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2.1 Introduction

Leukemia is a broad term describing a spectrum of diseases involving white
blood cells and is divided into four categories: acute or chronic myelogenous
and acute or chronic lymphocytic leukemia (CLL). Acute leukemia is charac-
terized by the rapid proliferation of immature blood cells that cannot carry out
their normal functions. Acute leukemia generally occurs in children and young
adults and needs immediate treatment because of the rapid progression and
accumulation of the malignant cells in the body. Chronic leukemia is distin-
guished by the excessive and slow build-up of relatively mature white blood
cells, which can still carry out some of their normal functions. Chronic leukemia
mostly occurs in older people but can theoretically occur in any age group.
Whereas acute leukemia must be treated immediately, chronic forms are some-
times monitored for some time before treatment to ensure maximum effective-
ness of therapy. Classification of leukemia into myeloid or lymphoid form is
based on the type of abnormal white blood cells found most in the blood or
bone marrow. Acute lymphocytic leukemia (also known as acute lymphoblastic
leukemia, or ALL) is the most common type of leukemia in young children and
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also affects adults, especially those age 65 and older. CLL most often affects
adults over the age of 55. CLL sometimes occurs in younger adults, but it almost
never affects children.

There is no single known cause for all different types of leukemia. Four
possible causes are (1) natural or artificial ionizing radiation, (2) certain kinds
of chemicals, (3) some viruses, and (4) genetic predispositions. Leukemia, like
other cancers, can result from somatic mutations in the DNA, which leads to
disruption of the regulation of cell death, proliferation, and differentiation.
These mutations may occur spontaneously or as a result of exposure to radia-
tion or carcinogenic substances (such as benzene, hair dyes, etc.), and sensitivity
of humans to these cancer-causing agents are likely to be influenced by genetic
factors. Viruses have also been linked to some forms of leukemia. For example,
certain cases of ALL are associated with viral infections by either the human
immunodeficiency virus (HIV, responsible for AIDS) (Murray et al., 1999) or
human T-lymphotropic virus [HTLV-1 and HTLV-2, causing adult T-cell
leukemia/lymphoma (TCL)] (Poiesz et al., 2001). Fanconi anemia is also a
risk factor for developing acute myelogenous leukemia (Bhatia et al., 2007).
All these risk factors end up causing aberrant activation or inactivation of
cellular genes that control normal cell proliferation and differentiation. In
human blood cancers, formation of a fusion gene from two normal cellular
genes, which is caused by chromosomal translocation, is a frequent way to
abnormally activate a cellular gene that becomes oncogenic after forming a
chimeric gene with another cellular gene. Large numbers of mouse models of
human blood cancers are generated by expressing these chimeric or active
oncogenes in mice. Mouse leukemia models provide powerful tools to investi-
gate the disease mechanisms and help to develop new therapies.

2.2 Mouse Leukemia Models

In principle, leukemia mouse models are generated based on three major
mechanisms: (1) expressing human oncogene(s) in hematopoietic progenitor
cells, (2) inactivating tumor suppressor gene(s) (including DNA repair genes) in
hematopoietic cells, and (3) combining these two methods. Described below are
examples of established mouse models for different forms of human blood
cancers.

2.2.1 Modeling Acute Myeloid Leukemia

Expression of a human acute myeloid leukemia-inducing gene in mouse bone
marrow cells using retrovirus. Fusion genes involving transcriptional coactiva-
tors and generated through chromosomal translocations are frequently found
in human acute myeloid leukemia (AML). Examples of these fusion genes are
MLL/CBP (Satake et al., 1997; Sobulo et al., 1997; Taki et al., 1997), MLL/
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p300 (Ida et al., 1997), MOZ (monocytic leukemia zinc finger)/CBP (Borrow
et al., 1996), MOZ/p300 (Chaffanet et al., 2000; Kitabayashi et al., 2001b),
MORF/CBP (Panagopoulos et al., 2001), and MOZ-TIF2 (Carapeti et al.,
1998; Liang et al., 1998). Each of these fusion proteins contains one or more
histone acetyltransferase (HAT) domain(s) that function to modify chromatin
by acetylation of the N-terminal histone tail. Because MOZ-TIF2 is a common
and well-understood fusion oncogene causing human AML, here we use this
fusion gene as an example to describe the retroviral bone marrow transduction/
transplantation mouse model of AML induced by MOZ-TIF2.

MOZ belongs to the MYST family of HATs and was first cloned as a fusion
partner of CBP as a consequence of t(8;16)(p11;p13) chromosomal transloca-
tion associated with the French—-American—British M4/M5 subtype of AML
(Borrow et al., 1996). MOZ regulates transcriptional activation mediated by the
hematopoietic transcription factor, Runx1 (AML1) (Kitabayashi et al., 2001a),
and a related osteogenic transcriptional factor, Runx2 (Kitabayashi et al.,
2001a). TIF2 belongs to pl60 nuclear receptor transcriptional coactivator
family (NRCoAs) (Glass et al., 1997; Horwitz et al., 1996), which includes
SRC-1, TIF2/GRIP1, and ACTR/RAC3/pCIP/AIB-1. p160 family coactiva-
tors have a conserved N-terminal bHLH-PAS domain, a centrally located
receptor interaction domain (RID), and a C-terminal transcriptional activation
domain (AD). The RID contains three conserved motifs, LXXLL (where L is
leucine and X is any amino acid), that are required to mediate interactions
between coactivators and liganded nuclear receptors (Ding et al., 1998; Heery
et al., 1997; Torchia et al., 1997). TIF2 can directly interact with CBP via its
three conserved LXXLL motifs (Demarest et al., 2002; Torchia et al., 1997).
P160 family members interact with nuclear receptors and enhance transcrip-
tional activation by the receptor via histone acetylation/methylation (Leo and
Chen, 2000).

In the MOZ-TIF?2 fusion protein, MOZ retains the C4HC3-type PHD zinc
finger domain and the HAT (MYST) domain and TIF2 retains the CBP
interaction domain (CID) and CBP-independent activation domain (called
AD?2) of TIF2. MOZ-TIF2 lacks the C-terminus of MOZ and the PAS-
bHLH DNA-binding/protein heterodimerization domain, and nuclear RID
of TIF2 (Deguchi et al., 2003). To assess the transforming properties of
MOZ-TIF2 in vivo, the MOZ-TIF?2 gene was cloned into the MSCV retro-
viral vector (see Fig. 1.2 in Chapter 1 for the viral vector structure); mouse bone
marrow cells transduced with the MOZ-TIF2 containing retrovirus were
transplanted into irradiated syngeneic mice (Deguchi et al., 2003). Recipients
receiving bone marrow transduced with either the MOZ-TIF2(1) or the MOZ-
TIF2(1I) variant fusion genes developed fatal hematopoietic malignant disease,
with high white blood cell (WBC) counts and splenomegaly. In addition, the
mice demonstrated the presence of peripheral blood and bone marrow blasts
and extensive tissue infiltration of organs including the liver, spleen, and lungs
by leukemic blasts (Deguchi et al., 2003). This study provides sufficient evidence
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showing that MOZ-TIF2, which is associated with human AML, induces
similar disease in mice.

Transgenic AML mouse model. A good example of transgenic AML model
is to express the CBFG—-SMMHC gene in mice. CBF—SMMHC resulted from
the inversion of chromosome 16 inv(16)(p13.1;1q22), which breaks and joins
the CBF[3 gene with the myosin gene M YH 11 (Liu et al., 1993, 1996) and causes
about 12% of human AML. To avoid embryonic lethality caused by expression
of the CBF3-SMMHC gene®'°, a conditional CBF3-SMMHC knock-in
mouse was generated to analyze the preleukemic effects of CBFB—SMMHC
in hematopoiesis and AML development in adult mice. The CBF-SMMHC
gene caused appearance of abnormal progenitor cells that are leukemic pre-
cursors. Mice expressing CBF—-SMMHC developed AML with a median
latency of approximately 5 months. Interestingly, the number of CBFp—
SMMHC-expressing hematopoietic stem cells (HSCs) was maintained at a
normal level, but their ability to differentiate into multiple lineages of blood
cells was severely impaired. This AML model is key for the study of early target
genes in progenitor cells and provides an in vivo validation system for studying
cooperative oncogenes and for testing candidate drugs for improved treatment
of AML.

Collaborative induction of AML with multiple oncogenes. 1t is generally
believed that multiple genetic alterations are required for the initiation and
progression of malignant diseases. There are many examples that show the
failure of a single AML-inducing oncogene to efficiently induce AML, as
evident by no induction of leukemia or induction of leukemia with low pene-
trance and long latency. Additional genetic events (secondary “hits”) are needed
to promote the pathogenesis of leukemia. In this case, coexpression of more
than one oncogene in the same hematopoietic progenitor cells helps to success-
fully induce human AML in mice.

The PML-RAPuq fusion oncogene is found in acute promyelocytic leukemia
(APL). APL comprises about 5-10% of cases of AML, and approximately 90%
of APL patients are associated with a balanced t(15;17)(q22:;q21) reciprocal
chromosomal translocation. This translocation results in the fusion of the PM L
gene on chromosome 15 to the retinoic acid receptor alpha (R4 Ra) gene on
chromosome 17, forming two new oncogenes, PML-RARa and RARo—PML.
The RARa gene encodes a hormone-inducible nuclear receptor that has been
shown to be involved in myeloid development (Collins et al., 1990; Dawson
et al., 1994; Onodera et al., 1995; Tsai and Collins, 1993). Both PML-RAR«
and RARo—PML play roles in APL phathogenesis.

To induce APL in mice, a transgene containing a human PML-RARa
cDNA under the control of sequence that regulates the promyelocyte-specific
expression of the human CG gene allows expression of PML-RARu in the
early myeloid cells of the transgenic mice (Grisolano et al., 1997). At the early
stage, these transgenic mice were found to have altered myeloid development
with an expansion of myeloid cells in their bone marrows and spleens. After a
long latent period, approximately 30% of the transgenic mice developed
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leukemia, with massive splenomegaly, high percentage of immature myeloid
cells in peripheral blood and bone marrow of the mice (Grisolano et al., 1997).
In addition, approximately 40% of human APL patients are found to contain
an activating mutation in the FLT3 gene, containing internal tandem duplica-
tion (ITD) in the juxtamembrane domain. ITDs in FLT3 (FLT3-ITD) are
found in 27% of all AML cases (Stirewalt et al., 2001; Yamamoto et al., 2001;
Yokota et al., 1997) and 37% of APL patients (Kottaridis et al., 2001). FLT3-
ITDs induce a myeloproliferative disease in a murine bone marrow transplan-
tation model but are insufficient to induce AML (Kelly et al., 2002b). This low
frequency and long latency of APL pathogenesis induced by PML-RARa or
FLT3-ITDs can be overcome by coexpression of both genes in the same animal.
In this model, bone marrow cells derived from hCG-PML-RARa transgenic
mice (Grisolano et al., 1997) were transducted with the FLT3-ITD retrovirus,
followed by transplantation of transduced cells into lethally irradiated syn-
geneic recipient mice. These recipients developed APL-like disease with com-
plete penetrance and a short latency. The pathogenesis of this disease resembles
the APL-like disease that occurs with a long latency in the PML/RARa
transgenic mice, suggesting that activating mutations in FLT3-ITD services
as the additional mutations in APL progression in the hCG-PML-RAR«a
transgenic mice.

Another example is the Ras oncogene. Ras mutations are commonly found
in AML. N-ras and K-ras mutations are found in 4 (Callens et al., 2005) and
10% of APL patients (Bowen et al., 2005), respectively. Overexpressing onco-
genic K-ras under the control of its endogenous promoter in the mouse hema-
topoietic system, K-ras induces a myeloproliferative disease, but it is not
sufficient to induce AML (Braun et al., 2004; Chan et al., 2004). To test whether
K-ras serves as a cooperative secondary genetic event in induction of AML,
LSL-K-ras G12D mice (Jackson et al., 2001), in which K-ras expression is
controlled by the conditional knock-in Lox-stop-Lox, were crossed with cathe-
psin G-PML-RARa mice (Grisolano et al., 1997) to generate LSL-K-ras
G12D "/ Jcathepsin G-PML-RARa "/~ mice (KP mice). Subsequently, these
mice were crossed with Mx-1-Cre mice (Kuhn et al., 1995) to generate triple-
transgenic LSL-K-ras G12D"/ /cathepsin G-PML-RARo "™ /Mx-1-Cre*/~
mice (KPM mice). K-ras expression was induced by deletion of the Lox-stop-
Lox with Cre, whose expression was induced with polyinosinic—polycytidylic
acid (pI-pC) (Chan et al., 2006). Mice expressing oncogenic K-ras and PML—
RARa developed an APL-like disease with a high penetrance and short latency
compared to cathepsin G-PML-RARa transgene mice (Chan et al., 2006).

Acceleration of AML development with a chemical mutagen. As pointed out
above, some oncogenes are, by themselves, insufficient to transform cells and
induce leukemia. However, genetic modifications or changes of the model-
making procedures, or the oncogene itself, or even mouse background would
dramatically increase the penetrance of leukemogenesis. Mouse model of
AMLI-ETO-induced AML is such an example.
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AMLI-ETO (also known as RUNXI1-ETO) is a fusion gene resulted from
translocation between chromosomes 8 and 21. The translocation is highly
associated with human AML and is present in up to 40% of leukemias of the
French—American—British M2 subtype (Hess and Hug, 2004). AMLI1 is a key
regulator of normal blood formation and is frequently altered in leukemias.
However, it has been difficult to clarify the role of AMLI1-ETO in leukemogen-
esis, because AMLI-ETO alone is not sufficient to cause AML, and AMLI1-
ETO transgene causes embryonic lethality (Okuda et al., 1998, 2000). To bypass
the embryonic lethality caused by AML1-ETO, conditional and inducible
transgenic models, and bone marrow transplantation system were used to
express AMLI1-ETO in mice; all these strategies were unable to reliably induce
AML even after 24 months (de Guzman et al., 2002; Fenske et al., 2004; Higuchi
etal., 2002; Rhoades et al., 2000), suggesting that induction of AML by AMLI1-—
ETO requires additional genetic events. However, when stem cells were trans-
duced with AMLI1-ETO and transplanted into lethally irradiated recipient
animals, the stem cell compartment expanded dramatically (de Guzman et al.,
2002). Similarly, direct targeting of AMLI-ETO expression to stem cells by
using the SCA-1 promoter enhanced myeloid progenitor expansion (Fenske
et al., 2004). These results imply that retroviral insertion sites or large numbers of
leukemia-initiating progenitors provide the additional “hits” for AMLI-ETO-
induced leukemia. To assess the ability of AMLI-ETO to induce leukemia in
the context of cooperating mutations, animals expressing AML1-ETO were
mutagenized with the alkylating agent N-ethyl-N-nitrosourea (ENU). In two
independent systems, mutagenized AMLI-ETO-expressing mice developed
myeloid leukemia or granulocytic sarcoma at frequencies greater than ENU-
treated wild-type animals (Higuchi et al., 2002; Yuan et al., 2001). These results
confirm that AML1-ETO predisposes a myeloid precursor population to cellular
transformation (Hess et al., 2004).

The AMLI-ETO mouse model provides an excellent assay system to inves-
tigate AML1-ETO downstream signaling pathways. AMLI-ETO was found
to suppress cell proliferation by inhibiting its targeting genes, including cyclin
D3 and CDK4 (Bernardin-Fried et al., 2004; Burel et al., 2001; Lou et al., 2000),
and impair cell cycle in the transition of G1 to S phase (Burel et al., 2001). In
addition, an AMLI1-ETO truncated protein (loss of C-terminal Nervy homol-
ogy regions 3 and 4 domain), which binds the corepressor complexes associated
with N-CoR (nuclear receptor corepressor) and SMRT (silencing mediator for
retinoid and thyroid hormone receptor) (Lutterbach et al., 1998), can induce
high penetrance of leukemia with a short disease latency (mean survival of 20
weeks) in the retroviral transduction/transplantation model (Yan et al., 2004).
In this study, the results also showed that expression of cyclin A and D3 was
increased in truncated AMLI-ETO-transformed cells compared with full-
length AMLI1-ETO-transformed cells. Taken together, these studies demon-
strate that AML1-ETO alone is not sufficient to cause leukemia, and additional
genetic changes that cooperate with AMLI-ETO are required for the
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development of AML. Obviously, AMLI-ETO mouse models of AML will be
helpful in study of genetic pathways involved in AML development.

Deletion of a tumor suppressor gene causes AML. Tumor suppressor genes
play critical roles in regulating biological properties of cells, including cell cycle
control, apoptosis, proliferation and differentiation, detecting and repairing
DNA damage, and protein ubiquitination and degradation (Sherr, 2004). Dele-
tions of tumor suppressor genes are associated with many types of tumors, and
examples of tumor suppressor genes are P53, RB, INK4a, ARF, APC, PTCH,
SAMAD4/DPC4, PTEN, TSC1/2, NF1, WT1, MSH2, MLHI, ATM, NBSI,
CHK2, BRCAI1/2, FA, and VHL (Sherr, 2004). The best AML model estab-
lished by the deletion of a tumor suppressor gene is the removal of the PTEN
gene in mice.

The PTEN gene was initially identified based on the observation that a loss
of heterozygosity (LOH) at 10q23 was frequently detected in a variety of human
tumors, and PTEN was later identified as the corresponding gene (Li et al.,
1997). Further studies indicate that PTEN suppresses tumor cell growth by
modulating G1 cell cycle progression through negatively regulating the PI3 K/
Akt signaling pathway, and a critical target gene of this pathway is the cyclin-
dependent kinase inhibitor p27 (KIP1) (Li and Sun, 1998). PTEN has been
found to be associated with a series of primary acute leukemias and non-
Hodgkin lymphomas (NHLs) as well as many tumor cell lines, and 40% of
these cell lines carried PTEN mutations or hemizygous PTEN deletions. On the
other hand, one-third of these cell lines had low PTEN transcript levels, and
60% of them had low or absent PTEN protein. Furthermore, a smaller number
of primary hematologic malignancies, in particular NHLs, carried PTEN
mutations (Dahia et al., 1999). To model AML induced by the deletion of the
PTEN gene,

Ptenfl/fl mice (Lessard and Sauvageau, 2003) were crossed with Ptenfl/+
mice carrying an Mx-1-Cre (Park et al., 2003) transgene to generate litters
containing Mx-1-Cre™ and Ptenfl/fl. PTEN deletion was induced by injection
of pI-pC to mice at weaning. After the induction of PTEN deletion, mice had an
increased representation of myeloid and T-lymphoid lineages in bone marrow
and developed myeloproliferative disorder. Notably, the cell populations that
expanded in PTEN-deficient mice matched those that became dominant in the
acute myeloid/lymphoid leukemia that developed in later stages of myelopro-
liferative disorder. This study demonstrates that PTEN has essential roles in
restricting the activation of HSCs, in lineage fate determination, and in the
prevention of leukemogenesis (Zhang et al., 2006).

2.2.2 Modeling Chronic Myeloid Leukemia-Like Diseases

Chronic myeloid leukemia (CML) is represented by myeloproliferative disease
induced by the BCR-ABL oncogene that results from the t(9;22)(q34;q22)
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chromosomal translocation. Other CM L-like diseases are induced by the fusion
genes TEL/PDGFBR (Golubet al., 1994), TEL/ABL (Golub et al., 1995), TEL/
JAK?2 (Lacronique et al., 1997), and H4/PDGFBR (Kulkarni et al., 2000;
Schwaller et al., 2001), which are associated with t(5;12)(q33;p13),
t(9;12)(q34;p13), t(9;12)(p24;p13), and t(5;10)(q33;q11.2) translocations,
respectively. These fusion genes encode constitutively activated tyrosine kinases
and are sufficient to induce myeloproliferative diseases in mice (Daley et al.,
1990; Schwaller et al., 1998; Tomasson et al., 2000). Because BCR-ABL
oncogene is associated with over 95% of human CML, we describe BCR-
ABL-induced mouse CML models in detail in Chapter 7.

2.2.3 Modeling Acute Lymphoblastic Leukemia

ETV6/RUNXI1 (TEL/AMLI1) results from a t(12;21)(p13;q22) chromosomal
translocation and is the most common known gene rearrangement in childhood
cancer. Twenty-seven percent of childhood ALL samples contain an ETV6/
RUNXI1 fusion transcript detected by the PCR screening. RUNX1 is a member
of the heterodimeric core-binding factor (CBF) family of transcription factors
and has been shown to regulate a number of genes relevant to myeloid and
lymphoid development (Tenen et al., 1997). RUNX1 contains conserved Runt
homology domain (RHD) in the N-terminal half, which can bind to DNA, and
this DNA-binding activity is enhanced by interaction with the C-terminal
portion of the CBF beta subunit (Fenrick et al., 1999; Kitabayashi et al.,
1998; Levanon et al., 1998; Meyers et al., 1993). Recruitment of the AMLI1
complex to the enhancers of its target genes can be direct or cooperatively with
other proteins (Pabst et al., 2001). ETV6 protein contains a helix-loop-helix
(HLH) motif and an ETS DNA-binding domain. 12p13 translocations and
deletions are highly associated with childhood ALL, suggesting that there is a
tumor suppressor gene that is disturbed by these chromosomal changes.
Detailed examination shows that the critically deleted region includes two
candidate suppressor genes: ETV6 and KIP (Stegmaier et al., 1995). ETV6/
RUNXI1 forms homodimers and forms heterodimers with the normal ETV6
protein when the two proteins were expressed together (Hess and Hug, 2004).
Besides ETV6/RUNXI1, ETV6 variably forms fusion genes with other genes,
including ETV6/M NI (Raynaud et al., 1996), ETV6/AMLI (Ford et al., 1998),
ETV6/JAK2 (Schwaller et al., 2000), ETV6/ARNT (Salomon-Nguyen et al.,
2000b), ETV6/MDS2 (Odero et al., 2002), ETV6/PERI, and ETV6/ABL
(Papadopoulos et al., 1995).

To elucidate the mechanism of lymphoid transformation by ETV6/RUNXI,
the ETV6/AMLI1 coding region was inserted into retroviral vector to allow
expression of ETV6/AMLI in linecage-negative donor bone marrow cells in
mice (Fischer et al., 2005). Although mice receiving ETV6/RUNX1-transduced
bone morrow cells did not develop B cell ALL, ETV6/RUNXI1 perturbed B-cell
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differentiation by increasing the proportion of pro-B cells with low level of
mature lymphoid cells in the blood and spleen, which is consistent with human
precursor B cell ALL at an early stage. This mouse ALL model can be used for
studying the mechanism of early stage of ETV6/RUNXI1-induced ALL. Appar-
ently, better disease models need to be developed with ETV6/RUNX1 or other
ETV6-related fusion genes to study the molecular basis of ALL.

2.2.4 Modeling Chronic Lymphocytic Leukemia

CLL is a common type of leukemia. There are about 10,000 new CLL cases in
United States every year (Bichi et al., 2002; Landis et al., 1998), and CLL
accounts for almost 30% of all adult leukemia cases. Most cases of CLL are
of B-cell origin, and a few are of T-cell origin. B-CLL is believed to be derived
from CD5" B lymphocyte through clonal expansion. Several common genomic
abnormalities in CLL have been identified, and TCL1 is involved in the patho-
logenesis of CLL. The TCLI gene locates at chromosome 14q32.1 (Virgilio
et al., 1994) and is commonly activated by inversions or translocations that
juxtapose it to a T-cell receptor locus at 14q11 or 7q35. TCL1 has been found to
be overexpressed in sporadic and ataxia telangiectasia-associated T-prolym-
phocytic leukemia (T-PLL) (Narducci et al., 1997; Thick et al., 1996). TCLI1 is
also highly expressed in a broad variety of human tumor-derived B-cell lines
and in many cases of B-cell neoplasias (Narducci et al., 2000; Takizawa et al.,
1998). To elucidate the role of TCL!I in B-cell development and in B-cell
leukemia pathogenesis, TCL1 transgenic mouse has been generated by cloning
human TCLI coding region into the pPBSVE6BK (pEp) plasmid containing a
mouse VH promoter (V186.2) and the IgH-p enhancer along with the 3'-
untranslated region and the poly(A) site of the human beta-globin gene, fol-
lowed by injecting the 7CL/-containing construct free from vector sequences
into fertilized oocytes from B6C3 mice. In this model, TCLI was under the
control of a promoter and enhancer whose activity specifically targets expres-
sion of the TCL! transgene to the B-cell compartment. Epn-TCL1 transgenic
mice developed a disease similar to human CLL. The mice first developed a
preleukemic phenotype and later developed a frank leukemia with all charac-
teristics of CLL (Bichi et al., 2002).

TNF receptor-associated factors (TRAFSs) are a family of adapter proteins
that link TNF-family receptors (TNFRs) to intracellular signaling pathways.
It has been demonstrated that TRAF-family members participate in signal-
ing cascades involved in gene expression, cell proliferation, and control of
apoptosis. Elevated expression of some TRAF-family proteins, in particular
TRAF]I, is found in hematopoietic malignancies such as CLL and NHL (Mun-
zert et al., 2002; Zapata et al., 2000). A study shows that TRAF1 and TRAF2
mediated apoptosis protection (Arron et al., 2002; Lin et al., 2003; Wang et al.,
1998), suggesting that these TRAF family members could participate in the
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apoptosis-resistant phenotype of CLL and NHL. To model TRAF-mediated
CLL, transgenic mice, which expressed in lymphocytes a TRAF2 mutant lack-
ing the RING and zinc finger domains located at the N-terminus of TRAF2
(TRAF2DN), developed splenomegaly and lymphadenopathy, as a result of a
polyclonal expansion of B lymphocytes (Lee et al., 1997). In addition, trans-
genic mouse expressing Bel-2 in B lymphocytes developed age-dependent lym-
phadenopathy and splenomegaly (Katsumata et al., 1992), associated with
lymphoid cell expansions resembling certain human low-grade B-cell malignan-
cies (Katsumata et al., 1992; Strasser et al., 1993). When both TRAF2DN and
Bcl-2 transgenic mice were crossed to generate double transgenic mice, the
double homozygous mice develop an age-dependent B-cell leukemia and lym-
phoma, with striking similarities to human CLL. These findings also provide
direct evidence that TRAFs contribute to CLL development and that the high
coexpression levels of TRAF1 and Bcl-2 commonly found in human CLL
contribute to the pathogenesis of this leukemia (Zapata et al., 2000).

2.3 Conclusion

Although many mouse models of human blood cancers (Table 2.1) are available
for the study of disease mechanisms and the development of new therapeutic
strategies, improvements are needed to more accurately mimic human blood
cancers. On the other hand, mouse models of many types of human leukemia
induced or accelerated by fusion genes and other mutated genes are not yet
available (Table 2.1), and generation of these disease models will be of impor-
tant value.
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