order function in y as below,

σy(x, y) =
2∑

j=0

yjfj(x) (2.10)

where x-axis is chosen to coincide with the centerline of the cut. In practice
variables x and y are often normalized by the final depth of cut for a near
surface measurement or the thickness of part for through-thickness measure-
ment. It is seen that f0(x) corresponds to the stress on the centerline of the
slit. From equilibrium equations [124] for a 2-D stress field we find

∂2σx

∂x2 =
∂2σy

∂y2 (2.11)

which, when combined with Eq. (2.10), leads to
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∂2σx

∂x2 = 2f2(x) (2.12)

and
σx(x, y) = 2

∫ x

0
dx

∫ x

0
f2(x)dx + xA(y) + B(y) (2.13)

Again, from equilibrium equations

∂σx

∂x
= −∂τxy

∂y
= 2
∫ x

0
f2(x)dx + A(y)

∂σy

∂y
= −∂τxy

∂x
= f1(x) + 2yf2(x) (2.14)

After integration we find

τxy(x, y) = −
∫ x

0
f1(x)dx − 2y

∫ x

0
f2(x)dx + C(y)

τxy(x, y) = −2y

∫ x

0
f2(x)dx −

∫
A(y)dy + D(x) (2.15)

and

D(x) = −
∫ x

0
f1(x)dx

C(y) = −
∫

A(y)dy

The shear stress is thus given by

τxy(x, y) = −2y

∫ x

0
f2(x)dx −

∫ x

0
f1(x)dx −

∫
A(y)dy (2.16)

At the surface x = 0 we have

τxy(0, y) = 0 and σx(0, y) = 0 (2.17)

Using Eq. (2.17) in Eqs. (2.13) and (2.16) yields

B(y) = 0 and

∫
A(y)dy = 0 (2.18)

Thus, we may set A(y) = 0. The final form of the stresses becomes

σx(x, y) = 2
∫ x

0
dx

∫ x

0
f2(x)dx

σy(x, y) = f0(x) + yf1(x) + y2f2(x)

τxy(x, y) = −2y

∫ x

0
f2(x)dx −

∫ x

0
f1(x)dx (2.19)
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Equation (2.19) shows the relationship among the three stress components in
the region of the cut. For a very thin cut, w/d ≈ 0, we have

σx(x, 0) = f0(x)

τxy(x, 0) = −
∫ x

0
f1(x)dx (2.20)

where σx is omitted because it only acts on the bottom of cut. For a cut of
finite width, the stresses to be released on the side faces of the cut (y = ±w/2)
are given by

σy(x,±w

2
) = f0(x) ± w

2
f1(x) +

w2

4
f2(x)

τxy(x,±w

2
) = ∓w

∫ x

0
f2(x)dx −

∫ x

0
f1(x)dx (2.21)

and on the bottom of the cut of depth x = d by

σx(d, y) = 2
∫ d

0
dx

∫ x

0
f2(x)dx

τxy(d, y) = −2y

∫ d

0
f2(x)dx −

∫ d

0
f1(x)dx (2.22)

Equation (2.21) shows that, as width w increases, the normal and shear
stresses acting on one side of cut may become different from those on the
other side. The expressions for σx and τxy on the bottom of cut in Eq. (2.22)
represent a zero-order approximation and a linear approximation respectively.
Note that stresses estimated using Eqs. (2.21) and (2.22) automatically sat-
isfy the equilibrium conditions along the faces of the cut. Although Figure 2.3
shows a cut with a flat bottom, the solutions obtained above are equally valid
for a cut with a curved bottom.

Equations (2.21) and (2.22) are also useful for through-thickness measure-
ment when other stress components are not negligibly small. For a thin cut in
particular, the zero-resultant force conditions over the thickness are satisfied
when Eqs. (2.5) and (2.9) are combined with Eq. (2.20). That is,

σx(x, 0) = f0(x) =
n∑

i=2

AiLi(x)

τxy(x, 0) = −
∫ x

0
f1(x)dx =

n∑
i=1

BiQi(x) (2.23)

the second of which leads to

f1(x) = −
n∑

i=1

Bi
dQi(x)

dx
(2.24)
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So far we have limited our discussion solely to 2-D stresses. For three-
dimensional (3-D) stresses, a general expression for residual stresses that sat-
isfies all the equilibrium conditions over a cross-section of an arbitrary shape
is not yet available. Fortunately, the initial strain approach to be introduced
in Chapter 9 provides a useful alternative to the conventional stress-based
approach and allows a rigorous description of the residual stresses in parts of
complex geometries.

After we have constructed an expression to approximate the residual
stresses to be measured, the strain response to each function defined in the ex-
pression with a unit magnitude can be computed using one of the approaches
to be presented in Chapters 3, 4 and 5. The strain obtained as a function of
the depth of cut is referred to as the compliance function, and, therefore, we
sometimes refer to the slitting method as the compliance method.

2.3 Experimental Procedures

Deformation due to releasing residual stress by a cut of progressively increas-
ing depth can be measured as the change of displacements and/or strain. The
latter one is by far the most commonly measured variable thanks to the wide
availability of high precision electric-resistance strain gages of various sizes
and patterns [41]. Although measurement of strain using strain gages offers a
higher sensitivity and reliability than most displacement based measurements,
it has certain limitations:

1. Measurement is limited to a few fixed locations;
2. As the number strain gages increases, the soldering and cabling of the

gages becomes tedious and time-consuming;
3. Sensitive to temperature change if the gage’s thermal expansion coefficient

does not match that of the specimen adequately.

Fortunately, the slitting method in most cases requires measurement of strain
only at one or two locations, as shown in Fig. 2.7A. When choosing a strain
gage, it is crucial to match the thermal expansion coefficient of the strain gage
with that of the surface on which the gage will be installed. Also, the gage
length needs to be short enough to reduce the influence of strain gradient and
increase the sensitivity of the measurement.

The method used to make a cut of increasing depth has evolved from saw-
ing [71, 72], milling [11, 15, 16] to electric discharge machining (EDM) [38].
Sawing and milling are universally available but the cutting may introduce
unwanted temperature increase and plastic deformation near the bottom of
the cut. To reduce the effect of clamping force on the measurement, the plane
of cut should be located sufficiently away from the fixture. A precise measure-
ment of the depth of cut is more difficult when sawing is used. Furthermore,
the release of a compressive residual stress may produce significant “binding”
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on the cutter to cause breakage, which often terminates a measurement prema-
turely. Electric discharge machining makes a cut without applying any forces,
which minimizes the clamping force required to secure the specimen. For wire
EDM, the location and depth of cut can be controlled precisely and cutting
can be resumed in most cases after rethreading the wire if it breaks. For near
surface measurement on a curved surface, conventional EDM is uniquely qual-
ified to make a cut of nearly uniform depth, as shown in Fig. 2.7B, using a
sheet of electrode that has a profile matching the curved surface. Because the
electrode wears out gradually during cutting, the measurement of cut depth
needs to be calibrated carefully for a given material and a given set of cutting
conditions. The use of EDM has two main limitations:

1. It only cuts electrical conductive materials;
2. It is not portal for field applications.

There are two situations that require special attention during measure-
ments. When a thin cut is made by a wire through a region of high com-
pressive stress, the deformation due to releasing the stress may be so large
that the faces of cut become in contact, which invalidates the assumption
of the superposition principle. This situation can be corrected easily by cut-
ting backward to remove the material in contact. On the other hand, a thin
cut in a region of high tensile stress may initiate crack propagation near the
tip of the cut, which terminates the test prematurely. In spite of these lim-
itations, EDM remains the best method for making a high precision cut of
progressively increasing depth for electrical conductive materials. For other
materials, however, a mechanical method of cutting has to be considered.

x
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for through
thickness
measurement

Locations
for near
surface
measure-
ment

(A) (B)

Direction of cutting

Electrode

Fig. 2.7. (A) Locations for strain measurement. (B) Use of EDM to make a cut on
a curved surface for near surface stress measurement.




