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Chapter 2
Oscillations and Fourier Analysis

2.1 Oscillatory Motion in Matter

A universal property of material objects is their ability to vibrate, whether the
vibration results in an audible sound, as in the ringing of a bell, or is subtle and
inaudible, as the motion in a quartz crystal. It can be a microscopic oscillation on
an atomic scale, or as large as an earthquake. Oscillations in any part of an extended
object or medium with undefined boundaries almost always propagate as waves.

If any solid object is struck with a sharp blow at some point, vibrations spread
throughout the body, and waves are set up in the surrounding medium. If the
medium is air, and we are within hearing range, the waves fall on our eardrums and
are perceived as a loud sound, whose quality experience teaches us to differentiate
according to the kind of object and the way it was struck. Unless the shape of the
body and the way it was struck satisfy very particular conditions, the sound pro-
duced will be far from a pure tone. The sounds produced by different objects are
recognizably different; even if we play the same note on different musical instru-
ments, the quality of the sound, or timbre, as musicians call it, is different. It is a
remarkable fact, first fully appreciated by Alexander Graham Bell, that just from
the rapidly fluctuating air pressure of a sound wave falling on our eardrums we
are able to construct what we should call an “acoustic image.” That is, we are
able to sort out and recognize the various sources of sound whose pressure waves
have combined to produce a net complex wave pattern falling on the eardrum.
To really appreciate how remarkable this facility is, imagine that a microphone is
used to convert the complex fluctuations of pressure into an electrical signal that is
connected through appropriate circuits to an oscilloscope, and you watched these
fluctuations on the screen. Now, without being allowed to hear the sounds, imagine
trying to recognize, just from the complex pattern, a friend’s voice, or even that it
is a human voice at all.

The reason that oscillatory motion is so universally present stems from two
fundamental properties of matter. First, objects as we normally find them are in
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24 The Quantum Beat

stable equilibrium; that is, any change in their shape brings into play a force to
restore the undisturbed shape. Second, all objects have inertia; that is, once a body
or part of a body has been set in motion, it will tend to continue in that state, unless
forces are impressed upon it to change its state; this is the well-known first law
of motion of Newton. It follows that when, for example, an external force causes
a momentary displacement from equilibrium, the restoring force arising from the
body’s inherent equilibrium will cause the affected part of the body not only to
return to the undisturbed state, but, because of inertia, to overshoot in the other
direction. This in turn evokes again a restoring force and an overshoot, and so on.

2.2 Simple Harmonic Motion

The simplest form of oscillatory motion is simple harmonic motion, as exemplified
by the swinging of a pendulum. This will ensue whenever a physical system is
displaced from stable equilibrium by a sufficiently small amount that the restoring
force varies nearly linearly with the displacement. Thus a Taylor expansion of the
energy U in terms of a small displacement ξ about the point of stable equilibrium
yields the following:

U = U0 + a2ξ
2 + a3ξ

3 + . . . (a2 > 0), 2.1

and for sufficiently small ξ the restoring force F = −dU/dξ may be taken as linear
in the displacement. It follows that the equation of motion is given by

d2ξ

dt2 + 2a2

m
ξ = 0 (a2 > 0), 2.2

which has the well-known periodic solution

ξ = ξ0 cos
[
ωt + φ0

]
2.3

characterized by a unique (angular) frequency ω, amplitude ξ0 and initial phase φ0.
In a useful graphical representation, the displacement ξ is the projection onto a
fixed straight line of a radius vector ξ0 rotating with constant angular velocity ω;
the quantity (ωt + φ0) is then the angular position of the radius vector, giving
the phase of the motion. Such a representation is a phasor diagram, illustrated in
Figure 2.1.

As a corollary, or simply by rewriting the solution in exponential form, it
follows that the motion is the sum of two phasors of equal length rotating in oppo-
site directions, thus

ξ = ξ0

2
e+i(ωt + ϕ0) + ξ0

2
e−i(ωt + ϕ0). 2.4

In the assumed linear approximation of the equation of motion, if ξ1 and ξ2 are two
solutions of the equation, then any linear combination (aξ1 + bξ2), where a and b
are constants, is also a solution.
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Figure 2.1 Simple harmonic motion as a projection of uniform circular motion: phasor
diagram

If the next higher term in the expansion of U is retained, we are led to a non-
linear (or anharmonic) oscillator. The prototypical example is the pendulum when
the finite amplitude of oscillation is treated to a higher order of approximation than
the simple linear one. Thus the exact equation of motion, expressed in terms of the
angular deflection of the pendulum θ, is nonlinear, as follows:

l
d2θ
dt2 + g sin θ = 0. 2.5

If θ � 1, we may expand sin θ in powers of θ to obtain a higher-order approxima-
tion to the equation of motion than the linear one. Thus

l
d2θ
dt2 + g

(
θ − 1

6
θ3

)
= 0. 2.6

Assume now that the amplitude of the motion is θ0, so that in the linear approx-
imation the solution would be θ0 cos (ω0t + φ0), where ω0 = √

(g/ l). We can
obtain an approximate correction to the frequency by using the method of succes-
sive approximation; this we do by assuming the following approximate form for
the solution:

θ = θ0 cos ωt + ε cos 3ωt, 2.7

On substituting this into the equation of motion and setting the coefficients of cos ωt
and cos 3ωt equal to zero, we find the following:

ω = ω0

(

1 − θ2
0

16

)

; ε = 1
3

(
θ0

4

)3

(θ0 � 1), 2.8

which shows that the pendulum has a longer period at finite amplitudes than the
limit as the amplitude approaches zero.

In the simple pendulum the suspended mass is constrained to move along the
arc of a circle. It was this motion that Galileo thought to have the property of
isochronism (or tautochronism), that is, requiring equal time to complete a cycle
starting from any point on the arc. In fact, the mass must be constrained along a
cycloid, the figure traced out by a point on a circle rolling on a straight line, rather
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26 The Quantum Beat

than a circle, in order to have this property. A more famous, related problem, one
first suggested and solved by Bernoulli and independently by Newton and Leibnitz,
has to do with the curve joining two fixed points along which the time to complete
the motion is a minimum with respect to a variation in the curve; again the solution
is a cycloid.

Attempts in the early development of pendulum clocks to realize in practice the
isosynchronism of cycloidal motion were soon abandoned when it became apparent
that other sources of error were more significant. In any event, in order to maintain
a constant clock rate it is necessary only to regulate the amplitude of oscillation.

We should note that the presence of the nonlinear term in the equation of
motion puts it in a whole different class of problems: those dealing with non-
linear phenomena. One far-reaching consequence of the nonlinearity is that the
solution will now contain, in addition to the oscillatory term at the fundamen-
tal frequency ω, higher harmonics starting with 3ω. We will encounter in later
chapters electronic devices of great practical importance whose characteristic
response to applied electric fields is nonlinear.

2.3 Forced Oscillations: Resonance

Although our main concern will be the resonant response of atomic systems, requir-
ing a quantum description, some of the basic classical concepts provide at least a
background of ideas in which some of the terminology has its origins.

Imagine an oscillatory system, such as we have been discussing, having the fur-
ther complication that its energy is slowly dissipated through some force resisting
its motion. This is most simply introduced phenomenologically into the equation
of motion as a term proportional to the time derivative of the displacement. The
response of such a system to a periodic disturbance is governed by the following
equation:

d2ξ

dt2 + γ
dξ

dt
+ ω2

0ξ = α0eipt , 2.9

which has the well-known solution

ξ = α0√(
ω2

0 − p2
)2 + γ2 p2

ei(pt−φ) + ξ0e− γ
2 l e+i(ωt+�), 2.10

where φ = arctan [γp/(ω0
2 − p2)] and ω =

√
ω2

0 − γ2/4. The important feature of
this solution is, of course, the resonantly large amplitude of the first term, the par-
ticular integral, at ω0 = p; but an equally significant point is that its phase, unlike
that of the second natural oscillation term, bears a fixed relationship to that of the
driving force. This means that if we have a large number of identical oscillators
initially oscillating with random phases, and they are then subjected to the same
driving force, the net global disturbance will simply be the sum of the resonant
terms, since the other terms will tend to average out.
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2.3.1 Response near Resonance: the Q-Factor

In order to analyze the behavior near resonance of a lightly damped oscillator for
which γ � ω0, let us assume that p = ω0 +�, where � � ω0. Then we can write
the following for the amplitude and phase of the impressed oscillation:

A = α0

2ω0

1
√

�2 + ( γ
2

)2
; φ = arctan

(
− γ

2�

)
, � � ω0, 2.11

which, when plotted as functions of �, show for the amplitude the sharply peaked
curve characteristic of resonance, falling to 1/

√
2 of the maximum at � = −γ/2

and � = +γ/2, and for the phase, the sharp variation over that tuning range from
π/4 to 3π/4, passing through the value φ = π/2 at exact resonance when � = 0.
A measure of the sharpness of the resonance, a figure of merit called the Q-factor,
is defined as the ratio between the frequency and the resonance frequency width γ.
Thus

Q = ω0

γ
. 2.12

An equally useful result is obtained by relating Q to the rate of energy dissipation
by the oscillating system. Thus from the equation of motion of the free oscillator
we find after multiplying throughout by dξ/dt the following:

d
dt

[
1
2

(
dξ

dt

)2

+ 1
2
ω2ξ2

]

= −γ
(

dξ

dt

)2

, 2.13

from which we obtain by averaging over many cycles (still assuming a weakly
damped oscillator) the important result

d〈Utot 〉
dt

= −2γ〈Uk〉; 〈Uk〉 = 1
2
〈Utot 〉, 2.14

From this follows the important result that we shall have many occasions to quote
in the future:

Q = ω0
〈U 〉
d〈U 〉

dt

. 2.15

Associated with the rapid change in amplitude is, as we have already indicated,
a rapid change in the relative phase between the driving force and the response it
causes. This interdependence between the amplitude and phase happens to be of
particular importance in the classical model of optical dispersion in a medium as
a manifestation of the resonant behavior of its constituent atoms to the oscillating
electric field in the light wave.

As we shall see in the next chapter, the sharp change in the phase φ as a func-
tion of frequency near resonance is of critical importance to the frequency stability
of an oscillator, wherever the resonance is used as the primary frequency-selective
element in the system. An important quantity from that point of view is the change
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Figure 2.2 Amplitude and phase response curves versus frequency for a damped oscillator

in the phase angle produced by a given small detuning of the frequency from exact
resonance. Figure 2.2 shows the approximate shapes of typical frequency-response
curves. If we make the crude approximation that the phase varies linearly in the
immediate vicinity of resonance, then since φ varies by π radians as the frequency
is tuned from −γ/2 to γ/2, it follows that the change in phase �φ is given approxi-
mately by the following:

�φ = (ω0 − ω)

γ
π. 2.16

We note that having a very small γ, or equivalently, a very small fractional line
width, favors a small change in frequency accompanying any given deviation in
phase; and it is the phase that is susceptible to fluctuation in a real system.

2.4 Waves in Extended Media

In a region of space where a momentary disturbance takes place, whether among
interacting material particles, as in an acoustic field, or charged particles in an
electromagnetic field, such a disturbance generally propagates out as a wave. A
historic example is the first successful effort to produce and detect electromagnetic
waves as predicted by Maxwell’s theory. Heinrich Hertz, at the University of Bonn,
detected electromagnetic waves radiating from a “disturbance” in the form of a
high-voltage spark. One of the physical conditions found in the propagation of a
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2. Oscillations and Fourier Analysis 29

disturbance as a wave is a delay in phase between the oscillation at a given point
and that at an adjacent point along the direction of propagation; this is inevitably
associated with a finite wave velocity.

The simplest case to analyze is that of transverse waves on a stretched string. It
is evident in this case that the net force on a small element of the string depends on
the difference between the directions of the string at the two ends of the given
small segment and therefore depends on the curvature of the string. It follows
by Newton’s second law that the acceleration of this segment is proportional to
the curvature; or stated symbolically, we have the well-known form of the (one-
dimensional) wave equation:

T
∂2 y
∂x2 − ρ

∂2 y
∂t2 = 0, 2.17

where T and ρ are constants, the tension and linear density of the string. If we
rewrite the equation as

∂2 y
∂x2 − 1

V 2
∂2 y
∂t2 = 0, 2.18

we can verify that a general solution, called D’Alembert’s solution, can be written
as follows:

y = f1(x − V t) + f2(x + V t), 2.19

where f1 and f2 are any (differentiable) functions, the first of which represents a
disturbance traveling with a velocity V in the positive x direction, while the other is
one traveling in the opposite direction, without change of shape: This is ultimately
because V was assumed to be a constant.

In the case of the electromagnetic field, Maxwell’s theory, the triumph of
nineteenth-century physics, predicts that the electric and magnetic field vectors
E and B propagate in a medium characterized by the electric permittivity ε and
magnetic permeability µ according to the following wave equation expressed with
reference to a Cartesian system of coordinates x , y, z:

∂2 Ex

∂x2 + ∂2 Ex

∂y2 + ∂2 Ex

∂z2 − εµ
∂2 Ex

∂t2 = 0, 2.20

with similar equations for the other components. It follows that for an unbounded
uniform medium, the velocity of propagation V = 1/

√µε is a constant, which in a
vacuum has a numerical value in the MKS system of units of 2.9979 . . . ×108 m/s.

The simplest solutions to the wave equation in an unbounded medium have a
simple harmonic dependence on the coordinates and time, which in one dimension
may be written in the form

Ey = E0 sin(kz − ωt + φ). 2.21

where k is the magnitude of the wave vector, ω is the (angular) frequency, and φ is
an arbitrary phase.
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The surfaces of constant phase, defined by (kz − ωt) = constant, travel with
the velocity V given by V = ω/k. If we write, as is conventionally done, V = c/n
where c is the velocity of light in vacuo, then the quantity n, originally defined for
frequencies in the optical range, is the refractive index that appears in Snell’s law.
This is the velocity of propagation only of the phase of a simple harmonic wave
having a single frequency; for any more complicated wave, it becomes necessary to
stipulate exactly what it is that the velocity refers to. Clearly, the concept of a wave
velocity has meaning only if some identifiable attribute of the wave is indeed trav-
eling with a well-defined velocity. If, for example, the wave has only one large crest
like the bow wave of a ship traveling with sufficient speed, then the velocity with
which that crest travels can differ from the phase velocity if the particular medium
is dispersive, that is, if the phase velocity is a function of the frequency. This is
readily seen if we recall that such a waveform can be thought of as a Fourier sum
of simple harmonic waves, which now are assumed to travel at different velocities.
In fact, there is no a priori reason for the wave to preserve its shape as it pro-
gresses; if it does not, the whole notion of wave velocity loses meaning. However,
under some conditions a group velocity given by V = dω/dk can be defined for a
wave packet. More will be said about dispersive media in the next section.

It will be useful to review some of the fundamental properties of waves. With-
out going into great detail in the matter, we will simply state that at a boundary
surface, where there is an abrupt change in the nature of the medium, waves will
be partially reflected, and partially transmitted with generally a change in direc-
tion, that is, refraction, governed by Snell’s law. The geometric surface joining all
points that have the same phase is the wavefront, and in an unbounded medium the
wavefront will advance at each point along the perpendicular to the surface, called
a ray at that point.

If there is an obstruction in the medium, that is, a region where, for example,
the energy of the wave is strongly absorbed, the waves will “bend around corners”:
the phenomenon of diffraction. This, it may be recalled, was the initial objection
to the wave theory of light, an objection soon removed by the argument that the
wavelength of light is extremely small compared with the dimensions of ordinary
objects, and that diffraction is small under these conditions. The analysis of dif-
fraction problems is based on Huygens’s principle, as given exact mathematical
expression by Kirchhoff, who showed that the solution to the wave equation at a
given field point can be expressed as a surface integral of the field and its derivatives
on a geometrical surface surrounding the field point. The evaluation of that sur-
face integral is made tractable in the case of optical diffraction around large-scale
objects by the smallness of the wavelength, which justifies a number of approxi-
mations. If an incident wave is delimited, for example by the aperture of an optical
instrument or the antenna of a radio telescope, the field, of course, is nonzero only
over the surface of the aperture, and the integral is simply over that surface. Appli-
cation of the theory to the important case of a circular aperture under conditions
referred to as Frauenhoffer diffraction, where the diffracted wave is brought to a
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focus onto a plane, yields the following result for the intensity distribution in the
focal plane:

I = 4I0
J 2

1 (ka sin θ)

k2a2 sin2 θ
, 2.22

where a is the radius of the aperture and θ is the inclination of the direction of
the field point with respect to the system axis. The Bessel function J1 (ka sin θ)
oscillates as the argument increases, implying an intensity pattern that consists of
a central disk, called the Airy disk, surrounded by concentric bands that quickly
fade as we go out from the center. Since the first zero of the Bessel function occurs
when its argument is about 3.8, the radius of the Airy disk is therefore given by

sin θ ≈ θ ≈ 3.8
ka

= 1.2
λ
D

. 2.23

In the approximation where ray optics are used, the image in the focal plane would
of course have been a geometrical point.

2.5 Wave Dispersion

Another fundamental wave phenomenon is dispersion, the same phenomenon that
was made manifest by Isaac Newton in his classic experiment on the dispersion of
sunlight into its colored constituents using a glass prism. It occurs when the refrac-
tive index varies from one frequency to another; this can occur only in a material
medium, never in vacuum, at least according to Maxwell’s classical theory. The
dispersive action of nonmagnetic dielectric materials is wholly due to the frequency
dependence of the electric permittivity ε; this ultimately derives from the frequency
dependence of the dynamical response of the molecular charges in the medium to
the electric field component in the wave. This is a problem in quantum mechanics.
However, H.A. Lorentz was able on the basis of his electron theory to account,
at least qualitatively, for the gross features of the phenomenon. He assumed that
the atomic particles exhibited resonant behavior at certain natural frequencies of
oscillation and that the damping arises from interparticle collisions interrupting the
phase of the particle oscillation.

According to this model, the oscillating electric field in the wave induces
an oscillating polarization in each of the atomic particles with a definite phase
relationship to the field, leading to a total global polarization, which for field vec-
tors with the time dependence exp(−iωt) adds a resonant term to the permittivity,
as follows:

ε =
[

1 + σ2

ω2
0 − ω2 − iγω

]

ε0. 2.24
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where σ is a measure of the atomic oscillator strength. It follows that the (complex)
refractive index n is given by

n = c
V

= c

√√√√ε0µ0

[

1 + σ2

ω2
0 − ω2

0 − iγω

]

, 2.25

from which we finally obtain, assuming that σ is small,

n = 1 + σ2

2
(ω2

0 − ω2)

(ω2
0 − ω2)2 + γ2ω2

+ i
σ2

2
γω

(ω2
0 − ω2)2 + γ2ω2

· 2.26

Finally, substituting this result in the assumed (complex) form for the plane
wave solution,

Ex = E0ei(nkz−ωt), 2.27

we see that the real part of n determines the phase velocity and hence the dis-
persion, while the imaginary part yields an exponential attenuation of the wave
amplitude, corresponding to absorption in the medium, provided that γ is a posi-
tive number. This shows explicitly how the real and imaginary parts of the atomic
response determine the frequency dependence of the real and imaginary parts of
the complex propagation constant through the medium, that is, of the refractive
index and absorption of the wave. The complex propagation constant, as a function
of frequency, exhibits a relationship between the real and imaginary parts that is
an example of a far more general result that finds expression in what are called the
Kramers–Kronig dispersion relations. It is far beyond the scope of this book to do
more than mention that in a relativistic theory these relations are involved with the
question of causality and the impossibility of a signal propagating faster than light.

2.6 Linear and Nonlinear Media

So far we have considered media that are linear, which means in the case of
acoustic waves that a stress applied at some point produces a proportional strain;
and conversely, a displacement from equilibrium brings about a proportional restor-
ing force, resulting in simple harmonic motion. In the case of electromagnetic
waves the classical theory leads to strictly linear equations in vacuo. A linear
medium has an extremely important property: It obeys the principle of super-
position. This states roughly that if more than one wave acts at a certain point, the
resultant wave is simply the (vector) sum of these. At first, this may sound like pure
tautology. The real meaning of the statement is that it is valid to talk about several
waves being present simultaneously at a certain point as if they were individual
entities that preserve their identity at the point where they overlap. A corollary
is that in a linear medium, a wave is unchanged after it passes a region of over-
lap with another wave. According to classical theory, two light beams, no matter
how powerful, intersecting in a vacuum will not interact with each other: each
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emerges from the point of intersection as if the other beam were not there. In the
realm of quantum field theory, however, it is another story: The vacuum state is far
from “empty”!

However, it is possible to increase the strength of a disturbance in a mater-
ial medium to such a point that the medium is no longer linear, and the principle
of superposition no longer valid. Waves would then interact through the medium
with each other, generating other waves at higher harmonic frequencies. We have
already seen this in the case of the pendulum, where the presence of a nonlin-
ear (third-degree) term in the equation of motion led to the presence of a third
harmonic frequency.

In the more important circumstance where the field equations describing
propagation through a given medium have a significant quadratic term, as in the
frequency mixing devices we shall encounter later, two overlapping waves of
frequencies ω1 and ω2 would interact, and the total solution would include the
following:

α
[
E1(t) + E2(t)

]2 = αE2
1 cos2(ω1t

) + αE2
2 cos2(ω2t

)

+ 2αE1 E2 cos
(
ω1t

)
cos

(
ω1t

) + . . . 2.28

Using the trigonometric identities:

cos2(ωt
) = 1

2

[
cos (2ωt) + 1

]
,

cos
(
ω1t

)
cos

(
ω2t

) = 1
2

[
cos

(
ω1 + ω2

)
t + cos

(
ω1 − ω2

)
t
]
, 2.29

we see that with the assumed degree of nonlinearity, the second harmonic as well
as the sum and difference frequencies appear in the output. By suitable filtering,
any one of these frequency components can be isolated. We will have occasion to
discuss in a later chapter the use of nonlinear crystal devices to produce intercom-
bination and harmonic frequencies in the radio frequency and optical regions of the
spectrum.

2.7 Normal Modes of Vibration

When waves are set up in a medium with a closed boundary surface, there will be
reflections at different parts of the boundary, with the possibility of multiple reflec-
tions in which reflected waves are themselves reflected from opposing surfaces, all
combining to produce a resultant wave pattern. If the medium is linear, the problem
of finding the resultant is simply a matter of summing over the individual waves. It
is one of the fundamental characteristics of waves that the resultant amplitude at a
given point can be large or small depending on the relative phase of the combining
waves at that point, producing an interference pattern.

Let us consider a homogeneous medium with a pair of parallel planes forming
part of its boundary surfaces; the remainder of the boundary is immaterial. Let us
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assume that a disturbance has been created at some point in this medium, giving
rise to a wave that will travel out and be reflected by each of the plane boundary
surfaces, return to the opposite surfaces, and be reflected again to pass through the
initial point. The total distance traversed in making this round trip will be the same
for all initial points and equal to twice the distance between the plane boundary
surfaces. If this distance happens to be equal to a whole number of wavelengths of
the wave, the waves arriving back at any initial point will, after an even number
of reflections, be in phase with the initial disturbance, and the wave amplitude will
build up at all points, as long as the external excitation continues. By contrast, if the
round trip distance is not a whole number of wavelengths, the reflected waves will
not be in phase with the exciting source, nor with waves from prior reflections, and
the resultant of many even slightly out of phase waves will be weak and evanes-
cent. Note that it is not necessary that the phase difference be near 180◦ to lead to
cancellation and a weak resultant wave; even a small difference in phase produced
in each round trip will accumulate after many successive reflections to result in the
presence of waves having a phase ranging from 0◦ to 360◦. In that event, for every
wave of a given phase, there will be another wave 180◦ out of phase with it, leading
to cancellation.

The condition for a buildup of the wave can be simply stated as follows:

2L = nλn, 2.30

where n is any positive integer. This allows us to calculate the corresponding fre-
quencies νn = V/λn = nV/2L . Thus if we know the wave velocity V in the
given medium and the distance between the reflecting surfaces, we can predict
that certain frequencies of excitation will find a strong response, while any other,
even neighboring, frequencies will not do so. Since n can be any whole number,
there is an infinite number of frequencies forming a discrete spectrum, in which
the frequencies have separate, isolated values, as opposed to a continuous spec-
trum in which frequency values can fall arbitrarily close to each other and merge
into a continuum. The simplicity of the result, that the frequencies in the spec-
trum are whole multiples of the fundamental frequency V/2L , is due to the simple
geometry of two plane reflecting surfaces in a homogeneous medium. However,
even for more complicated geometries, part of the spectrum may still be discrete;
but the frequencies will not necessarily be at equal increments.

To further elaborate on these basic concepts, let us consider another system, one
that better lends itself to graphical illustration: a vibrating string stretched between
two fixed points. Note that we can think of the fixed points merely as points where
the string joins another string of infinite mass, and therefore we can regard the
fixed points as the “boundaries” between two media. It has a discrete spectrum
consisting of a fundamental frequency ν = V/2L and integral multiples of it called
harmonics. In a musical context the harmonics above the first are called overtones,
whose excitation determines the quality of the sound. These are the frequencies of
the so-called normal modes of vibration of the string, shown in Figure 2.3.
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Figure 2.3 The natural modes of vibration of a stretched string

Each can be excited by applying an external periodic force, and the ampli-
tude resulting from such excitation is qualitatively easy to predict: it is essentially
zero unless the frequency is in the immediate neighborhood of one of the nat-
ural frequencies. At that point, the amplitude would grow indefinitely if it were
not for frictional forces, or the onset of some amplitude-dependent mechanism
to limit its growth. This phenomenon is of course resonance, which provides a
method of determining the normal mode frequencies of oscillation of the system.
At other frequencies the buildup of excitation is weak because of the mismatch in
phase, as already described. Just how complete the cancellation will be depends
on the highest number of reflections represented among the waves contributing
to the resultant. It may be said approximately that for complete cancellation, the
number of waves must be large enough that phase shifts spanning the entire 360◦
will be present. Now, the increment in phase per round trip is 360 (�ν · 2L/V )
degrees, where �ν is a small offset in frequency from one of the discrete frequen-
cies in the spectrum. Thus for cancellation, we require a number N of traversals
such that N · 360 (�ν · 2L/V ) = 360; that is, �ν · 2NL / V = 1. But 2NL / V is
simply the total time the wave has traveled back and forth, which in reality will be
limited by internal frictional loss of energy in the string and imperfect reflections at
the end points. Thus if we write �τ for the mean time it takes the wave to become
insignificant, then the smallest �ν for cancellation is given by �ν · �τ ≈ 1; a
smaller frequency offset gives only partial cancellation. This implies that in deter-
mining the frequency of resonance there is effectively a spread, or uncertainty, in
the result if the measurement occupies a finite interval of time. This result, arrived
at in a simple-minded way, hints at a much more general and fundamental result
concerning uncertainties in the simultaneous observation of physical quantities: the
now famous Heisenberg Uncertainty Principle. This principle applies to the simul-
taneous measurement of such quantities as frequency and time, which are said to
be complementary, for which a determination of the frequency implies a finite time
to accomplish it. Therefore, by its very nature, we cannot specify the frequency of
an oscillation at a precise instant in time. To quantify this idea requires a precise
definition of “uncertainty” in a physical measurement, which Heisenberg did in the
context of quantum theory.
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2.8 Parametric Excitations

The most often cited and certainly most dramatic example of the effects of
resonance is the collapse of the suspension bridge across the Tacoma Narrows
in Washington State, USA. Although its failure was due to violent oscillations,
there was no external periodic force acting on it, but rather a buildup of what are
called parametric oscillations, much like the fluttering of (venetian) window blinds
in a steady wind. Such oscillations are characterized by a buildup resulting from
some dynamic parameter varying in a particular way within each cycle.

There is another interesting phenomenon, in which a steady stream of air
excites sound vibrations in a stretched string: the aeolian (from the Greek aiolios,
wind) harp or lyre. This is a stringed instrument consisting of a set of strings of
equal length stretched in a frame. When a steady air current passes over the strings,
it emits a musical tone. The mechanism by which this occurs is rather subtle, as
shown by the observed fact that the pitch of the tone does not seem to depend on
the length or tension in the string, which would certainly be the case if it were
simply a matter of the resonant frequencies being excited. It is observed, however,
that if the resonant frequencies of the strings are made to equal the tone produced
by the wind, the sound is greatly reinforced. The pitch of the sound depends on
the velocity of the wind and the diameter of the string. According to Rayleigh, the
great nineteenth-century physicist, noted for his theory of sound, the sound arises
from vortices (eddies) in the air produced by the motion of air across the strings.

The simplest example of parametrically driven oscillations is the “pumping” of
a child’s swing, in which the child extends and retracts its legs, thereby varying the
effective length of the suspension, during each swing. If we assume that a para-
meter that determines the frequency ω0, in this case the length of the pendulum, is
modulated harmonically at double the oscillation frequency, then the equation of
motion will have the following form:

d2θ
dt2 + ω2

0
[
1 + ε cos

(
2ω0t

)]
θ = 0. 2.31

If we assume ε�1, then we can look for an approximate solution of the following
form:

θ = a(t) cos ω0t + b(t) sin ω0t. 2.32

where a(t) and b(t) vary negligibly during an oscillation. By substituting this
form into the equation of motion, we find by setting the coefficients of cos ω0t
and sin ω0t equal to zero, and neglecting higher harmonic frequencies, that the
amplitudes a(t) and b(t) must satisfy the following equations:

da
dt

+ εω0

4
b = 0,

db
dt

+ εω0

4
a = 0,

2.33
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from which we obtain finally the possible solution

a(t) = a1e+ εω0
4 t + a2e− εω0

4 t , 2.34

with a similar result for b(t). The presence of the first term, with the positive expo-
nent, shows that the amplitude will grow exponentially. It is important to note
(although our simple discussion does not deal with it) that the excitation of a para-
metric resonance will occur over a precise range of frequencies of modulation of
the parameter; and further, that if the system is initially undisturbed, so that both θ
and dθ/dt are initially zero, the system will not be excited into oscillation.

2.9 Fourier Analysis

When a system is subjected to a simple periodic disturbance, its response, in
general, will be an oscillation at the frequency of that disturbance, superimposed
on whatever free, natural oscillations were already present. As we have seen in
the case of a simple physical system consisting of a vibrating string, a large res-
onant response is induced by a simple periodic force only at one of its natural
frequencies. In general, however, when a violin string is excited into vibration, for
example by plucking it, the shape of the string is a complicated function of time.
We might imagine a high-speed movie camera recording this complex wave motion
frame by frame. Predicting the motion of a system produced by an arbitrary initial
displacement from its quiescent state is a fundamental problem of physics. The
term “motion” used here is not restricted to movement in space; it could be, for
example, the variation of temperature throughout a body as determined by the laws
that govern the flow of heat.

Since any given natural frequency can effectively be excited only by an oscill-
atory force at that frequency, it is reasonable to assume that if the excitation is
a complicated function of time, the response at the different natural frequencies
somehow is representative of the “amount” of those frequencies in the excitation
function. From this it seems plausible that to every given excitation function of
time there corresponds a unique set of amplitudes (and phases) of the natural-
mode responses. This would imply that any given excitation function of time can be
regarded as a sum over a unique set of harmonic oscillations at the natural frequen-
cies. In fact, this is given precise mathematical expression in the Fourier expansion
theorem, one of the most useful theorems in physics, named for Joseph Fourier, a
French mathematician who made a systematic study of what is now called Fourier
analysis. It applies equally to the representation of an arbitrary initial shape of the
string as a sum over a unique set of simple harmonic functions of position, making
up the natural modes of vibration. This is of such importance to the understanding
of what we shall encounter in succeeding chapters on atomic resonance that we
must devote some effort to understanding it. The theorem proves that almost any
periodic waveform, of whatever shape, can be expressed as the sum over a series of
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harmonic functions having amplitudes unique to the waveform, and it gives formu-
las for computing those amplitudes. In the context of high-fidelity audio systems
the term “harmonic distortion” is familiar: It refers to the power in the second and
higher harmonics of the given frequency being reproduced. This assumes that a
distorted waveform can be unambiguously specified as consisting of a fundamen-
tal and harmonic components. The theorem is based on a special property called
orthogonality of the functions describing the normal modes of vibration. The term
means the property of being “perpendicular,” as might be applied to two vectors;
for functions, the test for this property is that the average of the product of the
functions be zero, when taken over the appropriate interval. In that sense they are
“uncorrelated.” In the case of the normal mode functions of the vibrating string,
sin (nπx / L) and sin (mπx / L), where n and m are integers, their product averaged
over the interval 0 < x < L is zero. Thus

L∫

0

sin
(

nπ
x
L

)
sin

(
mπ

x
L

)
dx = 0, n �= m. 2.35

In general, for any given periodic function, that is, one satisfying f (x) = f (x+2π),
orthogonality allows the amplitudes of the harmonics in the following Fourier
series expansion of the function to be determined:

f (x)= a0 + a1 sin (x) + a2 sin (2x) + a3 sin (3x) + · · ·
+ b1 cos (x) + b2 cos (2x) + b3 cos (3x) + · · · . 2.36

Thus by multiplying both sides of equation 2.36 by sin (nx) and integrating over
the fundamental interval we immediately obtain the amplitude an . Thus

2π∫

0

sin (nx) f (x)dx = πan, 2.37

with a similar result for the amplitudes bn by replacing sin (nx) with cos (nx). We
note that the amplitude is in a sense a measure of the extent to which the given
function correlates with the harmonic mode function.

The theorem proves that by including higher and higher harmonics, the exact
function can be represented as closely as we please. It follows that the amplitudes
must decrease as we go to higher-order harmonics, so that a fair representation
may be achieved with a finite number of harmonics. As an example, in Figure 2.4a
is shown a periodic sawtooth waveform and beside it, in Figure 2.4b, are shown
the amplitudes of the first few harmonics plotted against frequency to display the
spectrum of the wave. The effect of a filter that removes all but the first three
harmonics is shown in Figure 2.4c. We should note that to represent sharp changes
in the waveform requires the inclusion of the higher harmonics in the sum.

It is clear from what has been said that for a plucked string, the extent to which
each of the natural frequencies will be excited will depend first on the amplitude
of each Fourier component in the initial displacement and second on the degree
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Figure 2.4 (a) A sawtooth waveform (b) its Fourier spectrum (c) the sum of the first three
harmonics

to which each component is able to build up its amplitude in the presence of
losses at the boundaries, etc. Since the initial amplitude of a given Fourier com-
ponent according to the theorem is computed as an overlap integral between the
given harmonic function and the function representing the initial displacement, the
excitation of that particular harmonic is favored by having the initial displacement
large where the harmonic displacement is large.

For non-periodic functions, there is a corresponding Fourier integral theorem,
according to which, as a particular example, an even function f (t) of time (that is,
one satisfying f (t) = f (−t)) can be represented by the following integral:

f (t) =
∞∫

0

F(ω) cos (ωt)dω, 2.38

where F(ω), now a function of a continuous variable, rather than the discrete mode
index number n, gives the amplitude distribution over frequency, that is, the Fourier
spectrum of the function f (t). F(ω) has a unique, one-to-one relationship with
f (t), which the Fourier theorem proves is a reciprocal one, in the sense that F(ω)
is obtained from f (t) simply by interchanging their roles. The one function is
called the Fourier transform of the other.

It frequently happens that where we have a complex signal consisting of what
may appear as an unintelligible fluctuation in voltage, we are able to present the
information in a far more useful way by applying the Fourier integral theorem.
To show in a concrete way how this may be accomplished, consider the following
hypothetical experiment. An input signal, which could, for example, be a sound
wave or a microwave of complex waveform, is connected to an infinite number
of ideal resonators tuned to progressively higher frequencies, with only a small
increment in frequency between each resonator and its successor. This, it may be
recalled, is the way it is thought that the human ear processes incoming sounds and
is thereby able to separate the various types of sources that make up the complex
waveform it receives. Let it be assumed that the input signal is switched on for a
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predetermined period, after which it is switched off, and the amplitudes and phases
of the oscillations in all the resonators are measured and then plotted against their
resonant frequencies. Such a plot is the frequency spectrum of the incoming com-
plex waveform, a waveform that begins as zero, jumps to the signal value when
the switch is turned on, and goes back to zero when the switch is turned off. It
is assumed that the frequency difference between consecutive resonators is small,
so that there will be a very large number of them. The two principles that are the
essence of this method of analysis are these: First, the phases and amplitudes of the
resonators are unique to the incoming signal, and second, if we simply add simple
harmonic oscillations at the frequencies of the resonators with those amplitudes
and phases, the sum will reproduce the original signal waveform.

In later chapters we will have frequent occasion to refer to the Fourier spectra
of signals. Two examples of Fourier transforms are shown in Figure 2.5. The first
is a signal in which a simple oscillation is switched on at some point and there-
after slowly decays. The second represents a signal that really contains just one
frequency, but the phase changes at irregular intervals of time.

In some important cases the phases are either indeterminate or inaccessible; in
such cases the power spectrum, showing only the square of the amplitude at each
frequency, is nevertheless very useful. The most obvious example is in the analysis
of optical radiation, where of necessity we are limited to studying the power spec-
trum, since no common detector exists that can follow the extremely rapid oscilla-
tions in a light wave. Thus when sunlight, for example, is passed through a glass
prism to separate the colors of the rainbow, as Newton did in his classic researches
on the composition of white light, we are in a sense transforming the fluctuating
field components in the incoming electromagnetic wave (the optical signal) into
a continuous distribution of intensity over frequency, its Fourier spectrum. In this
particular case, as blackbody radiation, the light from the sun will have phases that
are random, which makes the availability of a representation in the form of a power
spectrum, free of the phases, particularly crucial.

frequency

frequency

time

time

Figure 2.5 Examples of Fourier spectra
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2.10 Coupled Oscillations

An important situation often arises in which one oscillatory system interacts with
another. This often occurs where the oscillations of the one are to be synchronized
with the other, a process familiar in television receivers. There the local sweep cir-
cuits that scan the picture have to be synchronized with the received horizontal and
vertical synchronization pulses to obtain a stable picture. This, however, is syn-
chronization under conditions in which the aspect we wish to consider is clearly
absent: The oscillating systems do not interact directly. Let us consider, instead,
two oscillating systems in which a resonant frequency in one nearly coincides with
one in the other system, and assume that there is a weak coupling between them.
A somewhat contrived example is shown in Figure 2.6, which depicts two pendu-
lums (or is it pendula) of nearly equal natural oscillation period whose suspension
is from a massive body that can slide horizontally without friction. If the coupling
body were so massive that it may be regarded as immovable, then the pendulums
would be independent of each other. However, for a large but finite mass, any oscil-
lation in one pendulum affects the other. Perhaps the most striking phenomenon is
seen in this system if we set one pendulum in motion while the other is left ini-
tially undisturbed. If we watch the subsequent motion of the two pendulums, a
curious thing happens: The pendulum initially at rest will begin oscillating with
increasing amplitude while the amplitude of the other simultaneously decreases.
This will continue until the pendulum that was originally set in motion comes to
rest, and the two have exchanged the initial state. Then the process reverses, and
the two return to the original state. The energy of oscillation would continue to
be exchanged back and forth indefinitely if it were not for the inevitable pres-
ence of frictional forces at the points of suspension and air resistance, which will
cause the energy to be dissipated as heat and the system to come to rest. It is as if
the system cannot “make up its mind” which state to be in; its oscillatory state is
continually changing.

Figure 2.6 Two identical coupled pendula
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An interesting question to ask about the coupled system is whether it can be
set oscillating in some mode in which all parts of the system execute oscillation
at the same frequency, with a stable amplitude. The attempt to answer this type of
question, particularly to more complex systems involving several coupled systems,
has led to a sophisticated theory and the concept of normal vibrations. To illustrate
what is meant by the term, let us go back to the two coupled pendulums. We will
state without proof that if this system is initially set in motion, either with the two
pendulums in phase or the two exactly 180◦ out of phase, they will continue to
oscillate in those modes with a constant amplitude. These two modes, illustrated
in Figure 2.7, are called the normal modes of vibration for this particular system. It
is important to note that for these modes to be preserved, the two pendulums must
oscillate with a common frequency. This is, in fact, the defining characteristic of
the normal modes: In a given mode, all parts of the coupled system must oscillate
at one frequency belonging to that mode. The common frequency will, in general,
vary from one mode to another. In the case of the two coupled pendulums, the fre-
quencies of the two modes differ to an extent determined by the degree of coupling
between them; this can be shown to be m/M , where m is the mass of the pendulum
bob and M is the coupling mass. In terms of this coupling parameter m/M , the
frequencies of the modes are approximately νa = νo(1 + m/M) and νb = νo,
where νo is the frequency of free oscillation in the absence of coupling.

It is interesting to view the original bizarre behavior, in which the oscillation
went back and forth between the pendulums, in terms of the normal modes. We see
that when only one pendulum is set in motion, the system is not in a normal mode
but could be looked on as a “mixture” (or more precisely, a linear superposition)
of the two normal modes; that is, the motion of each pendulum in our particu-
lar example is the sum of equal amplitudes of the two normal modes. But these
modes do not have exactly the same frequency, and their relative phase will contin-
uously increase, passing periodically through times when their phases differ by a
whole number of cycles and are in step, and times when they get 180◦ out of step.
When they are in step, they reinforce each other and produce a large amplitude,
while the opposite is true when they get out of step and cancel each other. Thus
the amplitude of each pendulum alternately rises and falls periodically, a phenom-
enon called “beats,” from the way it is manifested when two musical notes having

Figure 2.7 The normal modes of oscillation of two identical pendula
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nearly the same pitch are sounded together. The number of beats per second can
be shown to equal the difference between the frequencies of the two normal modes
and therefore proportional to the strength of coupling, between the two pendulums;
the tighter the coupling the higher the frequency at which the energy is exchanged
back and forth between the two pendulums.
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