
Chapter II

Introduction to Basic Local Alignment Search
Tool

The Basic Local Alignment Search Tool or BLAST, as it is commonly
referred to as, is a database search tool, developed and maintained by the
National Center for Biotechnology Information (NCBI). The web-based
tool for BLAST searches is available at:

http://www.ncbi.nlm.nih.gov/BLAST/

The BLAST suite of programs has been designed to find high scoring
local alignments between sequences, without compromising the speed of
such searches. BLAST uses a heuristic algorithm which seeks local as
opposed to global alignments and is therefore able to detect relationships
among sequences which share only isolated regions of similarity (Altschul
et al., 1990). The first version of BLAST was released in 1990 and allowed
users to perform ungapped searches only. The second version of BLAST,
released is 1997, allowed gapped searches (Altschul et al., 1997).

The Purpose of BLAST

Why is BLAST so useful for biologists? It is not uncommon nowadays,
especially with the large number of genomes being sequenced, that a
researcher comes across a novel DNA or protein sequence for which no
functional data is available. Some basic information on the sequence is
necessary before a molecular biologist can take the new sequence into the

26

laboratory and perform meaningful experiments with it. It would, for
example, make the task of deciphering the biological function of a piece of
DNA much easier if it were known that the new sequence encoded a
metabolic enzyme or, indeed, a protein that is a putative member of a
superfamily such as an immunoglobulin, a kinase, etc. Conversely, if the
sequence was a Repetitive DNA Element, it would need an entirely
different approach for its study.

This is where the power of database searching comes in handy. The
principle aim of database searching, in general and with BLAST, in
particular, is to reveal the existence of similarity between an input
sequence (called 'query sequence') that a user wants to find more
information about and other sequences (called 'target' sequences) that are
stored in a biological database. This is usually the first step a researcher
takes in determining the biological significance of an unknown sequence.

Given the size of biological sequence databases maintained by NCBI
(the non-redundant set of sequences were estimated at 540 million residues
in 2004), database searches usually reveal sequences that have some
degree of similarity to the query sequence. These sequences from the
database that come up with similarities with the input sequence are
commonly referred to as 'hits'. Once such hits are found, users can draw
inferences about the putative molecular function of the query sequence. A
thumb rule for drawing inferences is that two sequences that share more
than 50 per cent sequence identity are usually similar in structure and
function. Under such conditions, the major sequence features of the two
sequences can be easily aligned and identified. If there is only a 25 per
cent sequence identity, there may be some structural homology, although
in such situations, the domain correspondence between the two proteins
may not be easily apparent. It is also generally accepted that sequences that
are important for function (and therefore, for the survival of an organism
or species) are generally conserved.

An example where a database search resulted in an important discovery
was the finding reported by Doolittle et al. (1983) of the similarity between
the oncogene, v-sis, of Simian sarcoma virus (an RNA tumor virus) and the
gene encoding human platelet-derived growth factor (PDGF). The v-sis
gene was the first oncogene to be identified with homology to a known
cellular gene. This discovery provided an early insight into the critical role
that growth factor signaling plays in the process of malignant
transformation. Another example of the value of database searching was

Introduction to Basic Local Alignment Search Tool 27

the discovery that the defective gene that caused cystic fibrosis formed a
protein that had similarity to a family of proteins involved in the transport
of hydrophilic molecules across the cytoplasmic membrane (Riordan, et.
al., 1989). Cystic fibrosis is the most common inherited disease in the
Caucasian population and affects the respiratory, digestive and
reproductive systems. It is now known that mutations in the cystic fibrosis
gene lead to loss of chloride transport across the cell membrane, which is
the underlying cause of the disease.

Performing a BLAST Analysis

Before we can build a BLAST application, we need to understand how
BLAST searches are performed using the NCBI BLAST service. BLAST
is actually a suite of programs - the particular choice of program(s)
depends on the type of input sequence (amino acid or nucleotide) and the
type of the database to be searched against (protein or nucleotide). The
most commonly used search programs and their applications are described
in Table 2.1.

28

Table 2.1. BLAST programs

Program
BLASTN

BLASTP

BLASTX

TBLASTN

TBLASTX

Comparison
DNA vs. DNA.
Compares a nucleotide query
sequence against a nucleotide
sequence database.
Protein vs. Protein.
Compares an amino acid query
sequence against a protein sequence
database.
DNA vs. Protein.
Compares a nucleotide query
sequence translated in all reading
frames against a protein sequence
database.
Protein vs. DNA
Compares a protein query sequence
against a nucleotide sequence
database dynamically translated in
all reading frames.
DNA vs. DNA
Compares the six-frame translations
of a nucleotide query sequence

Application
Find DNA sequences that
match the query

Find identical (homologous)
proteins

Find which protein the
query sequence codes for

Find genes in unknown
DNA sequences

Discover gene structure.
(Find degree of homology
between the coding region

against the six-frame translations of of the query sequence and
a nucleotide sequence database. known genes in the

database.)

In summary, the available BLAST options are:

1. For nucleotide sequences: BLASTN, BLASTX and TBLASTX

2. For amino acid sequences: BLASTP and TBLASTN

In the simplest case, we need the following pieces of information to
perform a BLAST search using NCBI's web-based service
(http://www.ncbi.nlm.nih.gov/BLAST/):

1. An input query sequence (this can be a nucleotide or amino acid)

2. The database to search against (this can be a nucleotide or protein
database)

Introduction to Basic Local Alignment Search Tool 29

3. A database search program (any of the five available BLAST
options)

Additional parameters such as the matrix and E-values also need to be
set. Once the user submits the necessary information, the BLAST engine
responds with a message informing the user that the request has been
successfully submitted and placed in a queue. The server also provides an
estimate of the time in which the results will become available for viewing.
The BLAST output itself consists of a header that provides information on
the specified BLAST parameters, the request ID for the search, the length
of the query sequence and the database used. Fig. 2.1 - 2.3 show the results
immediately after initial submission of and the output of a BLAST search
performed with the human cystic fibrosis transmembrane conductance
regulator (CFTR) mRNA sequence (gi: 90421312). Fig. 2.1 and Fig. 2.2
show the request ID (RID) that uniquely identifies this particular search
job that was submitted to the BLAST queue. We will learn more about
RID in Chapter 3 when we build the functionality to perform BLAST
searches using the NCBI QBlast service. Fig. 2.2 provides a view of the
header information present in the BLAST search results.

Below the header is a line up of sequences from the selected database
("hits") that match the query sequence along with the number of matches
found (Fig. 2.3). A mouse-over on the first line reveals information on the
origin of the sequence (for example, whether it is a human or a mouse
sequence, the name of the gene, if known) and the score (Fig. 2.4).
Sequences on the top are more significant (have better matches to
sequences in the database and thus, have higher scores) than those at the
bottom (lower scores).

30

• • i i g i t i i i g i i i i i ^ ^
He Edit View Go BcioVms&s loch tJe^

• ^Zf ' * N |] * % hc!.p://w/w.ncb.rJni.r«i-i-9>//W6se/EsaK.a "^ i!j^ Go *|Gj

iiiiiti
TaisliliKin Htlnwi rssula for m Rll

I Yo5.¥ request lus beert raccessMy sifcoiitted md put ifito the Blast Queue.

I Qiiey = g3j90421312 ('*> 132 ktrers)

S Tl-ie request I D is ;11 ̂ 3815834-25871-07^819-1810 BL^STCM

; Th^ results >txti eslHialtd UJ be Tc-idy iji 10 si-t'niis hut may b^ dons soovin.

I f'JcasE iwes:; "FORIu'lATI" vAsdnfOV.'wish'.Ki cheshyiiunsstAs. Vp\iiii«y ehiuige Ihe foimaiimg oplicns for
j ypursesiiStvklhf fctimUHow^KiffSSs "FORMATI" f.g#:̂ Totiiuaxe aSsoteqU'SsE ifi'Siits K'Fi$ iWt:m-A stmch
i i;,y ^nteruig. any othai valid ic=(|̂ iesi ID to s:;e slherfecwil jobs.

Fig. 2,1. Submission of a sequence to the BLAST queue

HI»itisJill4»liiiiWili4.iawiliJtw

air-- .••• ••
f ; V .::t::.:;o . tr

' BL\STJI2.:.14 rM«v-G".2(106']

I .3ingS,-.;i Ehsiwj, ZJî sn^ Zh'&ng, S-d-jh Uill-ii, «;EI David J . Lipiiisft
I 119371, "Gapied BLAST sh'.l P3I-1I*ST: a mw asriec!,E.ioi< o£
I pro&nir. c!;4CM:.̂ -*se st&rsh pr-^araws", Hii^riciir A -̂3cl3 I'esr. iS;j&3S ,i'lCC

I HiP: iii9S':&sj'!-.:^rn-a-'Si;'.'^-j:ii.&.Pi*3-fo^

5,:,^,,_7^-s ^c•'tt|«^,ce'^.- 17,333,791,7!S r...nca; l e t t e s r j

r.i.-1..!...•!..•; r - •..•! I":

criiKi-:.:caH!:i; r^a'-is^'f.'f, ^Tl'-bjr.f!!ii;i ci-rs'.^vrc; (.'."ib-r.'^i"! Iv '". ^'Mrjuji* 7t

!.(:r,«>:h-!:U.':

Fig. 2.2. Header information in BLAST search results

Introduction to Basic Local Alignment Search Tool 31

|tj i i i;i| ifi j j i l l,i#lii ipii[fi lt»jicif^

t e g u j a c i c , *TE'-bis=iiiig ;

h.m!lw.'»»-f>ii».'^.s^'.^>^P2hsi^&sdi:ic0*'iOiZiM2

Fig. 2.3. Alignment of BLAST hits to the input sequence

: :i|iiliiMi«,iiiilli|^fSiiliit*

:.^.j ' L] " ^ • ^ -/.--J K | 1 ; i httpj//wwA.nd3inlfTi.rih_^gDv/Wast/fe?tcg!

0
^S «3 Go i i U

Sequ. i j r o d ' J C l n o a l g r . i l l c a n t i a l l o t i m e o t s

£-j*i r.n 519310.

3J-.L^SSli2ii---*.£.?.?.Ly^-l!£.l"d-L'21 H " ^ « s a p i e n s f^yst- tc f i f o r o g i s t r

g,r,,!,,l^'^:^,?,l,l,3,^!:l^--°'^-'y-'3.-..-^.l."^^-^'.'^^" H!xr.sii c y s t i c f i b t r o s i s laPJiA, e

PBEt'TCTED: P a n c r o g l o d y t e s s i i s i

C v s t e i d e - t r s K hCFTP itt pGEKttE, CD;

^^1-Tf j.'Sg-jZ'l j rctiL'TM 0 0 i o 3 2 9 3 8 . l i E iacaca iisxiiact-a c v 3 i : i c f i f i r o s J.T6-I2']i EcIIL'TM 0 0 1 0 3 2

i : 3 0 ^ 7 1 7 0 1 g ^ | A F 0 1 3 . ; : A r a i 5 7 S '

s^?imii_^I!i:

^U7>=a|c-?r |HK n o

s c i e : filiL-o

Su.? s e r o s a t -yar i c t i t r o s i a t r a u s i i e

r i .^;^720 O t y c t o l - a g u s c u n i c u l i i s c b i ^ t "

^rs. j I C a m s f a j i i l l i a r i s

73 l e i I g b t i r T 6 0 4 2 3 . 1 ! Can i s i :

S € i C flBL-i

i n s c ^ s t :
y c t o l & Q U S c n n i c u l u s CfTK

L - l l B 9 ^ . I C c l . l 6 | «
e , | * 9 5 4 o l -) 0 | g l . .
r . i i a s i w S j J ' H t b
g i | & S - : . 1 5 7 T | , | -

(5 1 | S - ; - , i < J 7 . 5 | o t

; , . | ^ ? : - i ? . l E S I , i l .

2 l J i ! z J < " l : ' ' " •) • • • :

! .03e813- t

Si!?«9ii'
DO) 5?;.! CO
00.15MKSI

s-Xiiwm

i>^''«*'!ii

.11

.11

. M

.11

.11

.11

.11

.11

.11
11

Hc-rnD s a p i e j i s BAC
Hoa-o s a p i e n s i s i
Kon*3 s a p i e n s i s o i i a t e
Uoido s a p i e n s l a o l a c e
Hoim s a p i e n s l a o l a & e
KoiitK? s a p i e n s i 3 0 l - s e e
Uotv£j s a p i e n s I s o l a t e
Kouc- s a p i e n s I s o l a t e
Hone s a p i e n s i s o l a t e
HouiO s s p i e n s i s o l a t e
HotrC' s a p i e n s i s o l a t e
H a o o s a p i e n s i s o l a c e

irciitc
HoisiO i<apieriS« i s o l .

l a t e c i \ : t - l l589__A
C-i;!:rl3838___B
cIt;L-lI5Zl__A
cft .L-lt37b__B
c - f e r l l S S l ^ A
ctci :10376__A

c±ct-13B3B_A

u£i,E. I137-?.__g
c f c t l l S 2 1 _ &

chlOC

Fig. 2.4. Definition of database hits

•
H

B

i lB

32

Developing the SwingBlast Application

Now that we understand the significance and the working of the BLAST
engine, we can begin our journey into the world of Java development by
building a BLAST application, which we will call SwingBlast, from the
ground up. In this Chapter, we will create the user interface elements using
Java Foundation Classes or JFC, also known as Abstract Windowing
Toolkit (AWT) and Swing classes. In Chapter 3, we will write the actual
code to run the BLAST searches based on the NCBI BLAST engine. In
each case, we will build the application in an iterative fashion thereby
demonstrating a step-wise approach to building software - creating a basic
program structure or framework and adding bits of code in an incremental
fashion to enhance its functionality.

The steps for building Java applications from a software engineering
point-of-view are as follows:

1. Develop use case scenarios

2. Define software modules

3. Define classes

4. Write the Java code (business logic)

5. Run and analyze output

We will begin by creating use cases that define the actions that a user
may wish to perform on the application and the behavior that a user
expects from the application in response to those actions. Use cases,
simply stated, are individual scenarios that allow software developers to
layout the behavior and functionality expected of the software. To create a
Java based BLAST application that allows users to submit sequences and
to retrieve the results of the search operation, we can envision the
following use case scenarios:

1. User provides input information to the application

2. User submits the input information to the NCBI BLAST server

Introduction to Basic Local Alignment Search Tool 33

3. The application displays the selected BLAST results in graphical
format

Fig. 2.5 provides a UML diagram that describes the interactions
between the user and the application. The specific details about the
expected input and output are as follows:

1. User provides input information to the NCBI BLAST engine: The
input data can be a sequence or, if available, the corresponding
sequence id from GenBank® (an annotated repository of all publicly
available DNA sequences maintained by the NIH), which uniquely
identifies a sequence within the GenBank database. The application
behavior in either case is as follows:

a. The input information is a nucleotide or protein sequence: In this
case, after the sequence information is provided, the application
automatically recognizes the sequence type, loads it in the Fasta
format (Fig. 2.6) and presents the appropriate valid BLAST
options (for example, BLASTN for nucleotide and BLASTP for
protein etc., as explained in Table 2.1). The invalid BLAST
options are disabled.

b. The input information is a valid GenBank id (also called the GI
number). In this case, the application downloads the sequence
from GenBank and displays it in the appropriate format as stated
above.

2. User submits the sequence to the NCBI BLAST server. Once the
sequence becomes available to the application (either directly
supplied by the user or downloaded from the GenBank id), the user
selects the necessary BLAST parameters (the type of BLAST
program, the database, the matrix, the E values, etc.) and hits the
"Submit" button. This sends the sequence to the NCBI BLAST server
for the search operation.

34

ProyiiJciiirArfiiitoiTnaHoritothea|>plica(iaii

3ubml Bfc a jq iwi i iB to the HCBI BLAST servw

Disftay the BL.A;5T i"e:su» in a yixi|ihital tamat

Fig. 2.5. UML diagram for the SwingBlast use cases

The last use case ("User wants to browse the BLAST results in a
graphical format") arises from a need to view the BLAST output, that is,
the list of sequences from the database that matched the input sequence in
a graphical and interactive fashion.

Koador o n i r s l line beg inn «!ig with a ' '> '-symba!

Sequer iM Bsgr in ing f rom s e ^ n d !,ne

jATTnCi,i i :r i .«A-i-sCATCA:A(XAGCTCAOAGAiiAACXTT"ACtWCiOXACCCI.uiGTiCTAG'
TCTTTW:ATT;»GGiG':Tr5»GCiXfc3J,C*KX:CTi5;CA'553iC:CCAX&;D:GAC>iiS/.0:A:GCtJAa
CTti:cCTCTa;«li,A3COV««C'S1TbtCTKAfcAClTITI~TtAa:TG.SiO;M3ACC
iK!i7trIG'„•'. l'V.x:C::'r4\i.»TTCTr ki'.kf ATi>TiC!;Ai,*7C-rrTlTTC,TTai,TTCT.rXTGiCA,'iTC"W
CTCAA A i AT7K.A '„ ,V7 i!:-,',ATiy.6AT,'iC4GACCTQ:,:TtC», AJGI. AAAiTCCTAAACTC ATT f, hT^C CCT
lCa;CG/tTi;:T-T:TCT«AGATTritGTTCT,WGQAiTCiTTrT4TATTTA&30aACHCACCl/,A;CA
bTACAt=i:r1\:i-::TlACT&;i4AGAATCATAO:T1~:crA:GiCO:jJA1'tiCAi.Gi^AG3AA&XX~^
CC.i;TTTATCTA3iCAIA9:.CTTAT.XCTrCTCTTriTT-;TC5i5GACj;CTiGCTCCTACAr.XAG.:CftTTTT
TC.w:j:TTCATi"AC,,TTGr.AATl>C*C.«C.\G*ATAC.CT«GTTTA-,TTTCn\TrrATAiGi«r,ACTrr.',AS-.
CTC.TC,UV:.CCGTG:TCTAGATAAAATAAC-TATIGC4rtiAC:T5TriGTeTCCTTTCC.AACtt.'iCCTC-iiG<,
AAitWjitGAiiG*crr&:Ariiii:/;AC«iTcGKT3G«-CGtTLerrittAAG'naK;*:i"x-CA-raii
GITAATCTGGGiGTTi—TiCAr#:,GGTCTiiCCTTr;rG:G5ACTlir.r.TTTr£TGAT44T:ir-rj:rcrTTTT

Fig. 2.6. A sequence represented in Fasta format

Introduction to Basic Local Alignment Search Tool 35

Designing the SwingBlast Java Application

The SwingBlast application involves data input from the user (the
sequence or the GI number which identifies the sequence), manipulation of
the input data ("BLASTing" the sequence against the selected databases),
and visualization of the results of the database search (the BLAST output).
Clearly, there are different parts to the application each of which performs
a different function. We will follow the MVC framework we described in
Chapter 1, while designing the various pieces of functionality of the
SwingBlast application.

In line with the incremental approach to building the SwingBlast
application, we will as a first step, create the basic framework application
that will perform two basic functions - allow users to input a nucleotide
sequence to the application and to format it in the Fasta format. The
structure of the Java application we will build is shown in Fig. 2.7 below.

Dir«tory to store project files

SwingBlast
Java packages

-src
Java class definition files
(sbDred as Java fibs)

SwingBlast
- SwingBlastl.l
- SwingBlastLZ
- SwingBlastl.S

- SwingBlastl.n

Fig. 2.7. Layout of the SwingBlast application

As depicted in Fig. 2.7, we define a project directory called SwingBlast
to store the project files. We create a src (source) directory, in which we
will create the packages org, org.jfb and org. jfb.SwingBlast to
provide a default hierarchy for the class files. This layout also helps to
group the necessary functionalities of the application, for example, by
placing all the GUI classes in the SwingBlast package, all the source code
files in the src directory and so on . SwingBlastl.l, ..., l.n, etc., are the
Java class definition files, where the numbers refer to versions of the

36

software as we build functionality step-by-step. For the SwingBlast
application, the package name we will use in our Java class definition files
will be org. jfb.SwingBlast. After the package is declared, we name any
import statements to be included in the program. Import statements load
the classes that encapsulate functions necessary for the application to run.
Since classes are contained in packages for the purpose of grouping
common functionalities together, entire packages may be imported, if
necessary. By using wildcards with import statements for example,

import j ava.awt.*;

we can ensure that all classes in the AWT package, which provide the
Java graphical user interface elements, are available to the application.

As we mentioned earlier, the SwingBlast application takes data input
from the user and responds to the input by taking appropriate actions. To
make the application respond appropriately to user initiated actions, we
need to add what are known as event listeners to the code. This
functionality allows us to add events to menu buttons that respond to
simple actions such as clear user input or quit the application, etc., as well
as complex functionality, some of which we will demonstrate in this
Chapter. To begin with, we will learn the basics of the Java event model
and see how to add events and event listeners in the next few sections.

Java Event Model

The Java Event Model is based on the Observer design pattern also
known as the Publish-Subscribe design pattern and a delegation model
that allows a source to propagate an event to the relevant observer. The
Publish-Subscribe design pattern is based on the Observer pattern where
the Observer object listens for events from the Subject object. The Publish-
Subscribe design pattern is similar to the Observer design pattern except
for additional element called the Event Channel that separates the
Observer (called Subscriber in the Publish-Subscribe design pattern) and
the Subject (called Publisher in the Publish-Subscribe design pattern). The
Event Channel performs the role of a messaging hub to broadcast events
from Publishers to all the associated Subscribers.

Java uses what are known as EventListener objects to listen to changes
to AWT or Swing components. Under this model, observers can be

Introduction to Basic Local Alignment Search Tool 37

registered to listen to an object via Listener methods depending on the type
of the listener or the kinds of events one is interested in. The general
format for such methods is addxxxLis tener() , for example,
addMouseListener(MouseListener 1), which is a method to listen to
any mouse event generated by the object the listener is registered to. The
listener object provides a callback method that is called by the object that
is generating the event. The callback method will have the appropriate
parameters that define such data as the source (for example, JButton,
JPanel, or a main window, etc.) and type of event (for example, a mouse
click event, or a focus event when selecting a particular Swing component
or an action event, like pressing a submit button).

In Java, all events are executed in the same thread as the window
painting event (via p a i n t {)). This thread is called the event-dispatching
thread. For this reason, code in an event listener should be fast to execute
to avoid interference with the drawing events.

Two types of events are defined in Java: low-level events and semantic
events. Low-level events represent system related events that emerge from
objects such as mouse and keyboard, etc., while semantic events arise from
operations such as clicking on a button, selecting a text in a drop down
box, etc. Depending on the situation, it is advisable to listen to semantic
events whenever possible since they are more specific in nature - for
example, listening for a button event inside the component that contains
the button, rather than a mouse event, which can occur outside of a
component.

Adding Events to Applications

To add events to applications, we will need to add two import
statements at the beginning of our code:

import j ava.awt.event.ActionEvent;

import Java.awt.event.ActionListener;

These Java packages provide the classes that are needed for triggering
and handling events. Let's take the example of making the SwingBlast
application respond to actions initiated by the user by clicking on the Quit
button under the SwingBlast Menu. To create the Quit button, we create

38

an object called qu i t l t em of type jMenuitem with the following piece of
code:

quitltem = new JMenuitem("Quit");

To associate quitltem with a mouse click event that leads to closing the
application, we first instantiate an ActionListener. Next we register the
new listener to receive events from this button by calling the button's
addActionListener method:

qui t l tem.addAct ionLis tener(new Act ionLis tene r () {
publ ic void actionPerformed(ActionEvent e) {

Sys t em.ex i t (0) ;
}

}) ;

Actions triggered by mouse events such as a button click will also call
the actionPerformed method from that listener and pass it an
ActionEvent object as shown in the code above. That ActionEvent object
contains all the properties of this event. In the early days, in C, you would
have to catch the system interrupts and analyze the interrupt number
received to figure out the type of event (viz., a keyboard or a mouse action
or a USB port sending or receiving information, etc.). In Java, Swing does
that for you by encapsulating all the hardware interactions into its event
framework. This is undoubtedly much easier and means less work for the
Java coder. Inside that actionPerformed method, all we need to do is to
simply read the ActionEvent properties and code the appropriate action to
respond to the event.

The code to handle events associated with the clear button is
constructed in a similar manner. The text box to enter sequences was
earlier created as an object of type JTextArea using the code:

sequenceArea = new JTextArea();

The event handling code for the clear button is similar, except that the
exact action specified is that the text in the sequenceArea box is set to
nothing (""):

clearButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

sequenceArea.setText("");
}

});

Introduction to Basic Local Alignment Search Tool 39

Designing the SwIngBlast GUI

We can now create the first version (1.1) of the swingBlast application.
SwingBlast version 1.1 will have a text box to enter sequence data, a
Clear button to delete the entered sequence and a menu bar for quitting the
application (Fig. 2.8).

Swinrini'i:.!

Oiiil

Sl.'lllll.'ll! I>

Clear

Fig. 2.8. SwingBlast Version 1.1

Let's now write the code that will create SwingBlast version 1.1. At the
most basic level, our code will look like Listing 2.1.

Listing 2.1. Coding SwingBlast version 1.1

package org . j fb .SwingBlas t ;

import javax.swing.*;
import j ava.awt.*;

public class SwingBlastl_l extends JFrame {
private static final String APP_NAME = "SwingBlast";
private static final String APP_VERSION = "Version

1.1";
private static final Dimension APP_WINDOW_SIZE = new

Dimension(500, 300);

private JComponent newContentPane;
private JTextArea sequenceArea;
private JScrollPane scrollPaneArea;

40

private JButton clearButton;
private JMenuItem quitltem;

public SwingBlastl_l() {
super(APP_NAME + APP_VERSION);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
newContentPane = new JPanel();
newContentPane.setLayout(new BorderLayout());
setContentPane(newContentPane);

JMenuBar menu = new JMenuBar();
JMenu swingBlastMenu = new JMenu(APP_NAME);
quitltem = new JMenuItem("Quit");
swingBlastMenu.add(quitltem);
menu.add(swingBlastMenu);
setJMenuBar(menu);

// The sequence pane
JPanel sequencePanel = new JPanel();
JLabel sequence = new JLabel("Sequence");
sequenceArea = new JTextArea();
sequenceArea.setLineWrap(true);
scrollPaneArea = new JScrollPane(sequenceArea);
sequencePanel.setLayout(new

BoxLayout(sequencePanel, BoxLayout.LINE_AXIS));
sequencePanel.add(sequence);
sequencePanel.add(Box.createRigidArea(new

Dimension(10, 0)));
sequencePanel.add(scrollPaneArea);

sequencePanel.setBorder(BorderFactory.createEmptyBorder(10,
0, 10, 0));

//Lay out the buttons from left to right
JPanel buttonPane = new JPanel();

clearButton = new JButton("Clear");

buttonPane.setLayout(new BoxLayout(buttonPane,
BoxLayout.LINE_AXIS));

buttonPane.add(Box.createHorizontalGlue());
buttonPane.add(Box.createRigidArea(new

Dimension(10, 0)));
buttonPane.add(clearButton) ;

JPanel jPanel = new JPanel();
jPanel.setLayout(new BorderLayout());
jPanel.setBorder(BorderFactory.createEmptyBorder(0,

10, 10, 10));
jPanel.add(sequencePanel, BorderLayout.CENTER);
jPanel.add(buttonPane, BorderLayout.SOUTH);

newContentPane.add(jPanel, BorderLayout.CENTER);
newContentPane.setPreferredSize(APP_WINDOW_SIZE);

Introduction to Basic Local Alignment Search Tool 41

//Display the window
pack();
Dimension screenSize =

Toolkit.getDefaultToolkit().getScreenSize();
setLocation((screenSize.width

APP_WINDOW_SIZE.width) / 2,
(screenSize.height

APP_WINDOW_SIZE.height) / 2);
setVisible(true);

}

public static void main(String[] args) {
SwingUtilities.invokeLater(new Runnable() {

public void run() {
final SwingBlastl_l view = new

SwingBlastl_l();
}

});
}

}

As described earlier, we begin by declaring a package, which in this
case is named after the swingBiast application that we are building. The
common prefix j fb is short for Java for Bioinformatics. Since we are
creating a Swing based GUI to manage sequence input and analysis, we
have named the class "SwingBiast". The suffix 1_1 at the end of the class
name reflects the fact that this is version I.I of the SwingBiast
application.

A simplified general format of the class declaration is as follows:

class_modifiers class <class_name> extends <superclass_name>
{

/* l i s t of c l a s s da ta f i e l d s */
/* l i s t of c l a s s methods */

}

In our case, the modifier for the SwingBiast i_i class is public which
means other methods or classes outside of this class may access this class:

public class SwingBlastl_l extends JFrame {

}

By convention, there can be only one public class in a Java file; further,
the name of the Java file must match the name of the public class. For this

42

reason, the code in Listing 2.1 must be stored in a file called
SwingBlastl_l.Java.

Note the use of the extends keyword in the class declaration. The
extends keyword indicates that the swingBlast i i class inherits methods
from the class JFrame. In object oriented terminology, SwingBlastl_l is
called the sub or child class while JFrame which it derives from is called
the parent (or super) class. The extends keyword obviates the need for
instantiating JFrame separately in the swingBlas t i i class to access its
methods. Inside the SwingBlastl_i class, we can call any of the methods
available in the parent JFrame class.

JFrame is a Swing container that serves as the top-level or main
application window. Top-level Swing containers provide space within
which other Swing components can position and draw themselves. Swing
components are also called "lightweight components" because they are
written in Java versus AWT components or "heavyweight components"
which are native components (written in C or C-I-+, etc.) wrapped into Java
classes. It is important to know what class of components are being used.
As a rule of thumb. Swing and AWT components should not be mixed or
used together in the same application, as this may lead to unpredictable
behavior during repainting, and may make the application hard to debug.

The Swing framework provides a mechanism for interactions with
individual components through event handling. This is what the two
import statements at the top of our code in Listing 2.1 do:

import javax.swing.*;

import j ava.awt.*;

The first package provides a set of lightweight components while the
second contains all classes for dealing with graphics, events, images, etc.
Fig. 2.9 shows the superclass hierarchy of the JFrame class where each
subclass is shown below its parent class. According to this scheme, the
JFrame class is derived from the Frame class, which in turn is derived
from the Window class and so on. The Frame class defines a top-level
window with a title and a border and has methods such as getTitle,
se tTi t le etc., which respectively get and set the title of the frame. By
definition, the JFrame class derives these methods from the Frame class
(and other superclasses). Every main window that contains Swing
components should be implemented with a JFrame. Examples of other

Introduction to Basic Local Alignment Search Tool 43

containers are JApplet, JWindow and JDialog. In our application, JFrame
will serve as the top-level container. JFrame in turn will provide the
framework to contain other components like for example JPanel, JButton
and J Menu, etc.

java.lang.Object

' • java.awt.Component

' y java.awt.Container

I *- Java. awt.Window

! f Java. awt. Frame

I ^ javax.swing.JFrame

Fig. 2.9. Class hierarchy of the JFrame class

The next three lines of code define constants for setting the name
(swingBlast), Version (1.1) and the window size (500 x 300 pixels) of the
application. We will use upper case names separated with underscores '_',
as a naming convention for our constants :

private static final String APP_NAME = "SwingBlast";

private limits the accessibility of the variable called APP_NAME to other
objects within the same class. The keyword Static means that the value of
the variable is shared by any object of that same class (this also defines
what is known as the class variable). This means that if one object
modifies it, the other object can see the new value. A non-static variable,
on the other hand, is modifiable only by the object instantiated from within
the same class. The keyword final means that the variable cannot be
changed and therefore it is a constant. The constants APP_NAME and
APP_VERSiON are of type String as indicated in the code. To summarize,
APP_NAME is a constant accessible only from within the class and it has the
same value for any object belonging to this class.

The next 5 lines declare Swing components of the types JComponent,
JTextArea, JScrollPane, JButton and JMenuItem respectively. All Swing
components (except top-level containers) whose names begin with "J" are
derived from and inherit from the JComponent class such as JTextArea,
JPanel, JScrollPane, JButton, and Jmenultem. JComponent is thus the
base class for all these Swing components.

44

The next line:

public SwingBlastl_l() {

defines the constructor for the SwingBlastl_l class. Note that it is
declared public, has the same name as the class itself and does not return
anything. The swingBlas t i i constructor also does not accept any
parameters and therefore is the default constructor for the swingBlas t i i
class.

The super keyword in the SwingBlastl_l constructor calls the
constructor of the superclass (hence the use of the term "super") - which
in this case is JFrame, since swingBiasti_i "extends" JFrame. Next it
passes the String variables APP_NAME and APP_VERSION to the JFrame
constructor to set the name and version of the application. The description
of the JFrame constructor that is used is shown below. This information is
available from the Java 2 API documentation (Fig. 2.10).

lU iS t^Um ^.Wl-^lteilpi PlnrtiJi, i § a
tfe m Htm ^ ^iAf-wi-i l<>sb. Ueb

Java 2 Piatlorm
Stsnilafi i Ed. 6.0

jjjoftfejfeilif

i:!lgii&22i±ai!IS*I:

jCoffi3g|3oj-

•{p.gJ4i;:if i e

mm
J--MiBtt?.rf»lF;Blg»SiKg

m J=r<aim Cfcva Z WaSlorin SI S.Q>

© <k3 a

Constructor Detail

-•!i5in;;lor seis the î oaij-oa.ent's locale pnpr^j lo iiis faliie fetunie'! ŝ y JC-jR.f(ones;i; genteK^sCELoi

CrealBj i ?K«!iwci ftie ^?:ci6'-fJ %«pi5ic '̂~<5-tf ^tgnr-scinnof as.:Te«.'fcvice -iml ahfe

Tliit cx.:isSrufior s^U il:r coriif-otiî iii's locals propKl? to i)i5 v;,lue rsitaTiBtl by •iC&>vomii,

Pai-3IB?IS'IS::
yc - the Si-apl:ic5Ci:nf sgutuc

'Op^ftesl O P r̂̂ e-fflXis ^jH!#Ji#* Pt-feieii;»

I ihar k \is&i to £ I'Mtnicr tise nii.fiieryslwidefjiJ!

Fig. 2.10. Java 2 API documentation on JFrame

Introduction to Basic Local Alignment Search Tool 45

Name: JFrame(String t i t l e)
Descr ip t ion : Creates a new, i n i t i a l l y i n v i s i b l e Frame with

the spec i f i ed t i t l e .

The same result can also be achieved by explicitly setting the title as
follows:

setTitle(APP_NAME + " " + APP_VERSION);

The line:

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

uses the setDefaul tCloseOperat ion method from the JFrame class
which is defined as follows:

public void setDefaultCloseOperation(int operation)

and sets the operation that we want the application to perform by default
when the user attempts to close the frame. We have specified the operation
to exit the application by using the EXIT_ON_CLOSE option.

Coding the SwingBlast GUI

The general scheme for creating and adding Swing components to an
application consists of the following steps:

1. Create an instance of a top-level container such as Jframe
2. Use a layout manager to specify the location and size of the

components
3. Specify the top-level container's content pane to hold the individual

GUI elements

To begin with, we create an instance of the JPanel class (called
newContentPane), which defines a generic container as the top-level
container. We will use this container to hold our GUI elements.
Components are positioned inside a top-level container using what are
known as layout managers in Java. The area within a top-level container
where individual components (labels, buttons, etc.) are placed is called the
content pane. To specify the content pane of the newContentPane
component as the content pane for storing the visible elements of the

46

SwingBlast application, we use the top-level container's setContentPane
method:

newContentPane = new J P a n e l () ;
newContentPane.setLayout(new BorderLayout()) ;

setContentPane(newContentPane);

Here we have used the BorderLayout layout manager to align and
position the components. Next we add the menu bar (called swingsias t)
and a single menu item ("Quit"):

JMenuBar menu = new JMenuBar();
JMenu swingBlastMenu = new JMenu(APP_NAME);
quitltem = new JMenuItein("Quit");
swingBlastMenu.add(quitltein) ;
menu.add(swingBlastMenu);
setJMenuBar(menu);

Note that components are added using the add method as shown here for
the SwingBlast menu:

menu.add(swingBlastMenu);

Next we create the sequence pane and add a component called
sequenceArea of the type JTextArea that simply defines an area for
entering text:

// The sequence pane
JPanel sequencePanel = new JPanel();
JLabel sequence = new JLabel("Sequence");
sequenceArea = new JTextArea();
sequenceArea.setLineWrap(true);
scrollPaneArea = new JScrollPane(sequenceArea);
sequencePanel.setLayout(new

BoxLayout(sequencePanel, BoxLayout.LINE_AXIS));
sequencePanel.add(sequence);
sequencePanel.add(Box.createRigidArea(new

Dimension(10, 0)));
sequencePanel.add(scrollPaneArea);

sequencePanel.setBorder(BorderFactory.createEmptyBorder(10,
0, 10, 0));

To provide scrolling capabilities inside the text area (especially for large
sequences), we have associated the JScrollPane object with the
sequenceArea. The c l e a r button is added in a similar fashion. Finally, we
add the main() method to the program. The main() method actually

Introduction to Basic Local Alignment Search Tool 47

performs the job of creating an instance of the class and running the
application. The Java Virtual Machine (JVM) calls this main () method
when we pass the class name to it. Every Java application must contain a
main() method whose signature looks like this:

publ ic s t a t i c void main(S t r ing[] args) {
/ / s t a t emen t s ;

}

The JVM would eventually complain about a class if the main() method
was missing. The simplified general format for a method in Java is:

method_modifier r e tu rn_ type method_name (arguments) {
body of the method;

}

In our case, the method looks like this:

public static void main(String[] args) {
SwingUtilities.invokeLater(new Runnable() {
public void run() {

final SwingBlastl_l view = new SwingBlastl_l();
}

});
}

}

The line:

SwingUtilities.invokeLater(new Runnable() { }

indicates that the painting of the GUI takes place in a separate thread
(the AWT thread or the event-dispatching thread) and is a way of
separating the GUI processes from the business processes (such as a
BLAST operation) as strongly advised in the Java guidelines.

A thread is a process that is capable of running concurrently
alongside other threads or processes.

The event-dispatching thread is the thread responsible for handling
events and repainting of components. It is therefore very important
to avoid any running heavy resource consuming code in the event-
dispatching thread.

48

The keyword Runnable defines the type of object that will run in a new
thread. The invokeLater() method causes the event-dispatching thread to
call the run() method of the Runnable object which is passed to
invokeLateri) method after all pending events (such as repainting a
component, etc.) are processed. The run() method of the Runnable object
is in charge for creating a SwingBlast object through the constructor
method of SwingBlast, which in turn performs all the specified actions,
such as creating the top level window, setting its name and laying out the
GUI elements, etc.

Compile and run the code shown in Listing 2.1. As you will notice, the
basic framework as described above does not do anything useful apart
from displaying the graphical interface as shown in Fig. 2.8. The only
events the application can respond to so far are the default Minimize,
Maximize and Close operations through icons located on the top right of
the application window.

Coding the SwingBlast Business Logic

We will begin the process of building the business logic into the
application by adding code that will format the user entered sequence into
the commonly used Fasta format. We will simultaneously add code that
will calculate and display the size of the input sequence. We will then
incorporate a simple algorithm to determine the sequence type - that is, if
the user entered sequence is nucleotide or protein.

The Fasta format as defined earlier contains a header that begins with
the greater than symbol (>) and contains information about the sequence
such as sequence identifiers and size, etc. (which may be delimited by
separators such as vertical bars or spaces) on the first line and is followed
on the second line with the actual sequence (Fig. 2.6).

So how do we get the sequence entered in the text area to rearrange
itself in the Fasta format? As with any programming language there are
more than one ways of achieving this. We will use a method based on
Focus events to implement this. Focus events are triggered whenever a
component such as text area gains or loses focus. Focus events associated
with a particular component can be obtained by registering a
FocusListener with the component. When the component gains or loses

Introduction to Basic Local Alignment Search Tool 49

focus, the relevant method in the listener object (focusGained or focusLost,
respectively) is invoked, and the FocusEvent is passed to it. The general
method to do this is shown in Listing 2.2.

Listing 2.2. Adding Focus events and listeners to SwingBlast

sequenceArea.addFocusListener(new FocusListener() {
public void focusGained(FocusEvent e) {

}

public void focusLost(FocusEvent e) {
// add statements here

}
}) ;

We will design the code such that after a sequence has been added to the
text area, it will be converted into the Fasta format as soon as the text area
loses focus (for example, when a user navigates away from the text area to
another part of the application). Conversely, no action will be performed
when the sequenceArea component gains focus. We therefore want to add
program logic in the focusLost method, which gets activated after a
component loses focus, to achieve this. Listing 2.3 shows how to
implement this.

Listing 2.3. Programming the focusLost method

sequenceArea.addFocusListener(new FocusListener() {
public void focusGained(FocusEvent e) {

}

public void focusLost(FocusEvent e) {
// Retrieve the sequence in the text area
String seqText = sequenceArea.getText();

// Convert the sequence into Fasta format
String header = null;
int seqLength = 0;
String sequence = "";
String fastaSeq = "";

seqText = seqText.replaceAll("\\s", " ") ;
sequence = seqText.toLowerCase();
header = "> Sequencel";
seqLength = seqText.length();
fastaSeq = header + "|" + seqLength + "\n" +

sequence;

50

sequenceArea.setText(fastaSeq);
}

}) ;

For the header part of the Fasta sequence, we will add a generic label
(called "sequencer') to represent the name of the raw sequence entered by
the user followed by a vertical bar and the size of the sequence for the
purpose of illustration. Plug this into the main code and test the application
by pasting a sequence (such as the first few hundred bases of the CFTR
gene sequence shown below) into it.

AATTGGAAGCAAATGACATCACAGCAGGTCAGAGAAAAAGGGTTGAGCGGCAGGCACCCAG
AGTAGTAGGTCTTTGGCATTAGGAGCTTGAGCCCAGACGGCCCTAGCAGGGACCCCAGCGC
CCGAGAGACCATGCAGAGGTCGCCTCTGGAAAAGGCCAGCGTTGTCTCCAAACTTTTTTTC
AGCTGGACCAGACCAATTTTGAGGAAAGGATACAGACAGCGCCTGGAATTGTCAGACATAT
ACCAAATCCCTTCTGTTGATTCTGCTGACAATCTATCTGAAAAATTGGAAAGAGAATGGGA
TAGAGAGCTGGCTTCAAAGAAAAATCCTAAACTCATTAATGCCCTTCGGCGATGTTTTTTC
TGGAGATTTATGTTCTATGGAATCTTTTTATATTTAGGGGAAGTCACCAAAGCA

You will see that once the text area loses focus, for example, by clicking
on the SwingBlast menu, the sequence is converted into lower case and
formatted into the Fasta format (Fig. 2.11 and Fig. 2.12).

SiAiinyBlast

AATTGGAAGCAftATGACATCACAGCAGGTCAGAGAftAAAOGGTTGAGCGGC^
G 0 C AC C C AGAGTAGTAG G
TCTTTGGCATTAGGAGCTTGAGCCCAGACGGCCCTAGCAGGGACCCO,i..GC
GCCCGAGAGACCATGCAGAG
GTCGCCTCTGGAAAAGGCCAGCGTTGTCTCCAAACI I I I I I ICAGCTGGAC
C AG AC 0 AATTTTG AG G AA/i,
G G.*VTACAG AC AG C G C CTG GMTTGTCAG ACATATAC C.AWTC C CTTCTGTTG

Sequence ATTCTGCTGACAATCTAT
CTGAAAAATTG GAAAGAG AATG G G ATAG AGAG CTG G CTTC AAAGAWAATî C:T
AV^CTC,fl,TTAATG C C CT
TC G G C GATGI I I I I I CTG GAG ATTTATGTTCTATG GA^TCI I I I lATATTTAG C
GGAAGTCACCAAAGCA

Clear

Fig. 2.11. Unformatted nucleotide sequence

Introduction to Basic Local Alignment Search Tool 51

SwingBlast

> Sequencel |420
aattggaagcaaatgacateacagcaggtcagagaaaaagggttgagcggcaggcacccagagta
gtaggtctttggcattaggagcttgagcccagacggccdagcagggaccccagcgcccgagagacc
atgoagaggtcgcctctggaaaaggccagcgttgtctccaaactttttttcagctggaccagaccaattttg;
ggaaaggatacagacagcgcctggaattgtcagacatataccaaatcccttctgttgattctgctgacaat
tiatctgaaaaattggaaagagaatgggatagagagctggcttcaaagaaaaatcctaaactcattaat
gcccttcggcgatgttttttctggagatttatgttctatggaatctttttatatttaggggaagtcaccaaagcal

Sequence

Clear

Fig. 2.12. Fasta formatting of sequences (Text area loses focus)

In addition, a header line is added as specified in the code along with the
length of the sequence. Although the logic to convert raw sequence into
Fasta format does work as described, we need to incorporate a way to tell
the FocusEvent method not to take any action if the sequence is already in
the Fasta format (either because the sequence was pasted in the Fasta
format or because it was formatted by the user formatted by the user using
the FocusLost method) and therefore does not need formatting. This is
easily done by checking for the presence of the ">" character at the
beginning of the sequence as shown in Listing 2.4 below.

Listing 2.4. Checking for Fasta formatting of sequences

seguenceArea.addFocusListener(new FocusListener() {
public void focusGained(FocusEvent e) {

}

public void focusLost(FocusEvent e) {
// Retrieve the sequence in the text area
String seqText = sequenceArea.getText() ;

int idx = seqText.indexOf(">");
boolean fastaFormatted = idx != -1;

52

String header = null;
int seqLength = 0;
String sequence = " " ;
String fastaSeq = "" ;

// Check if sequence is in Fasta format
if (fastaFormatted) {

int returnldx = seqText.indexOf("\n");
header = seqText.substring(0, returnldx);
fastaSeq = seqText.substring(returnldx + 1,

seqText.length()).replaceAll("\\s", "").toLowerCase();
fastaSeq = seqText;

} else {
seqText = seqText.replaceAll("\\s", " ") ;
fastaSeq = seqText.toLowerCase();
header = "> Sequencel";
seqLength = seqText.length();

}

// Convert the sequence into Fasta format if not Fasta
//formatted

if (!fastaFormatted) {
fastaSeq = header + "|" + seqLength + "\n" +

fastaSeq;

}
sequenceArea.setText(fastaSeq);

}

To make the sequence align properly, we will use a monospace font
such as Courier. The code to do this is as follows:

final Font sf = sequenceArea.getFont();
Font f = new Font("Monospaced", sf.getStyle(), sf.getsize());
sequenceArea.setFont(f);

Run the code again. This time the sequence is properly aligned (Fig.
2.13).

Introduction to Basic Local Alignment Search Tool 53

SwingBlast

Sequence

> SsT-iencel I 420

aattggaagc aaat.gacat cac age aggt c agagaaaaagggtt.gagc ggcaggc ac c c agagt

agtaggtctt.tggcattaggagcttgagcccagacggccct.agcagggacccc age gccc gaga

gaccatgcagaggtcgcctctggaaaaggccagcgttgtctccaaactttttttcagctggacc

agac caattttgaggaaaggatacagac age gc c tggaattgtc agac a tatacc aaatc c c: tt

ctgttgattctgctgacaatctatctgaaaaattggaaagagaatgggacagagagctggcctc

aaagaaaaatcccaaactcattaatgcccttcggcgatgttttt-Cctggagatttatgttccat

ggaatc tttttatatttaggggaagtc ac c aaagca

Clear

Fig. 2.13. Using monospace font to format sequences

Determining Sequence Type: Nucleotide or Protein?

Now that we have formatted the sequence and calculated its size, lets
plug in functionality into the SwingBlast application that will determine if
the entered sequence is nucleotide (DNA or RNA) or protein. Note that
RNA, like DNA is a polymer composed of four nucleotides. The
difference between RNA and DNA is the nature of the sugar moiety: RNA
has the ribose sugar, while DNA has the deoxyribose sugar. RNA has the
same purine bases as DNA: adenine (A) and guanine (G) and the same
pyrimidine cytosine (C), but instead of thymine (T), it uses the pyrimidine
uracil (U).

Determination of sequence type is done with an algorithm that takes into
account information on the natural composition of nucleotide and protein
sequences. According to the algorithm, if:

1. Total number of nculeotides (that is, sum of A, T, G and C's) divided
by the total length of the sequence is greater that 0.85, it is a DNA
sequence

2. Total number of A, T, G, C and U's divided by the total length of the
sequence is greater that 0.85, it is an RNA sequence

54

If neither of these two conditions is met, the sequence is assumed to be a
protein sequence. Note that we are not using the extended DNA/RNA
alphabet that includes symbols for sequence ambiguity as defined in the
International Union of Pure and Applied Chemistry (lUPAC) and
International Union of Biochemistry (lUB) nucleotide and amino acid
nomenclature. Instead, we are assuming the DNA alphabet to be composed
of the four bases A (adenine), T (thymine), G (guanine), C (cytosine) and
N, the RNA alphabet to be composed of A (adenine), U (uridine), G
(guanine), C (cytosine) and N (where N is any nucleotide base) and the
amino acid alphabet to be composed of A (alanine), C (cysteine), D
(aspartate), E (glutamic acid), F (phenylalanine), G (glycine), H
(histidine), I (isoleucine), K (lysine), L (leucine), M (methionine), N
(asparagine), P (proline), Q (glutamine), R (arginine), S (serine), T
(threonine), V (valine), W (tryptophan) and Y (tyrosine).

Let's see how this algorithm works with an example. Take the partial
mRNA sequence of the human CFTR gene (gi: 90421312) as shown
below:

AAUUGGAAGCAAAUGACAUCACAGCAGGUCAGAGAAAAAGGGUUGAGCGGCAGGCACCCAG
AGUAGUAGGUCUUUGGCAUUAGGAGCUUGAGCCCAGACGGCCCUAGCAGGGACCCCAGCGC
CCGAGAGACCAUGCAGAGGUCGCCUCUGGAAAAGGCCAGCGUUGUCUCCAAACUUUUUUUC
AGCUGGACCAGACCAAUUUUGAGGAAAGGAUACAGACAGCGCCUGGAAUUGUCAGACAUAU
ACCAAAUCCCUUCUGUUGAUUCUGCUGACAAUCUAUCUGAAAAAUUGGAAAGAGAAUGGGA
UAGAGAGCUGGCUUCAAAGAAAAAUCCUAAACUCAUUAAUGCCCUUCGGCGAUGUUUUUUC
UGGAGAUUUAUGUUCUAUGGAAUCUUUUUAUAUUUAGGGGAAGUCACCAAAGCAGUACAGC
CUCUCUUACUGGGAAGAAUCAUAGCUUCCUAUGACCCGGAUAACAAGGAGGAACGCUCUAU
CGCGAUUUAUCUAGGCAUAGGCUUAUGCCUUCUCOUUAUUGUGAGGACACUGCUCCUACAC
CCAGCCAUUUUUGGCCUUCAUCACAUUGGAAUGCAGAUGAGAAUAGCUAUGUUUAGUUUGA
UUUAUAAGAAGACUUUAAAGCUGUCAAGCCGUGUUCUAGAUAAAAUAAGUAUUGGACAACU
UGUUAGUCUCCUUUCCAACAACCUGAACAAAUUUGAUGAAGGACUUGCAUUGGCACAUUUC
GUGUGGAUCGCUCCUUUGCAAGUGGCACUCCUCAUGGGGCUAAUCUGGGAGUUGUUACAGG
CGUCUGCCUUCUGUGGACUUGGUUUCCUGAUAGUCCUUGCCCUUUUU

We will call this sequence with a size of 840 bases "SI". Lets start by
removing all A, T, G and C's from the sequence. The length of the
sequence without A, T, G and C's is 237; lets call this sequence S2.

Number of A, T, G and C's in the sequence = SI - S2 = 603. Next we
remove all the U's from the sequence that remain after removing the A, T,
G and C's (that is, the sequence S2). The length of the sequence after
removing all the U's is zero (since all we had left were U's). Lets call this
S3. The total number of U's in the sequence is therefore S2 - S3 is 237.

Introduction to Basic Local Alignment Search Tool 55

Now let's calculate the relative proportions of DNA and RNA alphabets in
the sequence.

(A + T + G + C)/Total = 603/840 = 0.72

According to the algorithm, since this is less than 0.85, it cannot be a
DNA sequence.

(A + T + G + C + U)/Total = (603 + 237)/840 = 1

Since this is > 0.85, this is an RNA sequence. We can now write the
code using the above reasoning. Since we will use regular expression
matching to parse the sequence, we will first import the appropriate
libraries to do so:

import org.apache.regexp.RE;

import org.apache.regexp.RESyntaxException;

We declare the magic 0.85 number as a threshold:

private static final double SEQ_THRESHOLD = 0.85;

The getsequenceType() method that implements the algorithm is as

follows:

public static int getSequenceType(String sequence) throws
RESyntaxException {

RE re = new RE("[actgnACGTN]+");
String[] strings = re.split(sequence);
int numbOfLettersOtherThanATGCNs = 0;

for (int i = 0; i < strings.length; i++) {
numbOfLettersOtherThanATGCNs +=

strings[i].length();
}
int length = sequence.length();
int numbOfACGTNs = length

numbOfLettersOtherThanATGCNs;

re = new RE("[uU] +") ;
strings = re.split(sequence);
int numbOfLettersOtherThanUs = 0;

for (int i = 0; i < strings.length; i++) {
numbOfLettersOtherThanUs += strings[i].length();

}

56

int numbOfUs = sequence.length()
numbOfLettersOtherThanUs;

if (numbOfACGTNs / (double) length > SEQ_THRESHOLD) {
return TYPE_DNA;

} else if ((numbOfACGTNs + numbOfUs) / (double)
length > SEQ_THRESHOLD) {

return TYPE_RNA;
} else {
return TYPE_PROTEIN;

}
}

With this code in place, we get the following results for the partial
sequences of the human CFTR nucleotide (Fig. 2.14 and Fig. 2.15) and
protein (Fig. 2.16 and Fig. 2.17).

SecjUGiice Form Help

WTTGGAftGCaAATGACATCACAGCAGGTCAeAGAAAMOGGTTGAGCGGCAGG'
CACCCAGAGTAGTAGG
TCTTTGGCATTAeeAGCTTGAGCCCAGACeGCCCTAeCAGeeACCCCAeceC
C C GAGA6ACCATG CAGAG
GTC GC CTCTG GAAAAG G C CAGC GTTGTCTC CAAAC I I I I I I ! GAG CTG GAC CA
GAC CAATTTT6AGGAAA
G G ATACAG ACAG CG C CTG 6AATTGTC AGACATATAC CAMTC CCTTCTGTTGAT

CTG AaAAATTGGAMGAGAATe G GATAGAGAGCTG G CTTCAWGAAAfiATC CTAAi
CTCATTA^TGCCCT
TCGGC6ATGI I I I ! I CTGGAGATTTATGTTCTATGGAATCTTTTTATATTTAGG6G
AAGTCACCAAAGCA
GTACAG CCTCTCTTACTG G GAAGAATC ATAG CTTC CTATGAC C CG GATAAC.SAG
GAGG.AACGCTCTATCG

Clear

Fig. 2.14. Determining sequence type - CFTR nucleotide sequence

Introduction to Basic Local Alignment Search Tool 57

Sequence Form Help

Sequence

sSequence1jDNA|420bp
AATTGGAAGCM*.TGACATCACAGCAeGTCAGAGAflAMeGGTTGAGCGGCAGGC/^
C C CAG AGTAGTAG GTCTTTG G C ATTAG GAG CTTG AG C C CAG AC G G C C CTAOCAG
GGACCCCAGCGCCCGAGAGACCATGCAGAGGTCGCCTCTGGAAAAGGCCAGCG
TTGTCTCCAMCI I I I I I I CAGCTGGACCAGACCAATTTTGAGGAAAGGATACAGAC
AG C GC CTGGAATTGTC AGACATATAC C AAATC C CTTCTGTTGATTCTGCTGACAAT
CTATCTGAAAAATTG GAMGAG AATG G G ATAGAGAG CTG G CTTC.AAA,GAAAAATC CT
AMCTCATTAATGC CCTTCGG CGATG I I I I I I CTGGAGATTTATGTTCTATGGAATC
TTTTTATATTTAG G G GAAGTCAC C AAAG C A

Clear

Fig. 2.15. Determining sequence type - CFTR nucleotide sequence

Sequence Form Help

Sequence

MQRSPLEKASWSKLFFSWTRPILRKGYRQRLELSDIYQIPSVDSADNLSEKLER '
EWDRELASKkNPKLI
NALRRCFFWRFMFYGIFLYLQEVTKAVQPLLLGRIIASYDPDNKEERSIAIYLGIGLC
LLFIVRTLLLHP
AJFGLHHIGMQMRIAMFSLIYKKTLKLSSRVLDKISIGQLVSLLSNNLNKFDEGLALfi
HFWVIAPLQVAL
LMGLIWELLQASAFCGLGFLiVLALFQAGLGRMMMKVRDQRAGKISERLVITSEMIE
NIQSVKAYCWEEA
MEKMIENLRQTELKLTRKMWRYFNSSAFFFSGFFWFLSVLPYALIK6IILRKIFTT
ISFCIVLRMAV
TRQFPWAVQTWYDSLGAINKIQDFLQKQEYKTLEYNLTTTEWMENVTAFWEEGF
GELFEKAKQNNNNRK
TSNGDDSLFFSNFSLLGTPVLKDIiMFKIERGQLLAVAGSTGAGKTSLLMMIMGELE
PSEGKIKHSGRISF

Clear

Fig. 2.16. Determining sequence type - CFTR protein sequence

58

Sequence Form Help

Sequence

>3eqijenc:e1|Protein|l430 aa
MQRSPLEKASWSKLFFSVJTRPILRKGYRQRLELSDIYQIP3VDSADNLSEKLER
EWDREUSKKNPKLiNALRRCFFWRFMFYGIFLYLGEVTKA.VQPLLLGRIIASYDP
DNKEERSIAIYLeiGLCLLFIVRTLLLHPAIFGLHHieMQMRIAMFSLIYKKTLKLSSR
VLDKISieQLVSLLSNNLNKFDEGU\Lfl.HFWVIAPLQVALLMGLIWELLQASAFCGL
GFLIVWLFQAGLGRMMMKYRDQRAGKISERLVITSEMIENIQSVKAYCWEEAMEK
MIENLRQTELKLTRKAft.YVRYFNSSAFFFSGFFWFLSVLPYALIKeilLRKIFTTI3F0
IVLR MAVTR QF PWAVQTVJYD S LG Al N Kl Q D F LQ KQ E YKTLEYN LTTTE WM E NVTA
FWEEGFGELFEKS^KQNNNNRKTSNGDDSLFFSNFSLLGTPVLKDINFKIERGQL
LAVAGSTGAGKTSLLMMIMGELEPSEGKIKHSGRISFCSQFSWIMPGTiKENIIFGV
SVDEYRYRSVIKACQLEEDISKFAEKDNIVLGEGGITLSGGQRARISLARAVYKDAC
LYLLDSPFGYLDVLTEKEIFESCVCKLMANKTRILVTSKMEHLKKS.DKILILNEGSS
YFYGTFSELQNLQPDFSSKLMGCDSFDQFSAERRNSILTETLHRFSLEGDAPVS
yAjTETKKQSFKQTGEFGEKRKNSILNPINSIRKFSIVQkTPLQMNGIEEDSDEPLEF'

Clear

Fig. 2.17. Determining sequence type: CFTR protein sequence

We will call this SwingBlast version 1.2. The complete code is

described in Listing 2.5.

Listing 2.5. Determining sequence type

package org . j fb .SwingBlas t ;

import org.apache.regexp.RE;
import org.apache.regexp.RESyntaxException;

import javax.swing.* ;
import j ava.awt.*;
import j ava.awt.event.ActionEvent ;
import j ava.awt.event.ActionListener;
import j ava.awt.event.FocusEvent;
import Java.awt.event.FocusListener;

public class SwingBlastl_2 extends JFrame {

private static final String APP_NAME = "Sequence Form";
private static final String APP_VERSION = "Version 1_2";

private static final Dimension APP_WINDOW_SIZE = new
Dimension(450, 350);

private static final int TYPE_DNA = 0;
private static final int TYPE_RNA = 1;
private static final int TYPE_PROTEIN = 2;

private JComponent newContentPane;

Introduction to Basic Local Alignment Search Tool 59

private JTextArea sequenceArea;
private JScrollPane scrollPaneArea;
private JButton clear;

private JMenuItem aboutltem;
private JMenuItem quitltem;
private static final double SEQ_THRESHOLD = 0.85;

public SwingBlastl_2() {
super();
seqFormInit();

}

private void seqFormlnit() {
setTitle(APP_NAME);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
newContentPane = new JPanel();
newContentPane.setOpaque(true);
newContentPane.setLayout(new BorderLayout());

setContentPane(newContentPane);

// Create the menu bar
JMenuBar menu = new JMenuBar();
JMenu swingBlastMenu = new JMenu(APP_NAME);
quitltem = new JMenuItem("Quit");
swingBlastMenu.add(quitltem);
menu.add(swingBlastMenu);

JMenu helpMenu = new JMenu("Help");
aboutltem = new JMenuItem("About");
helpMenu.add(aboutltem);
menu.add(helpMenu);
setJMenuBar(menu);

// Create the sequence pane
JPanel sequencePanel = new JPanel();
JLabel sequence = new JLabel("Sequence");
sequenceArea = new JTextArea();
Font font = sequence.getFont();
sequenceArea.setFont(new Font("Courier", Font.PLAIN,

font.getSize()));
sequenceArea.setLineWrap(true);
scrollPaneArea = new JScrollPane(sequenceArea);

sequencePanel.setLayout(new BoxLayout(sequencePanel,
BoxLayout.LINE_AXIS));

sequencePanel.add(sequence);
sequencePanel.add(Box.createRigidArea(new Dimension(10,

0)));
sequencePanel.add(scrollPaneArea);

sequencePanel.setBorder(BorderFactory.createEmptyBorder(10,

60

0, 10, 0));

// Lay out the buttons from left to right
JPanel buttonPane = new JPanel();
clear = new JButton("Clear");

buttonPane.setLayout(new BoxLayout(buttonPane,
BoxLayout.LINE_AXIS));

buttonPane.add(Box.createHorizontalGlue());
buttonPane.add(Box.createRigidArea(new Dimension(10,

0))) ;
buttonPane.add(clear);

JPanel jPanel = new JPanel();
jPanel.setLayout(new BorderLayout());
jPanel.setBorder(BorderFactory.createEmptyBorder(0, 10,

10, 10));
jPanel.add(sequencePanel, BorderLayout.CENTER);
jPanel.add(buttonPane, BorderLayout.SOUTH);

newContentPane.add(jPanel, BorderLayout.CENTER);
newContentPane.setPreferredsize(APP_WIND0W_SIZE);

// Display the window
pack();
Dimension screenSize =

Toolkit.getDefaultToolkit().getScreenSize();
setLocation((screenSize.width - APP_WINDOW_SIZE.width)

/ 2,
(screenSize.height - APP_WINDOW_SIZE.height) / 2) ;

setVisible(true);

addListeners();

}

private void addListeners() {
quitltem.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

System.exit(O);

}
});

aboutltem.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

JOptionPane.showMessageDialog(SwingBlastl_2.this,
APP_NAME + " " + APP_VERSION,

"About " + APP_NAME,

JOptionPane.INFORMATION_MESSAGE);

}
});

clear.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

Introduction to Basic Local Alignment Search Tool 61

sequenceArea.setText("");
}

});

sequenceArea.addFocusListener(new FocusListener() {
public void focusGained(FocusEvent e) {

}

public void focusLost(FocusEvent e) {
// Check if the sequence is DNA, RNA or protein

String text = sequenceArea.getText();

// Format the sequence in FASTA format and retrieve the
// sequence the user entered

int idx = text.indexOf(">");
boolean fastaFormatted = idx != -1;
String seqText = null;
String header = null;
int seqLength = 0;
String sequence = "";

if (fastaFormatted) {
int returnldx = text.indexOf("\n");
header = text.substring(0, returnldx);
sequence = text.substring(returnldx + 1,

text.length()).replaceAll("\\s", "").toLowerCase();
seqText = text;

} else {
text = text.replaceAll("\\s", " ") ;
sequence = text.toLowerCase();
header = ">Sequencel|";

seqLength = text.length();
}

// Determine the sequence type
int typeOfSequence = -1;
try {
typeOfSequence = getSequenceType(sequence);

} catch (RESyntaxException el) {
el.printStackTrace();

}

String type = null;
String unitOfLength = null;

switch (typeOfSequence) {
case TyPE_DNA:
type = "DNA";
unitOfLength = " bp";
break;

case TYPE RNA:

62

type = "RNA";
unitOfLength = " bp";
break;

case TYPE_PROTEIN:
type = "Protein";
unitOfLength = " aa";
break;

default:
type = "N/A";
unitOfLength = " N/A";

}

if (!fastaFormatted) {
seqText = header + type + " | " + seqLength +

unitOfLength + "\n" + sequence.toUpperCase();
}

// Display the results in sequence text area
sequenceArea.setText(seqText);

}
});

}

public static int getSequenceType(String sequence) throws
RESyntaxException {

RE re = new RE("[actgnACGTN] + ") ;
String[] strings = re.split(sequence);
int numbOfLettersOtherThanATGCNs = 0;

for (int i = 0; i < strings.length; i++) {
numbOfLettersOtherThanATGCNs +=

strings[i].length();
}
int length = sequence.length();
int numbOfACGTNs = length

numbOfLettersOtherThanATGCNs;

re = new RE("[uU] +") ;
strings = re.split(sequence);
int numbOfLettersOtherThanUs = 0;

for (int i = 0; i < strings.length; i++) {
numbOfLettersOtherThanUs += strings[i].length();

}
int numbOfUs = sequence.length()

numbOfLettersOtherThanUs;

if (numbOfACGTNs / (double) length > SEQ_THRESHOLD) {
return TYPE_DNA;

} else if ((numbOfACGTNs + numbOfUs) / (double)
length > SEQ_THRESHOLD) {

return TYPE_RNA;
} else {

Introduction to Basic Local Alignment Search Tool 63

return TYPE_PROTEIN;
}

}

public static void main(String[] args) {
SwingUtilities.invokeLater(new Runnable() {
public void run() {

final SwingBlastl_2 view = new SwingBlastl_2();
}

});
}

}

Note how we have handled the creation of the GUI elements in
SwingBlast version 1.2 (Listing 2.5):

public SwingBlastl_2() {
super();
seqFormInit();

}

We first created a method called seqForminit() containing all the code
to layout the components and then called the method in the code shown
above. Earlier, for SwingBlast Version 1.1, we had instead bundled all the
code within the main class (Listing 2.1):

public SwingBlastl_l() {

setTitle(APP_NAME + " " + APP_VERSION);

setDefaultCloseOperation(JFrame.EXIT_0N_CL0SE);

}

Using a separate method to build the GUI makes the code easier to read
by separating the widget part from the implementation aspect.

Displaying Valid BLAST Options

The next step, now that we have accurately determined the type of
sequence the user has entered in the text area, is determine which BLAST
options to display for the particular type of input sequence. The purpose of
this is to enable the application to automatically present only the valid
BLAST algorithms appropriate for the input sequence provided by the

64

user. Currently, if a user selects Nucleotide-nucleotide BLAST (BLASTN)
on the NCBI BLAST server and supplies a protein sequence or a GenBank
Id corresponding to a protein sequence, an error message pointing the
mismatch is displayed; however, the BLAST server does not automatically
present the valid options based on user input. Recall from Table 2.1 that the
valid BLAST options for nucleotide sequences are BLASTN, BLASTX
and TBLASTX and the valid options for amino acid sequences are
BLASTP and TBLASTN.

We will begin by adding the needed GUI elements to the SwingBlast
application. The GUI elements we will need are five checkboxes for the
five BLAST algorithms (BLASTN, BLASTP, BLASTX, TBLASTN and
TBLASTX), a drop-down menu to select the databases to search the input
sequence against and the E-value to specify the stringency of search. The
application at this stage should appear as shown in Fig. 2.18. We will
program these GUI elements to be inactivated upon launch of the
application since no sequence is available for analysis. We will call this
version 1.3 of the SwingBlast application.

Svjill()RirlSI liHlri

SHiiiiHrii;f

P I I Mil .nil

D'll>ii)rlSH

l..-V<lilll'

Clear

Fig. 2.18. Adding BLAST options to SwingBlast

Introduction to Basic Local Alignment Search Tool 65

The code to add the BLAST programs as check boxes is as follows. We
first create the required array variables: BLAST_PROGRAMS_DNA,

BLAST_PROGRAMS_PROTEIN, DATABASES and EVALUES tO hold the
appropriate allowed values for each of the parameters. Note that we are
illustrating this application with a few BLAST parameters. The user can
add more parameters as per individual requirements.

private static final String[] BLAST_PROGRAMS_DNA = new
String[]{"BlastN", "BlastX", "TBlastX"};

private static final String[] BLAST_PROGRAMS_PROTEIN =
new String[]{"BlastP", "TBlastN"};

private static final String[] DATABASES = new
String [] { "nr" , "est_huinan" } ;

private static final String[] EVALUES = new
String[]{"0.001", "0.01", "0.1", "1", "10", "100"};

We then create the necessary widgets: check boxes for the DNA and

protein BLAST options and combo boxes for the database and E-values.

private JCheckBox[] cbDna;
private JCheckBox[] cbProtein;
private JComboBox comboDbs;
private JComboBox comboEvalues;

We create a method called createProgramPanel () that draws the
BLAST program panel, the database panel and the E-value panel (Listing
2.6).

Listing 2.6. Laying out the BLAST widgets

private JPanel createProgramPanel() {
// Create the program panel
JPanel programPanel = new JPanel{);
JLabel program = new JLabel("Program");
program.setPreferredSize(LABEL_PREFERRED_SIZE);
CbDna = new JCheckBox[BLAST_PROGRAMS_DNA.length];
String blastProgram;
for (int i = 0; i < BLAST_PROGRAMS_DNA.length; i++) {
blastProgram = BLAST_PROGRAMS_DNA[i];
cbDna[i] = new JCheckBox(blastProgram);
cbDna[i].setMaximumSize(COMBO_PREFERRED_SIZE);

}
cbProtein = new

JCheckBox[BLAST_PROGRAMS_PROTEIN.length];
for (int i = 0; i < BLAST_PROGRAMS_PROTEIN.length; i++)

{
blastProgram = BLAST_PROGRAMS_PROTEIN[i];

66

cbProtein[i] = new JCheckBox(blastPrograin);
cbProtein[i].setMaximumSize(COMBO_PREFERRED_SIZE);

}

programPanel.setLayout(new BoxLayout(programPanel,
BoxLayout.LINE_AXIS));

programPanel.add(program);
programPanel.add(Box.createRigidArea(new Dimension(10,

0)));

0)));

for (int i = 0; i < cbDna.length; i++) {
programPanel.add(cbDna[i]);
programPanel.add(Box.createRigidArea(new Dimension(5,

}
for (int i = 0; i < cbProtein.length; i++) {
programPanel.add(cbProtein[i]);
if (i + 1 < cbProtein.length)
programPanel.add(Box.createRigidArea(new

Dimension(5, 0)));
}
programPanel.add(Box.createHorizontalGlue());
JPanel paramPanel = new JPanel();
paramPanel.setLayout(new BoxLayout(paramPanel,

BoxLayout.PAGE_AXIS));

paramPanel.add(programPanel);
paramPanel.add(Box.createRigidArea(new Dimension(0,

5)));

// Create the database panel
JPanel databasePanel = new JPanel();
JLabel database = new JLabel("Database");
database.setPreferredSize(LABEL_PREFERRED_SIZE);
comboDbs = new JComboBox(DATABASES);
comboDbs.setMaximumSize(COMBO_PREFERRED_SIZE);

databasePanel.setLayout(new BoxLayout(databasePanel,
BoxLayout.LINE_AXIS));

databasePanel.add(database);
databasePanel.add(Box.createRigidArea(new Dimension(10,

0))),

5))):

databasePanel.add(comboDbs);
databasePanel.add(Box.createHorizontalGlue());
paramPanel.add(databasePanel);
paramPanel.add(Box.createRigidArea(new Dimension(0,

// Create the E-Value panel
JPanel evaluePanel = new JPanel();
JLabel eValue = new JLabel("E-value");
eValue.setPreferredSize(LABEL_PREFERRED_SIZE);
comboEvalues = new JComboBox(EVALUES);
comboEvalues.setMaximumSize(COMBO_PREFERRED_SIZE);

Introduction to Basic Local Alignment Search Tool 67

evaluePanel .setLayout(new BoxLayout(evaluePanel,
BoxLayout.LINE_AXIS));

evaluePanel .add(eValue) ;
evaluePanel .add(Box.createRigidArea(new Dimension(10,

0))) ;

5))) ;

evaluePanel.add(comboEvalues);
evaluePanel.add(Box.createHorizontalGlue());
paramPanel.add(evaluePanel);
paramPanel.add(Box.createRigidArea(new Dimension(0,

enableFunctions(TYPE_UNKNOWN);

return paramPanel;

}

The enableFunctions () method takes an i n t parameter
(typeof Sequence) and is responsible for setting the check boxes for the
BLAST programs to enable or disable them based on the type of sequence
entered by the user. We will use the setEnabled () function to enable (or
disable) a button. The setEnabled() method takes a parameter of type
Boolean which can be set to t r u e to enable the button and f a l se to disable
the button.

In case of a nucleotide sequence, we want the three check boxes for
BLASTN, BLASTX and TBLASTX to be available. Simultaneously, we
want the database and the E-value combo boxes to become enabled as
soon as the user enters a sequence. This logic is implemented in the
following manner:

private void enableFunctions(int typeOfSequence) {
if (typeOfSequence == TYPE_DNA | | typeOfSequence ==

TYPE_RNA) {
setChb(chbDna, true);
setChb(chbProtein, false);
setCob(cobDbs, true);
setCob(cobEvalues, true);

} else if (typeOfSequence == TYPE_PROTEIN) {
setChb(chbProtein, true);
setChb(chbDna, false);
setCob(cobDbs, true);
setCob(cobEvalues, true);

} else {
setChb(chbProtein, false);
setChb(chbDna, false);
setCob(cobDbs, false);
setCob(cobEvalues, false);

}
}

68

In the code shown above, we define the se tchb() and setCob()
methods to change the settings of the check boxes (chbProtein for protein
searches, chbDNA for nucleotide searches) and the combo boxes (cobDbs
for database type and cobEvalues for E-values) respectively. These
methods take the object type as the first parameter (check or combo box
whose state needs to be set) and a Boolean parameter (true/false) as
illustrated below:

p r i v a t e s t a t i c void setChb(JCheckBox[] boxes, boolean
value) {

for (i n t i = 0; i < boxes . l eng th ; i++) {
b o x e s [i] . s e t E n a b l e d (v a l u e) ;
b o x e s [i] . s e t S e l e c t e d (f a l s e) ;

}
}

In the above method, we iterate over the check boxes, set them to
enabled or disabled and ensure that they are not selected by default. For
example, when the following method is called:

setChb(cbDna, true);

the method changes only the DNA check boxes to true (enables them)
since we have set cbDNA to hold the array of check boxes for only the two
nucleotide related BLAST programs in the code:

p r i v a t e s t a t i c f i n a l S t r i n g [] BLAST_PROGRAMS_DNA = new
S t r ing[]{"Blas tN" , "BlastX", "TBlastX"};

cbDna = new JCheckBox[BLAST_PROGRAMS_DNA.length];

Similarly, the setcob () function sets the values for the combo boxes for
the database and the E-values:

private static void setCob(JComboBox component, boolean
value) {

component.setEnabled(value);
component.setSelectedlndex(0);

}

Conversely, for a protein sequence, we want the BLASTP and
TBLASTN check boxes and the database and the E-value combo boxes to
become enabled and the check boxes for BLASTN, BLASTX and
TBLASTX disabled. The method with this logic included is as follows:

Introduction to Basic Local Alignment Search Tool 69

private void enableFunctions(int typeOfSequence) {
if (typeOfSequence == TyPE_DNA | | typeOfSequence ==

TYPE_RNA) {
setChb(cbDna, true);
setChb(cbProtein, false);
setCob(comboDbs, true);
setCob(comboEvalues, true);

} else if (typeOfSequence == TYPE_PROTEIN) {
setChb(cbProtein, true);
setChb(cbDna, false);
setCob(comboDbs, true);
setCob(comboEvalues, true);

} else {
setChb(cbProtein, false);
setChb(cbDna, false);
setCob(comboDbs, false);
setCob(comboEvalues, false);

}
}

We will also add a Help menu item. The code to add that is fairly

simple:

JMenu helpMenu = new JMenu("Help");
aboutltem = new JMenuItem("About");
helpMenu.add(aboutItem);
menu.add(helpMenu);

The Help -^ About simply describes the current SwingBlast version

(Fig. 2.19). The complete code for the application is described in Listing
2.7.

70

SwJrii)RI/is< HKI|I

About

Setjuence
SwJngBlast Version 1.3

OK

Pioijinrri

Database

E-value

Clear

Fig. 2.19. Help About Menu information

Listing 2.7. SwingBlast version 1.3

package o r g . j f b . S w i n g B l a s t ;

import org.apache.regexp.RE;
import org.apache.regexp.RESyntaxException;

import javax.swing.*;
import j ava.awt.*;
import j ava.awt.event.ActionEvent;
import Java.awt.event.ActionListener;
import j ava.awt.event.FocusEvent;
import Java.awt.event.FocusListener;

public class SwingBlastl_3 extends JFrame {
private static final String APP_NAME = "SwingBlast";
private static final String APP_VERSION = "Version 1.3";

private static final Dimension LABEL_PREFERRED_SIZE = ne^
Dimension!57, 16);

Introduction to Basic Local Alignment Search Tool 71

private static final Dimension COMBO_PREFERRED_SIZE = new
Dimension(60, 25);

private static final Dimension CP_PREF_SIZE = new
Dimension(450, 350);

private static final int TYPE_DNA = 0;
private static final int TyPE_RNA = 1;
private static final int TYPE_PROTEIN = 2;

private static final String[] BLAST_PROGRAMS_DNA = new
String[]{"BlastN", "BlastX", "TBlastX"};

private static final String[] BLAST_PROGRAMS_PROTEIN =
new String[]{"BlastP", "TBlastN"};

private static final String[] DATABASES = new
String[]{"nr", "est_human"};

private static final String[] EVALUES = new
String[]{"0.001", "0.01", "0.1", "1", "10", "100"};

private JComponent newContentPane;
private JTextArea sequenceArea;
private JScrollPane scrollPaneArea;

private JCheckBox[] chbDna;
private JCheckBox[] chbProtein;
private JComboBox cobDbs;
private JComboBox cobEvalues;

private JButton clear;

private JMenuItem aboutltem;
private JMenuItem quitltem;
private static final double SEQ_THRESHOLD = 0.85;
private static final int TYPE_UNKNOWN = -1;

public SwingBlastl_3() {
super();
seqFormInit();

}

private void seqFormlnit() {
setTitle(APP_NAME + " " + APP_VERSION);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
newContentPane = new JPanel();
newContentPane.setOpaque(true);
newContentPane.setLayout(new BorderLayout());

setContentPane(newContentPane);

// Create the menu bar
JMenuBar menu = new JMenuBar();
JMenu swingBlastMenu = new JMenu(APP_NAME);
quitltem = new JMenuItem("Quit");
swingBlastMenu.add(quitltem);

72

200));

menu.add(swingBlastMenu);

JMenu helpMenu = new JMenu("Help");
aboutltem = new JMenuItein("About") ;
helpMenu.add(aboutltem);
menu.add(helpMenu);
setJMenuBar(menu);

// Create the sequence pane
JPanel sequencePanel = new JPanel();
JLabel sequence = new JLabel("Sequence");
sequenceArea = new JTextArea();
sequenceArea.setLineWrap(true);
scrollPaneArea = new JScrollPane(sequenceArea);
scrollPaneArea.setPreferredSize(new Dimension(3 00,

sequencePanel.setLayout(new BoxLayout(sequencePanel,
BoxLayout.LINE_AXIS));

sequencePanel.add(sequence);
sequencePanel.add(Box.createRigidArea(new Dimension(10,

0))) ;
sequencePanel.add(scrollPaneArea);

sequencePanel.setBorder(BorderFactory.createEmptyBorder(10,
0, 10, 0));

// Lay out the buttons from left to right
JPanel buttonPane = new JPanel();
clear = new JButton("Clear");

buttonPane.setLayout(new BoxLayout(buttonPane,
BoxLayout.LINE_AXIS));

buttonPane.add{Box.createHorizontalGlue());
buttonPane.add(Box.createRigidArea(new Dimension(10,

0)));
buttonPane.add(clear) ;

JPanel jPanel = new JPanel();
jPanel.setLayout(new BorderLayout());
jPanel.setBorder(BorderFactory.createEmptyBorder(0, 10,

10, 10));
jPanel.add(sequencePanel, BorderLayout.NORTH);
jPanel.add(createProgramPanel(), BorderLayout.CENTER);
jPanel.add(buttonPane, BorderLayout.SOUTH);

newContentPane.add(jPanel, BorderLayout.CENTER);
newContentPane.setPreferredSize(CP_PREF_SIZE);

// Display the window
pack() ;
Dimension screenSize =

Toolkit.getDefaultToolkit().getScreenSize();

2 ,

}

Introduction to Basic Local Alignment Search Tool 73

setLocation((screenSize.width - CP_PREF_SIZE.width) /

(screenSize.height - CP_PREF_SIZE.height) 12);
setVisible(true);
addListeners();

private JPanel createPrograinPanel() {
// Create the program panel
JPanel programPanel = new JPanel();
JLabel program = new JLabel("Program");
program.setPreferredSize(LABEL_PREFERRED_SIZE);
chbDna = new JCheckBox[BLAST_PROGRAMS_DNA.length];
String blastProgram;
for (int i = 0; i < BLAST_PROGRAMS_DNA.length; i++) {
blastProgram = BLAST_PROGRAMS_DNA[i];
chbDna[i] = new JCheckBox(blastProgram);
chbDna[i].setMaximumSize(COMBO_PREFERRED_SIZE);

}
chbProtein = new

JCheckBox[BLAST_PROGRAMS_PROTEIN.length];
for (int i = 0; i < BLAST_PROGRAMS_PROTEIN.length; i++)

{
blastProgram = BLAST_PROGRAMS_PROTEIN[i];
chbProtein[i] = new JCheckBox(blastProgram);
chbProtein[i].setMaximumSize(COMBO_PREFERRED_SIZE);

}

programPanel.setLayout(new BoxLayout(programPanel,
BoxLayout.LINE_AXIS));

programPanel.add(program);
programPanel.add(Box.createRigidArea(new Dimension(10,

0))) ;

0))) ;

for (int i = 0; i < chbDna.length; i++) {
programPanel.add(chbDna[i]);
programPanel.add(Box.createRigidArea(new Dimension(5,

}
for (int i = 0; i < chbProtein.length; i++) {
programPanel.add(chbProtein[i]);
if (i + 1 < chbProtein.length)
programPanel.add(Box.createRigidArea(new

Dimension(5, 0)));
}
programPanel.add(Box.createHorizontalGlue());
JPanel paramPanel = new JPanel();
paramPanel.setLayout(new BoxLayout(paramPanel,

BoxLayout.PAGE_AXIS));

paramPanel.add(programPanel);
paramPanel.add(Box.createRigidArea(new Dimension(0,

5)));

74

// Create the database panel
JPanel databasePanel = new JPanel();
JLabel database = new JLabel("Database");
database.setPreferredSize(LABEL_PREFERRED_SIZE);
cobDbs = new JComboBox(DATABASES);
cobDbs.setMaximumSize(COMBO_PREFERRED_SIZE);

databasePanel.setLayout(new BoxLayout(databasePanel,
BoxLayout.LINE_AXIS));

databasePanel.add(database);
databasePanel.add(Box.createRigidArea(new Dimension(10,

0)));

5)):

databasePanel.add(cobDbs);
databasePanel.add(Box.createHorizontalGlue()) ;
paramPanel.add(databasePanel);
paramPanel.add(Box.createRigidArea(new Dimension(0,

// Create the E-Value panel
JPanel evaluePanel = new JPanel();
JLabel eValue = new JLabel("E-value");
eValue.setPreferredSize(LABEL_PREFERRED_SIZE);
cobEvalues = new JComboBox(EVALUES);
cobEvalues.setMaximumSize(COMBO_PREFERRED_SIZE);

evaluePanel.setLayout(new BoxLayout(evaluePanel,
BoxLayout.LINE_AXIS));

evaluePanel.add(eValue) ;
evaluePanel.add(Box.createRigidArea(new Dimension(10,

0))) ;

5)))i

evaluePanel.add(cobEvalues);
evaluePanel.add(Box.createHorizontalGlue());
paramPanel.add(evaluePanel);
paramPanel.add(Box.createRigidArea(new Dimension(0,

// Set it up disabled
enableFunctions(TYPE_UNKNOWN);
return paramPanel;

>

private void addListeners() {
quitItem.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

System.exit(0);

}
});

aboutltem.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

JOptionPane.showMessageDialog(SwingBlastl_3.this,
APP_NAME + " " + APP_VERSION,

"About " + APP_NAME,

Introduction to Basic Local Alignment Search Tool 75

JOptionPane.INFORMATION_MESSAGE);
}

});

clear.addActionListener(new ActionListener() {
public void actionPerforined(ActionEvent e) {

sequenceArea.setText("");
enableFunctions(-1);

}
});

sequenceArea.addFocusListener(new FocusListener() {
public void focusGained(FocusEvent e) {
}

public void focusLost(FocusEvent e) {
// Check if sequence is DNA, RNA or protein
String text = sequenceArea.getText();

// Format sequence in FASTA format and retrieve the
// entered sequence

int idx = text.indexOf(">");
boolean fastaFormatted = idx != -1;
String seqText = null;
String header = null;
int seqLength = 0;
String sequence = "";

if (fastaFormatted) {
int returnldx = text.indexOf("\n");

if (returnldx != -1) {
header = text.substring(0, returnldx);
sequence = text.substring(returnldx + 1,

text.length()).replaceAll("\\s", "").toLowerCase();
seqText = text;

}
} else {
text = text.replaceAll("\\s", " ") ;
RE re = null;
try {

re = new RE("[0-9]+");
} catch (RESyntaxException el) {
el.printStackTrace() ;

}

boolean isGenBankID = re.match(text);

if (isGenBankID) {
GenbankSequenceDB genbankSequenceDB = new

GenbankSequenceDB() ;
header = "GI:" + text;
Sequence seqObject = null;

76

try {
seqObject =

genbankSequenceDB.getSequence(text);
SeqIOTools.writeGenbank(System.out,

seqObject);
} catch (Exception el) {
el.printStackTrace();

}
sequence = seqObject.seqString();

} else {
sequence = text.toLowerCase();
header = ">Sequencel|";
seqLength = text.length();

}
}

// Check if sequence has been entered
if (sequence.length() == 0)
return;

// Determine sequence type
int typeOfSequence = TYPE_UNKNOWN;
try {

typeOfSequence = getSequenceType(sequence);
} catch (RESyntaxException el) {
el.printStackTrace();

}

String type = null;
String unitOfLength = null;

switch (typeOfSequence) {
case TYPE_DNA:

type = "DNA";
unitOfLength = " bp";
break;

case TYPE_RNA:
type = "RNA";
unitOfLength = " bp";
break;

case TYPE_PROTEIN:
type = "Protein";
unitOfLength = " aa";
break;

default:
type = "N/A";
unitOfLength = " N/A";

}

if (!fastaFormatted) {
seqText = header + type + "|" + seqLength +

unitOfLength + "\n" + sequence.toUpperCase();

Introduction to Basic Local Alignment Search Tool 77

}

// Display results
sequenceArea.setText(seqText);

enableFunctions(typeOfSequence);
}

});
}

private void enableFunctions(int typeOfSequence) {
if (typeOfSequence == TYPE_DNA || typeOfSequence ==

TYPE_RNA) {
setChb(chbDna, true);
setChb(chbProtein, false);
setCob(cobDbs, true);
setCob(cobEvalues, true);

} else if (typeOfSequence == TYPE_PROTEIN) {
setChb(chbProtein, true);
setChb(chbDna, false);
setCob(cobDbs, true);
setCob(cobEvalues, true);

} else {
setChb(chbProtein, false);
setChb(chbDna, false);
setCob(cobDbs, false);
setCob(cobEvalues, false);

}
}

private static void setChb(JCheckBox() boxes, boolean
value) {

for (int i = 0; i < boxes.length; i++) {
boxes[i].setEnabled(value);

}
}

private static void setCob(JComponent component, boolean
value) {

component.setEnabled(value);
}

public static int getSequenceType(String sequence) throws
RESyntaxException {

RE re = new RE("[actgnACGTN]+");
String[] strings = re.split(sequence);
int numbOfLettersOtherThanATGCNs = 0;

for (int i = 0; i < strings.length; i++) {
numbOfLettersOtherThanATGCNs += strings[i].length();

}
int length = sequence.length();
int numbOfACGTNs = length -

78

numbOfLettersOtherThanATGCNs;

re = new RE("[uU]+");
strings = re.split(sequence);
int numbOfLettersOtherThanUs = 0;

for (int i = 0; i < strings.length; i++) {
numbOfLettersOtherThanUs += strings[i].length();

}
int numbOfUs = sequence.length() -

numbOfLettersOtherThanUs;

if (numbOfACGTNs / (double) length > SEQ_THRESHOLD) {
return TyPE_DNA;

} else if ((numbOfACGTNs + numbOfUs) / (double) length
> SEQ_THRESHOLD) {

return TyPE_RNA;
} else {
return TYPE_PROTEIN;

}
}

public static void main(String[] args) {
SwingUtilities.invokeLater(new Runnable() {
public void run() {

final SwingBlastl_3 view = new SwingBlastl_3();
}

}) ;
}

}

Fig. 2.20 and Fig. 2.21 show the behavior of the application for a
nucleotide and a protein sequence respectively that is entered in the text
area. In both cases, the correct set of BLAST programs are selected
(BLASTN, BLASTX and TBLASTX for nucleotide sequence and
BLASTP and TBLASTN for protein sequence). Simultaneously, the drop­
down menu boxes for the databases and the E-value are activated for
selection by the user.

Introduction to Basic Local Alignment Search Tool 79

>!—, 3iilf i l l^^BISffl i l p d SlJlril i * J
^ i ^ a a i £3 ysJ ;;....j!

niiiinilffr r - " " -inr -"^

SwingBiast Help

;=Sec!Li6nce1;DNAlS4] bp i*J
^TTGGA^GCAA.flTGACATCAC;«OC:/>GGTCAGAOAflAAAGO:?TT; T1
eAGCGGCAGGCACCCAeAGTAeTAGGTCTTTeGCATTAeGAG '-.i
CTT15 AG 0 C GAG AC GO 0 0 CTAO CAO G G AC C C 0 AG C 0 0 C 0 G AC :.'.!
AGACCATGCAGAGGTCGCCTCTGGAAAAGGCCAGCGTTGTCT • • '
C CA»AC I I ! I 1 1 ! CAG CTG G AC C AG AC CMTTTTG AG G AAAG G A •' •:

Sequence TACAGACAGCGCCTuGAATT3Ti:AGA0ATATACCAAATi:C0TTi;;V
TGTTGATTCTGCTGACAATCTATCTGAAAAATTGOAAAGAGAATGi •
G GATAGAGAG CTGGCTTCAAAGA'Wy\TC CT/ViACTCATTAMTGi: ;
CCiTC:GGCGATeTTrTTTCTeOAGArTTArGTrCTATGGA.«TC:T
TTTTATATTTAGGGGMGTCACCAAAGCAOTACAGCCTCTCTTA
JCTGGGAAGAAJCATAGCTFCCTATGACCC GGATAACAAGGAGG ^ ;

Program ! ! BiastN l..iBlastX iJTBlasIX

Database ! nr
I

E-value | 0.001 •»

•w I

Clear

Fig. 2.20. Displaying BLAST options for a nucleotide sequence

80

SwJnjjBlast Hi:>ip

Sequence

•^DequencellProtelniSJO aa
MQRSPLEKASWSKLFFSVWRPILRKGYRQRLELSDIYQIPSVDS
AD N LS E KLE RE WD R ELAS KKN PKLINALRRCF FWR F M FYGIF LY
LaEWKAVQPLLLGRIIAeYDPDNKEERSIAIYLGIGLCLLFIVRTLL
i HPAIFGLHHIGMQMRIAMFSLIYKKTLKLSSRVLDKISIGQLVSLL
3NNLNKFDEGU5.U^HF'vWIAPLQVALLMGLIWELLQASAFCGLGF
LVLALFQAGLGRMMMKYRDQRAGKISERLVITSEMIENIQSVKAY
GWEEAMEKMIENLRQTELKLTRKAAYVRYFNSSAFFFSGFFWFL
S'^LPYALIKGIILRKIFTTISFCIVLRMAVTRQFPWAVQTWYDSLGAI
rjKIQDFLQKQEYl-CTLEYNLTTTEWMENVTAFWEEGFGELFEKAh
ONNNNRCTSNGDDSLFFBNFSLLGTPVLKDINFKIERGQLUS.VA
G3TGAG KTSLLMMIMGE LEP SEG KlKH SGR13F C 3QF 3WlU P GTI ,

Hfltflhasfi iir

EvdIiJt) 0.001 -^

BlasIP TBIastN

Clear

Fig. 2.21. Displaying BLAST options for a protein sequence

Summary

In this Chapter, we created a Swing based application that allows users
to prepare sequences for BLAST searches by performing simple
formatting tasks such as conversion into the Fasta format and determining
the sequence type and length. Along the way we introduced how to write
code to respond to events taking place in response to user initiated actions.
We created the GUI elements and wrote the code that enables the elements
to respond to the sequence type and present only the valid BLAST options
that are available for the entered sequence type. The rationale for building
these features into the application was to make it more functional and to
simplify its use for the end-users, given the many potentially confusing
parameters a user has to supply when performing a search operation. In the
next Chapter, we will extend the SwingBlast application to actually
perform the BLAST search operation.

Introduction to Basic Local Alignment Search Tool 81

Questions and Exercises

1. Enhance the SwingBlast application interface to accept multiple
sequences, for example, by incorporating the ability to upload a
multiple Fasta file. Next incorporate code to add checkboxes against
each uploaded sequence to allow users to select specific sequences for
further analysis. Develop the use cases that fulfill the above user
requirements.

2. Explore the BLAST algorithms in further detail by visiting the tutorial
site listed below. How do you determine the statistical significance of
BLAST hits? What are bit scores and p-values?

3. Download the sequence for simian sarcoma virus v-sis oncogene gene
from GenBank and perform a BLAST against the nr database. What
BLAST program(s) would you use to find similarities between v-sis
and existing nucleotide and protein sequences? What are the top ten
hits that BLAST returns? Which human and other vertebrate homologs
can you identify?

Additional Resources

• BLAST tutorial -
http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-l.html

• GenBank - http://www.ncbi.nlm.nih.gov/Genbank/index.html

• Java™ 2 Platform Standard Edition 5.0 API Specification -
http://java.sun.eom/j2se/l.5.0/docs/api/

Selected Reading

Simian sarcoma virus one gene, v-sis, is derived from the gene (or genes)
encoding a platelet-derived growth factor. Doolittle RF, Hunkapiller MW,
Hood LE, Devare SG, Robbins KC, Aaronson SA, Antoniades HN.
Science. 1983 Jul 15;221(4607):275-277.

Identification of the cystic fibrosis gene: cloning and characterization of
complementary DNA. Riordan JR, Rommens JM, Kerem B, Alon N,

82

Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL, et al.
Science. 1989 Sep 8;245(4922): 1066-73.

Basic local alignment search tool. Altschul SF, Gish W, Miller W, Myers
EW, Lipman DJ. J Mol Biol. 1990 Oct 5;215(3):403-10.

Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang
Z, Miller W, Lipman DJ. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402.

