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Optimal Classical Control

Let 0 < T < ∞ be the given and fixed terminal time and let t ∈ [0, T ]
be a variable initial time for the optimal classical control problem treated
in this chapter. The main theme of this chapter is to consider the infinite-
dimensional optimal classical control problem over a finite time horizon [t, T ].
The dynamics of the process x(·) = {x(s), s ∈ [t − r, T ]} being controlled
are governed by a stochastic hereditary differential equation (SHDE) with
a bounded memory of duration 0 < r < ∞ and are taking values in the
Banach space C = C([−r, 0];�n). The formulation of the control problem
is given in Section 3.1. The value function V : [0, T ] × C → � of the op-
timal classical control problem is written as a function of the initial datum
(t, ψ) ∈ [0, T ] × C. The existence of optimal control is proved in Section 3.2.
In there, we consider an optimizing sequence of stochastic relaxed control
problems with its corresponding sequence of value functions that converges to
the value function of our original optimal control problem. Since the regular
optimal control is a special case of optimal relaxed control, the existence of
optimal control is therefore established. The Bellman-type dynamic program-
ming principle (DPP) originally due to Larssen [Lar02] is derived and proved
in Section 3.3. Based on the DDP, an infinite-dimensional Hamilton-Jacobi-
Bellman equation (HJBE) is heuristically derived in Section 3.4 for the value
function under the condition that it is sufficiently smooth. This HJBE involves
a first- and second-order Fréchet derivatives with respect to spatial variable
ψ ∈ C as well as an S-operator that is unique only to SHDE. However, it
is known in most optimal control problems, deterministic or stochastic, that
the value functions, although can be proven to be continuous, do not meet
these smoothness conditions and, therefore, cannot be a solution to the HBJE
in the classical sense. To overcome this difficulty, the concept of viscosity so-
lution to the infinite-dimensional HJBE is introduced in Section 3.5. Section
3.6 concerns the comparison principle between a super-viscosity solution and
a sub-viscosity solution. Based on this comparison principle, it is shown that
the value function is the unique viscosity solution to the HJBE. Due to the
lack of smoothness of the value function, a classical verification theorem will
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not be useful in characterizing the optimal control. A generalized verification
theorem in the framework of a viscosity solution is stated without a proof
in Section 3.7. In Section 3.8, we prove that, under some special conditions
on the controlled SHDE and the value function, the HJBE can take a finite-
dimensional form in which only regular partial derivatives but not Fréchet
derivatives are involved. Two application examples in this special form are
also illustrated in this section.

We give the following example as a motivation for studying optimal clas-
sical control problems. Two other completely worked-out examples are given
in Subsection 3.8.3.
Example. (Optimal Advertising Problem) (see Gossi and Marinelli [GM04]
and Gossi et al. [GMS06])

Let y(·) = {y(s), s ∈ [0, T ]} denote the stock of advertising goodwill of
the product to be launched. The process y(·) is described by the following
one-dimensional controlled stochastic hereditary differential equation:

dy(s) =
[
a0y(s) +

∫ 0

−r

a1(θ)y(s + θ) dθ + b0u(s)

+
∫ 0

−r

b1(θ)u(s + θ) dθ
]
ds + σdW (s), s ∈ [0, T ],

with the initial conditions y0 = ψ ∈ C[−r, 0] and u0 = φ ∈ L2([−r, 0]) at
initial time t = 0.

In the above (Ω,F , P,F,W (·)) denotes an one-dimensional standard
Brownian motion and the control process u(·) = {u(s), s ∈ [0, T ]} denotes the
advertising expenditures as a process in L2([0, T ],�+;F), the space of square
integrable non-negative processes adapted to F. Moreover, it is assumed that
the following conditions are satisfied:
(i) a0 ≤ 0 denotes a constant factor of image deterioration of the product in
absence of advertising.
(ii) a1(·) ∈ L2([−r, 0],�) is the distribution of the forgetting time.
(iii) b0 ≥ 0 denotes the effective constant of instantaneous advertising effect.
(iv) b1(·) ∈ L2([−r, 0],�+) is the density function of the time lag between
the advertising expenditure u(·) and the corresponding effect on the goodwill
level.
(v) ψ(·) and φ(·) are non-negative and represent, respectively, the histories of
goodwill level and the advertising expenditure before time zero.

The objective of this optimal advertising problem is to seek an advertising
strategy u(·) that maximizes the objective functional

J(ψ, φ;u(·)) = E

[
Ψ(y(T )) −

∫ T

0

L(u(s)) ds

]
,

where Ψ : [0,∞) → [0,∞) is a concave utility function with polynomial growth
at infinity, L : [0,∞) → [0,∞) is a convex cost function which is superlinear
at infinity, that is,
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lim
u→∞

L(u)
u

= ∞.

The above objective functional accounts for the balance between an utility of
terminal goodwill Ψ(y(T )) and overall functional of advertising expenditures∫ T

0
L(u(s)) ds over the period. Note that this model example involves the his-

tories of both the state and control processes. The general theory for optimal
control of stochastic systems with delays in both state and control processes
has yet to be developed. If b1(·) = 0, then there is no aftereffect of previous
advertising expenditures on the goodwill level. In this case, it is a special case
of what to be developed in this chapter.

3.1 Problem Formulation

3.1.1 The Controlled SHDE

In the following, let (Ω,F , P,F,W (·)) be a certain m-dimensional Brownian
stochastic basis.

Consider the following controlled SHDE with a bounded memory (or delay)
of duration 0 < r < ∞:

dx(s) = f(s, xs, u(s)) ds + g(s, xs, u(s)) dW (s), s ∈ [t, T ], (3.1)

with the given initial data (t, xt) = (t, ψ) ∈ [0, T ]×C and defined on a certain
m-dimensional Brownian stochastic basis (Ω,F , P,F,W (·)) that is yet to be
determined.

In (3.1), the following is understood:
(i) The drift f : [0, T ] × C × U → �n and the diffusion coefficient g : [0, T ] ×
C × U → �n×m are deterministic continuous functions.
(ii) U , the control set, is a complete metric space and is typically a subset of
an Euclidean space.
(iii) u(·) = {u(s), s ∈ [t, T ]} is a U -valued F-progressively measurable process
that satisfies the following conditions:

E

[∫ T

t

|u(s)|2 ds

]
< ∞. (3.2)

Note that the control process u(·) = {u(s), s ∈ [t, T ]} defined on

(Ω,F , P,F,W (·))

is said to be progressively measurable if u(·) = {u(s), t ≤ s ≤ T} in U is
F-adapted ( i.e., u(s) is F(s)-measurable for every s ∈ [t, T ]), and for each
a ∈ [t, T ] and A ∈ B(U), the set {(s, ω) | t ≤ s ≤ a, ω ∈ Ω, u(s, ω) ∈ A}
belongs to the product σ-field B([t, a]) ⊗F(a); that is, if the mapping
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(s, ω) �→ u(s, ω) : ([t, a] × Ω,B([t, a]) ⊗F(a)) → (U,B(U))

is measurable, for each a ∈ [t, T ].

Let L : [0, T ]×C×U → � and Ψ : C → � be two deterministic continuous
functions that represent the instantaneous and terminal reward functions,
respectively, for the optimal classical control problem.

Assumption 3.1.1 The assumptions on the functions f , g, L, and Ψ are
stated as follows:
(A3.1.1) (Lipschitz Continuity) The maps f(t, φ, u), g(t, φ, u), L(t, φ, u), and
Ψ(φ) are Lipschitz on [0, T ] × C × U and Hölder continuous in t ∈ [0, T ]:
There is a constant Klip > 0 such that

|f(t, φ, u) − f(s, ϕ, v)| + |g(t, φ, u) − g(s, ϕ, v)|
+ |L(t, φ, u) − L(s, ϕ, v)| + |Ψ(φ) − Ψ(ϕ)|

≤ Klip(
√

|t − s| + ‖φ − ϕ‖ + |u − v|),

∀s, t ∈ [0, T ], u, v ∈ U, and φ, ϕ ∈ C.

(A3.1.2) (Linear Growth) There exists a constant Kgrow > 0 such that

|f(t, φ, u)| + |g(t, φ, u)| ≤ Kgrow(1 + ‖φ‖)

and

|L(t, φ, u)| + |Ψ(φ)| ≤ Kgrow(1 + ‖φ‖2)k, ∀(t, φ) ∈ [0, T ] × C, u ∈ U.

(A3.1.3) The initial function ψ belongs to the space L2(Ω,C;F(t)) of F(t)-
measurable elements in L2(Ω,C) such that

‖ψ‖2
L2(Ω;C) ≡ E[‖ψ‖2] < ∞.

Condition (A3.1.2) in Assumption 3.1.1 stipulates that both L and Ψ sat-
isfy a polynomial growth in φ ∈ C under the norm L2-norm ‖ · ‖2 instead of
the sup-norm ‖ · ‖. This stronger requirement is needed in order to show that
the uniqueness of the viscosity solution of the HJBE in Section 3.6.

The solution process of the controlled SHDE (3.1) is given next.

Definition 3.1.2 Given an m-dimensional Brownian stochastic basis
(Ω,F , P,F,W (·)) and the control process u(·) = {u(s), s ∈ [t, T ]}, a process
x(·; t, ψt, u(·)) = {x(s; t, ψt, u(·)), s ∈ [t−r, T ]} is said to be a (strong) solution
of the controlled SHDE (3.1) on the interval [t − r, T ] and through the initial
datum (t, ψ) ∈ [0, T ] × L2(Ω,C;F(t)) if it satisfies the following conditions:

1. xt(·; t, ψt, u(·)) = ψt(·), P -a.s.
2. x(s; t, ψt, u(·)) is F(s)-measurable for each s ∈ [t, T ];
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3. For 1 ≤ i ≤ n and 1 ≤ j ≤ m, we have

P
[ ∫ T

t

(
|fi(s, xs, u(s))| + g2

ij(s, xs, u(s))
)
ds < ∞

]
= 1.

4. The process {x(s; t, ψt, u(·)), s ∈ [t, T ]} is continuous and satisfies the fol-
lowing stochastic integral equation P -a.s.:

x(s) = ψt(0) +
∫ s

t

f(λ, xλ, u(λ)) dλ +
∫ s

t

g(λ, xλ, u(λ)) dW (λ).

In addition, the solution process {x(s; t, ψt, u(·)), s ∈ [t − r, T ]} is said to be
(strongly) unique if {y(s; t, ψ, u(·)), s ∈ [t − r, T ]} is also a solution of (3.1)
on [t− r, T ] with the control process u(·) and through the same initial datum
(t, ψt); then

P{x(s; t, ψ, u(·)) = y(s; t, ψ, u(·)), ∀s ∈ [t, T ]} = 1.

Theorem 3.1.3 Let (Ω,F , P,F,W (·)) be an m-dimensional Brownian mo-
tion and let u(·) = {u(s), s ∈ [t, T ]} be a control process. Then for each initial
datum t, ψt) ∈ [0, T ]×L2(Ω,C;F(t)), the controlled SHDE (3.1) has a unique
strong solution process

x(·; t, ψt, u(·)) = {x(s; t, ψt, u(·)), s ∈ [t, T ]}

under Assumption 3.1.1. The following holds:

1. The map (s, ω) �→ x(s; t, ψt, u(·)) belongs to the space L2(Ω,C([t −
r, T ];�n));F(s)), and the map (t, ω) �→ xs(·; t, ψt, u(·)) belongs to the
space L2(Ω,C;F(s)). Moreover, there exists constants Kb > 0 and k ≥ 1
such that

E[‖xs(·; t, ψt, u(·))‖2] ≤ Kb(1+E[‖ψt‖2])k, ∀s ∈ [t, T ] and u(·) ∈ U [t, T ].
(3.3)

2. The map ψt �→ xs(·; t, ψt, u(·)) is Lipschitz; that is, there is a constant
K > 0 such that for all s ∈ [t, T ] and ψ

(1)
t , ψ

(2)
t ∈ L2(Ω,C;F(t)),

E[‖xs(·; t, ψ(1)
t , u(·)) − xs(·; t, ψ(2)

t , u(·))‖] ≤ KE[‖ψ(1)
t − ψ

(2)
t ‖]. (3.4)

Proof. Let the random functions f̃ : [0, T ]×C×Ω → �n and g̃ : [0, T ]×C×
Ω → �n×m be defined as follows:

f̃(s, φ, ω) = f(s, φ, u(s, ω))

and
g̃(s, φ, ω) = g(s, φ, u(s, ω)),

where u(·) = {u(s), s ∈ [t, T ]} is the control process. If the functions f and g
satisfy Assumption 3.1.1, then the random functions f̃ and g̃ defined above
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satisfy Assumptions 1.3.6 and 1.3.7 of Chapter 1 and, therefore, the controlled
system (3.1) has a unique strong solution process on [t−r, T ] and through the
initial datum (t, ψ) ∈ [0, T ] × L2(Ω,C;F(t)), which is denoted by

x(·; t, ψt, u(·)) = {x(s; t, ψt, u(·)), s ∈ [t, T ]}

(or simply x(·) when there is no danger of ambiguity) according to Theo-
rem 1.3.12 of Chapter 1. �

Remark 3.1.4 It is clear from the appearance of (3.1) that the use of the
term “classical control” (as opposed to “impulse control” in Chapter 7) be-
comes self-explanatory. This is due to the fact that an application of the control
u(s) at time s ∈ [t, T ] will only change the rate of the drift and the diffusion
coefficient and, therefore, the pathwise continuity of controlled state process
x(·) = {x(s), s ∈ [t − r, T ]} will not be affected by this action.

Definition 3.1.5 The (classical) control process u(·) is an Markov (or feed-
back) control if there exist a Borel measurable function η : [0, T ] × C → U
such that

u(s) = η(s, xs),

where {xs, s ∈ [t, T ]} is the C-valued Markov process corresponding to the
solution process {x(s), s ∈ [t − r, T ]} of the following feedback equation:

dx(s) = f(s, xs, η(s, xs)) ds + g(s, xs, η(s, xs)) dW (s) (3.5)

with the initial data (t, xt) = (t, ψ) ∈ [0, T ] × C.

3.1.2 Admissible Controls

Definition 3.1.6 For each t ∈ [0, T ], a six-tuple (Ω,F , P,F,W (·), u(·)) is
said to be an admissible control if it satisfies the following conditions:

1. (Ω,F , P,F,W (·)) is a certain m-dimensional Brownian stochastic basis;
2. u : [t, T ] × Ω → U is an F-adapted and is right-continuous at the initial

time t; that is, lims↓t u(s) = u(t)(say = u ∈ U).
3. Under the control process u(·) = {u(s), s ∈ [t, T ]}, (3.1) admits a

unique strong solution x(·; t, ψ, u(·)) = {x(s; t, ψ, u(·)), s ∈ [t, T ]} on
(Ω,F , P,F,W (·)) and through each initial datum (t, ψ) ∈ [0, T ] × C.

4. The C-valued segment process {xs(t, ψ, u(·)), s ∈ [t, T ]} defined by

xs(θ; t, ψ, u(·)) = x(s + θ; t, ψ, u(·)), θ ∈ [−r, 0],

is a strong Markov process with respect to the Brownian stochastic basis
(Ω,F , P,F,W (·)).

5. The control process u(·) is such that

E
[ ∫ T

t

|L(s, xs(·; t, ψ, u(·)), u(s))| ds + |Ψ(xT (·; t, ψ, u(·)))|
]

< ∞,
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where L : [0, T ]×C×U → � and Ψ : C → � represent the instantaneous
and the terminal reward functions, respectively.

The collection of admissible controls (Ω,F , P,F,W (·), u(·)) over the inter-
val [t, T ] will be denoted by U [t, T ].

We will write u(·) ∈ U [t, T ] or formally the 6-tuple
(Ω,F , P,F,W (·), u(·)) ∈ U [t, T ] interchangeably, whenever there is no danger
of ambiguity.

Remark 3.1.7 Definition 3.1.6 defines a weak formulation of an admissible
control in that the Brownian stochastic basis (Ω,F , P,F,W (·)) is not prede-
termined and in fact is a part of the ingredients that constitute an admissible
control. This is contrary to the strong formulation of an admissible control in
which the Brownian stochastic basis (Ω,F , P,F,W (·)) is predetermined and
given.

Remark 3.1.8 To avoid using the yet-to-be-developed Itô formula for the the
C-valued process {xs(t, ψ, u(·)), s ∈ [t, T ]} in the development of the HJB
theory, we make additional requirement in Condition 3 of Definition 3.1.6 that
it is a strong Markov process. This requirement is not a stringent one. In fact,
the class of admissible controls U [t, T ] defined in Definition 3.1.6 includes all
Markov (or feedback) control (see Definition 3.1.5), where η : [0, T ] ×C → U
is Lipschitz with respect to the segment variable; that is, there exists a constant
K > 0 such that

|η(t, φ) − η(t, ϕ)| ≤ ‖φ − ϕ‖, ∀(t, φ), (t, ϕ) ∈ [0, T ] × C.

Throughout, we assume that the functions f : [0, T ] × C × U → �n,
g : [0, T ] × C × U → �n×m, L : [0, T ] × C × U → �, and Ψ : C → � satisfy
Assumption 3.1.1.

Given an admissible control u(·) ∈ U [t, T ], let

x(·; t, ψ, u(·)) = {x(s; t, ψ, u(·)), s ∈ [t − r, T ]}
be the solution of (3.1) through the initial datum (t, ψ) ∈ [0, T ]×C. We again
consider the corresponding C-valued segment process {xs(·; t, ψ, u(·)), s ∈
[t, T ]}. For notational simplicity, we often write x(s) = x(s; t, ψ, u(·)) and
xs = xs(·; t, ψ, u(·)) for s ∈ [t, T ] whenever there is no danger of ambiguity.

3.1.3 Statement of the Problem

Given any initial datum (t, ψ) ∈ [0, T ] × C and any admissible control u(·) ∈
U [t, T ], we define the objective functional

J(t, ψ;u(·)) ≡ E

[ ∫ T

t

e−α(s−t)L(s, xs(·; t, ψ, u(·)), u(s)) ds

+e−α(T−t)Ψ(xT (·; t, ψ, u(·)))
]
, (3.6)

where α ≥ 0 denotes a discount factor.
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For each initial datum (t, ψ) ∈ [0, T ] × C, the optimal control problem is
to find u(·) ∈ U [t, T ] so as to maximize the objective functional J(t, ψ;u(·))
defined above. In this case, the value function V : [0, T ] × C → � is defined
to be

V (t, ψ) = sup
u(·)∈U [t,T ]

J(t, ψ;u(·)). (3.7)

The control process u∗(·) = {u∗(s), s ∈ [t, T ]} ∈ U [t, T ] is said to be an
optimal control for the optimal classical control problem if

V (t, ψ) = J(t, ψ;u∗(·)). (3.8)

The (strong) solution process

x∗(·; t, ψ, u∗(·)) = {x∗(s; t, ψ, u∗(·)), s ∈ [t − r, T ]}

of (3.1) corresponding to the optimal control u∗(·)) will be called the optimal
state process corresponding to u∗(·). The pair (u∗(·), x∗(·)) will be called the
optimal control-state pair.

The characterizations of the value function V : [0, T ] × C → � and the
optimal control-state pair (u∗(·), x∗(·)) will normally constitute an solution to
the control problem. The optimal classical control problem, Problem (OCCP),
is now formally formulated as follows.

Problem (OCCP). For each initial datum (t, ψ) ∈ [0, T ] × C:

1. Find an u∗(·) ∈ U [t, T ] that maximizes J(t, ψ;u(·)) defined in (3.6) among
U [t, T ].

2. Characterize the value function V : [0, T ] × C → � defined in (3.7).
3. Identify the optimal control-state pair (u∗(·), x∗(·)).

3.2 Existence of Optimal Classical Control

In the class U [t, T ] of admissible controls it may happen that there does not
exist an optimal control. The following artificial example of Kushner and
Dupuis [KD01, p.86] shows that an optimal control does not exist even for a
controlled deterministic equation without a delay.

Example. Consider the following one-dimensional controlled deterministic
equation:

ẋ(s) = f(x(s), u(s)) ≡ u(s), s ≥ 0

with the control set U = [−1, 1]. Starting from the initial state x(0) = x ∈ �,
the objective is to find an admissible (deterministic) control u(·) = {u(s), s ≥
0} that minimizes the following discounted cost functional over the infinite
time horizon:
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J(x;u(·)) =
∫ ∞

0

e−αs[x2(s) + (u2(s) − 1)2] ds.

Again, let V : � → � be the value function of the control problem defined by

V (x) = inf
u(·)∈U [0,∞)

J(x;u(·)).

Note that V (0) = 0 and, in general, V (x) = x2/α for all x ∈ �. To see this,
define the sequence of controls u(k)(·) by

u(k)(s) = (−1)j on the half-open interval [j/k, (j + 1)/k), j = 0, 1, 2, . . ..

It is not hard to see that J(0;u(k)(·)) → 0 as k → ∞. In a sense, when
x(0) = 0, the optimal control u∗(·) wants to take values ±1. However, it is
easy to check that u∗(·) does not satisfy Definition 3.1.6. Therefore, an optimal
control u∗(·) does not exist as defined.

In order to establish the existence of an optimal control for Problem
(OCCP), we will enlarge the class of controls, allowing the so-called relaxed
controls, so that the existence of an optimal (relaxed) control is guaranteed,
and the supremum of the expected objective functional over this new class
of controls coincides with the value function V : [0, T ] × C → � of the origi-
nal optimal classical control problem defined by (3.7). The idea to show the
existence of an optimal relaxed control is to consider a maximizing sequence
of admissible relaxed controls {µ(k)(·, ·)}∞k=1 on the Borel measurable space
([0, T ] × U,B([0, T ] × U)) and the corresponding sequence of objective func-
tionals {Ĵ(t, ψ;µ(k)(·, ·))}∞k=1. By the fact that [0, T ] × U is compact (and
hence the maximizing sequence of admissible relaxed controls {µ(k)(·, ·)}∞k=1

is compact in the Prohorov metric) and the fact that Ĵ(t, ψ;µ(·, ·)) is up-
per semicontinuous in admissible relaxed controls µ(·, ·), one can show that
the sequence {µ(k)(·, ·)}∞k=1 converges weakly to an admissible relaxed control
µ∗(·, ·). This µ∗(·, ·) can be shown to be optimal among the class of admissible
relaxed controls and that its value function coincides with the value function
of Problem (OCCP). We also prove that an optimal (classical) control exists
if the value function V (t, ψ) is finite for each initial datum (t, ψ) ∈ [0, T ]×C.

We recall the concept and characterizations of weak convergence of proba-
bility measures without proofs as follows. The detail can be found in Billings-
ley [Bil99].

Let (Ξ, d) be a generic metric space with the Borel σ-algebra denoted by
B(Ξ). Let P(Ξ) (or simply P whenever there is no ambiguity) be the collection
of probability measures defined on (Ξ,B(Ξ)). We will equip the space P(Ξ)
with the Prohorov metric π : P(Ξ) × P(Ξ) → [0,∞) defined by

π(µ, ν) = inf{ε > 0 | µ(Aε) ≤ ν(A) + ε for all closed A ∈ B(Ξ)}, (3.9)

where Aε is the ε-neighborhood of A ∈ B(Ξ), that is,

Aε = {y ∈ Ξ | d(x,y) < ε for some x ∈ Ξ}.
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If µ(k), k = 1, 2, . . ., is a sequence in P(Ξ), we say that the sequence
µ(k), k = 1, 2, . . ., converges weakly to µ ∈ P(Ξ) and is to be denoted by
µ(k) ⇒ µ as k → ∞ if

lim
k→∞

∫

Ξ

Φ(x)µ(k)(dx) =
∫

Ξ

Φ(x)µ(dx), ∀Φ ∈ Cb(Ξ), (3.10)

where Cb(Ξ) is the space of bounded and continuous functions Φ : Ξ → �
equipped with the sup-norm:

‖Φ‖Cb(Ξ) = sup
x∈Ξ

|Φ(x)|, Φ ∈ Cb(Ξ).

In the case where µ(k) and µ ∈ P(Ξ) are probability measures induced by
Ξ-valued random variables X(k) and X, respectively, we often say that X(k)

converges weakly to X and is to be denoted by X(k) ⇒ X as k → ∞. A direct
consequence of the definition of weak convergence is that X(k) ⇒ X implies
that Φ(X(k)) ⇒ Φ(X) for any continuous function Φ from Ξ to another metric
space.

We state the following results without proofs. The details of these results
can be found in [Bil99].

Theorem 3.2.1 If Ξ is complete and separable, then P(Ξ) is complete and
separable under the Prohorov metric. Furthermore, if Ξ is compact, then P(Ξ)
is compact.

Let {µ(λ), λ ∈ Λ} ⊂ P(Ξ), where Λ is an arbitrary index set.

Definition 3.2.2 The collection of probability measure {µ(λ), λ ∈ Λ} is called
tight if for each ε > 0, there exists a compact set Kε ⊂ Ξ such that

inf
λ∈Λ

µ(λ)(Kε) ≥ 1 − ε. (3.11)

If the measures µ(λ) are the induced measures defined by some random vari-
ables X(λ), then we also refer to the collection {X(λ)} as tight. Condition
(3.11) then reads (in the special case where all the random variables are de-
fined on the same space)

inf
λ∈Λ

P{X(λ) ∈ Kε} ≥ 1 − ε.

Theorem 3.2.3 (Prohorov’s Theorem) If Ξ is complete and separable,
then a set {µ(λ), λ ∈ Λ} ⊂ P(Ξ) has compact closure in the Prohorov metric
if and only if {µ(λ), λ ∈ Λ} is tight.

Remark 3.2.4 Let Ξ1 and Ξ2 be two complete and separable metric spaces,
and consider the space Ξ = Ξ1×Ξ2 with the usual product space topology. For
{µ(λ), λ ∈ Λ} ⊂ P(Ξ), let {µ(λ)

i , λ ∈ Λ} ⊂ P(Ξi), for i = 1, 2, be defined by
taking µ

(λ)
i to be the marginal distribution of µ(λ) on Ξi. Then {µ(λ), λ ∈ Λ}

is tight if and only if {µ(λ)
1 , λ ∈ Λ} and {µ(λ)

2 , λ ∈ Λ} are tight.
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Theorem 3.2.5 Let Ξ be a metric space and let µ(k), k = 1, 2, . . ., and µ
be probability measures in P(Ξ) satisfying µ(k) ⇒ µ. Let Φ be a real-valued
measurable function on Ξ and define D(Φ) to be the measurable set of points
at which Φ is not continuous. Let X(k) and X be Ξ-valued random variables
defined on a probability space (Ω,F , P ) that induce the measures µ(k) and µ
on Ξ, respectively. Then Φ(X(k)) ⇒ Φ(X) whenever P{X ∈ D(Φ)} = 0.

Theorem 3.2.6 (Aldous Criterion) Let X(k)(·) = {X(k)(t), t ∈ [0, T ]}, k =
1, 2, . . ., be a sequence of Ξ-valued continuous processes (defined on the same
filtered probability space (Ω,F , P,F)). Then the sequence {X(k)(·)}∞k=1 con-
verges weakly if and only if the following condition is satisfied: Given k =
1, 2, . . ., any bounded F-stopping time τ , and δ > 0, we have

E(k)[‖X(k)(τ + δ) − X(k)(τ)‖2
Ξ | F (k)(τ)] ≤ 2K2δ(δ + 1).

We also recall the following Skorokhod representation theorem that is often
used to prove convergence with probability 1. The proof can be found in Ethier
and Kurtz [EK86].

Theorem 3.2.7 (Skorokhod Representation Theorem) Let Ξ be a separable
metric space and assume the probability measures {µ(k)}∞k=1 ⊂ P(Ξ) converges
weakly to µ ∈ P(Ξ). Then there exists a probability space (Ω̃, F̃ , P̃ ) on which
there are defined Ξ-valued random variables {X̃(k)}∞k=1 and X̃ such that for
all Borel sets B ∈ B(Ξ) and all k = 1, 2, . . .,

P̃{X̃(k) ∈ B} = µ(k)(B), P̃{X̃ ∈ B} = µ(B)

and such that
P̃{ lim

k→∞
X̃(k) = X̃} = 1.

3.2.1 Admissible Relaxed Controls

We first define a deterministic relaxed control as follows.

Definition 3.2.8 A deterministic relaxed control is a positive measure µ on
the Borel σ-algebra B([0, T ] × U) such that

µ([0, t] × U) = t, t ∈ [0, T ]. (3.12)

For each G ∈ B(U), the function t �→ µ([0, t]×G) is absolutely continuous with
respect to Lebesque measure on ([0, T ],B([0, T ]) by virtue of (3.12). Denote
by µ̇(·, G) = d

dtµ([0, t] × G) any Lebesque density of µ([0, t] × G). The family
of densities {µ̇(·, G), G ∈ B(U)} is a probability measure on B(U) for each
t ∈ [0, T ], and

µu(·)(B) =
∫ T

0

∫

U

1{(t,u)∈B}µ(dt, du) (3.13)

=
∫ T

0

∫

U

1{(t,u)∈B}µ̇(t, du) dt, ∀B ∈ B([0, T ] × U).
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Denote by R the space of deterministic relaxed controls that is equipped with
the weak compact topology induced by the following notion of convergence: A
sequence {µ(k), k = 1, 2, . . .} of relaxed controls converges (weakly) to µ ∈ R
if

lim
k→∞

∫

[0,T ]×U

γ(t, u) dµ(k)(t, u) =
∫

[0,T ]×U

γ(t, u) dµ(t, u), (3.14)

∀γ ∈ Cc([0, T ] × U),

where Cc([0, T ] × U) is the space of all real-valued continuous functions on
[0, T ]×U having compact support. Note that if U is compact then Cc([0, T ]×
U) = C([0, T ] × U). Under the weak-compact topology defined above, R is a
(sequentially) compact space; that is, every sequence in R has a subsequence
that converges to an element in R in the sense of (3.14).

Now, we introduce a suitable filtration for R as follows. We first identify
each µ ∈ R as a linear functional on C([0, T ] × U) in the following way:

µ(ς) ≡
∫ T

0

∫

U

ς(t, u)µ(dt, du), ∀ς ∈ C([0, T ] × U).

For any ς ∈ C([0, T ] × U) and t ∈ [t, T ], define ςt ∈ C([0, T ] × U) by

ςt(s, u) ≡ ς(s ∧ t, u).

Since C([0, T ]×U) is separable (and therefore has a countable dense subset),
we may let {ς(k)}∞k=1 be countable dense subset (with respect to the uniform
norm). It is easy to see that {ς(k),t}∞k=1 is dense in the set {ςt | ς ∈ C([0, T ]×
U)}. Define

Bs(R) ≡ σ{{µ ∈ R | µ(ςt) ∈ B} | ς ∈ C([0, T ] × U), t ∈ [0, s], B ∈ B(�)}.

One can easily show that Bs(R) can be generated by cylinder sets of the
following form:

σ{{µ ∈ R | µ(ς(k),t) ∈ (a, b)} | s ≥ t ∈ Q, k = 1, 2, . . . , a, b ∈ Q}. (3.15)

Definition 3.2.9 A relaxed control process is an R-valued random variable
µ, defined on a Brownian stochastic basis (Ω,F , P,F,W (·)), such that the
mapping ω �→ µ([0, t] × G)(ω) is F(t)-measurable for all t ∈ [0, T ] and G ∈
B(U).

Using the relaxed control process µ(·, ·) ∈ R, the controlled state equation
can be written as

dx(s) =
∫

U

f(s, xs, u)µ̇(s, du) ds +
∫

U

g(s, xs, u)µ̇(s, du) dW (s), s ∈ [t, T ],

or, equivalently, in the form of the stochastic integral equation:
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x(s) = ψ(0) +
∫ s

t

∫

U

f(λ, xλ, u)µ̇(λ, du) dλ (3.16)

+
∫ s

t

∫

U

g(λ, xλ, u)µ̇(λ, du) dW (λ), s ∈ [t, T ],

with the initial datum (t, ψ) ∈ [0, T ] × C. The objective functional can be
written as

Ĵ(t, ψ;µ(·, ·)) = E
[ ∫

U

∫ T

t

L(s, xs(·; t, ψ, µ(·, ·)), u)µ̇(s, du) ds

+ Ψ(xT (·; t, ψ, µ(·, ·))
]
, (3.17)

where {x(s; t, ψ, µ(·, ·)), s ∈ [t, T ]} is the solution process of (3.16) when the
relaxed control process µ(·, ·) ∈ R is applied.

We now define an admissible relaxed control as follows.

Definition 3.2.10 For each initial datum (t, ψ) ∈ [0, T ] × C, a six-tuple
(Ω,F , P,F,W (·), µ(·, ·)) is said to be an admissible relaxed control at (t, ψ) ∈
[0, T ] × C if it satisfies the following conditions:

1. (Ω,F , P,F,W (·)) is a certain m-dimensional Brownian stochastic basis.
2. µ(·, ·) ∈ R is a relaxed control defined on the Brownian stochastic basis

(Ω,F , P,F,W (·)).
3. Under the relax control process µ(·, ·), (3.16) admits a unique strong solu-

tion x(·; t, ψ, µ(·, ·)) = {x(s; t, ψ, µ(·, ·)), s ∈ [t, T ]} and through each initial
datum (t, ψ) ∈ [0, T ] × C.

4. The control process µ(·, ·) is such that

E
[ ∫

U

∫ T

t

|L(s, xs(·; t, ψ, µ(·, ·)), u)|µ̇(du, s) ds

+ |Ψ(xT (·; t, ψ, µ(·, ·))|
]

< ∞,

The collection of admissible relaxed controls (Ω,F , P,F,W (·), µ(·, ·)) over the
interval [t, T ] will be denoted by Û [t, T ]. Again, when there is no ambiguity,
we often write µ(·, ·) ∈ Û [t, T ] instead of (Ω,F , P,F,W (·), µ(·, ·)).

The optimal relaxed control problem can be stated as follows.
Problem (ORCP) Find an optimal relaxed control µ∗(·, ·) ∈ Û [t, T ] that max-
imizes (3.17) subject to (3.16).

We again define the value function V̂ : [0, T ] × C → � for the Problem
(ORCP) by

V̂ (t, ψ) = sup
µ(·,·)∈Û [t,T ]

Ĵ(t, ψ;µ(·, ·)). (3.18)

We have the following existence theorem for Problem (ORCP).
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Theorem 3.2.11 Let Assumption 3.1.1 hold. Given any initial datum (t, ψ) ∈
[0, T ] × C, then Problem (ORCP) admits an optimal relaxed control µ∗(·, ·),
and its value function V̂ coincides with the value function V of Problem
(OCCP).

We will postpone proof of Theorem 3.2.11 until the end of the next sub-
section.

3.2.2 Existence Result

For the existence of an optimal control for Problem (OCCP), we need the
following Roxin condition:
(Roxin’s Condition). For every (t, ψ) ∈ [0, T ] × C, the set

(
f, gg�, L

)
(t, ψ, U) ≡

{(
fi(t, ψ, u), (gg�)ij(t, ψ, u), L(t, ψ, u)

)
|

u ∈ U, i, j = 1, 2, . . . , n
}

is convex in �n+nn+1.
The main purpose of this subsection is to prove the existence theorem.

Theorem 3.2.12 Let Assumption 3.1.1 and the Roxin condition hold. Given
any initial datum (t, ψ) ∈ [0, T ]×C, then Problem (OCCP) admits an optimal
classical control u∗(·) ∈ U [t, T ] if the value function V (t, ψ) is finite.

Proof. Without loss of generality, we can and will assume that t = 0 in the
following for notational simplicity. The proof is similar to that of Theorem
2.5.3 in Yong and Zhou [YZ99] and will be carried out by the following steps:
Step 1. Since V (0, ψ) is finite, we can find a sequence of maximizing admis-
sible controls in U [t, T ],

{(Ω(k),F (k), P (k),F(k),W (k)(·), u(k)(·))}∞k=1,

such that
lim

k→∞
J(0, ψ;u(k)(·)) = V (0, ψ). (3.19)

Let x(k)(·) = {x(·; 0, ψ, u(k)(·)), s ∈ [0, T ]} be the solution of (3.1) correspond-
ing to u(k)(·). Define

X(k)(·) ≡ (x(k)(·), F (k)(·), G(k)(·), L(k)(·),W (k)(·)), (3.20)

where the processes F (k)(·), G(k)(·), and L(k)(·) are defined as follows:

F (k)(s) =
∫ s

0

f(t, x(k)
t (·; 0, ψ, u(k)(·)), u(k)(t)) dt,

G(k)(s) =
∫ s

0

g(t, x(k)
t (·; 0, ψ, u(k)(·)), u(k)(t)) dW (k)(t),
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and

L(k)(s) =
∫ s

0

e−αtL(t, x(k)
t (·; 0, ψ, u(k)(·)), u(k)(t)) dt, s ∈ [0, T ].

Step 2. We prove the following lemma:

Lemma 3.2.13 Assume Assumption 3.1.1 holds. Then there exists a con-
stant K > 0 such that

E(k)

[∣∣∣X(k)(s1) − X(k)(s2)
∣∣∣
4
]
≤ K|s1 − s2|2, ∀s1, s2 ∈ [0, T ], ∀k = 1, 2, . . . ,

where E(k)[· · · ] is the expectation with respect to the probability measure P (k).

Proof of the Lemma. Let us fix k, 0 ≤ s1 ≤ s2 ≤ T , and consider

E(k)
[
|F (k)(s1) − F (k)(s2)|4

]

≤ E(k)

[∣∣∣∣
∫ s2

s1

f(t, x(k)
t (·; 0, ψ, u(k)(·)), u(k)(t))dt

∣∣∣∣
4
]

≤ |s1 − s2|2E(k)

[(∫ s2

s1

∣∣∣f(t, x(k)
t (·; 0, ψ, u(k)(·)), u(k)(t))

∣∣∣
2

dt

)2
]

≤ |s1 − s2|2
∫ s2

s1

K2
growE(k)

[(
1 + ‖x(k)

t (·; t, ψ, u(k)(·))‖
)2
]

dt.

Since x
(k)
t (·; 0, ψ, u(k)(·)) is continuous P (k)-a.s. in t on the compact interval

[0, T ], it can be shown that there exists a constant K > 0 such that
∫ s2

s1

K2
growE(k)

[(
1 + ‖x(k)

t (·; 0, ψ, u(k)(·))‖
)2
]

dt < K.

Therefore,

E(k)
[
|F (k)(s1) − F (k)(s2)|4

]
≤ K|s1 − s2|2, ∀s1, s2 ∈ [0, T ], ∀k = 1, 2, . . . .

Similar conclusion holds for L(k); that is,

E(k)
[
|L(k)(s1) − L(k)(s2)|4

]
≤ K|s1 − s2|2, ∀s1, s2 ∈ [0, T ], ∀k = 1, 2, . . . .

We consider

E(k)
[
|G(k)(s1) − G(k)(s2)|4

]

≤ E(k)

[∣∣∣∣
∫ s2

s1

g(t, x(k)
t (·; 0, ψ, u(k)(·)), u(k)(t))dW (k)(t)

∣∣∣∣
4
]
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≤ K1(s2 − s1)
(∫ s2

s1

E(k)

[∣∣∣g(t, x(k)
t (·; 0, ψ, u(k)(·)), u(k)(t))

∣∣∣
4
]

dt

)2

for some constant K1 > 0

≤ |s1 − s2|2
∫ s2

s1

K1K
2
grow

(
1 + ‖x(k)

t (·; 0, ψ, u(k)(·))‖
)2

dt.

≤ K|s1 − s2|2 for some constant K > 0.

It is clear that

E(k)
[
|W (k)(s1) − W (k)(s2)|4

]
= E(k)

[
|W (k)(s2 − s1)|4

]
≤ K|s1 − s2|2,

since W (k)(s2 − s1) is Gaussian with mean zero and variance I(m)(s2 − s1).
The above estimates give

E(k)

[∣∣∣X(k)(s1) − X(k)(s2)
∣∣∣
4
]
≤ K|s1 − s2|2, ∀s1, s2 ∈ [0, T ], ∀k = 1, 2, . . . .

This completes the proof of the lemma. �

From the above lemma, we use the following well-known results to conclude
that {(X(k)(·), µu(k)(·, ·))}∞k=1 is tight as a sequence of C([0, T ],�3n+m+1),
since R is compact.

Proposition 3.2.14 Let {ζ(k)(·)}∞k=1 be a sequence of d-dimensional con-
tinuous processes over [0, T ] on a probability space (Ω,F , P ) satisfying the
following conditions:

sup
k≥1

E[|ζ(k)(0)|c] < ∞

and
sup
k≥1

E[|ζ(k)(t) − ζ(k)(s)|a] ≤ K|t − s|1+b, ∀t, s ∈ [0, T ],

for some constants a, b, c > 0. Then {ζ(k)(·)}∞k=1 is tight as C([0, T ],�d)-
valued random variables. As a consequence there exists a subsequence {kj},
d-dimensional continuous processes {ζ̂(kj)(·)}∞j=1 and ζ̂(·) defined on a proba-
bility space (Ω̂, F̂ , P̂ ) such that

P (ζ(kj)(·) ∈ A) = P̂ (ζ̂(kj)(·) ∈ A), ∀A ∈ B(C([0, T ],�d))

and
lim

j→∞
ζ̂(kj)(·) → ζ̂(·) in C([0, T ],�d), P̂ -a.s.

Corollary 3.2.15 Let ζ(·) be a d-dimensional process over [0, T ] such that

E[|ζ(t) − ζ(s)|a] ≤ K|t − s|1+b, ∀t, s ∈ [0, T ],

for some constants a, b > 0. Then there exists a d-dimensional continuous
process that is stochastically equivalent to ζ(·).
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We refer the readers to Ikeda and Watanabe [IW81, pp.17-20] for a proof
of the above proposition and corollary.
Step 3. Since

{(X(k)(·), µu(k)(·, ·))}∞k=1

is tight as a sequence in C([0, T ],�3n+m+1), by the Skorokhod representation
theorem (see Theorem 3.2.7), one can choose a subsequence (still labeled as
{k}) and have

{(X̄(k)(·), µ̄(k)(·, ·))} ≡ {(x̄(k)(·), F̄ (k)(·), Ḡ(k)(·), L̄(k)(·), W̄ (k)(·), µ̄(k)(·, ·))}

and
(X̄(·), µ̄(·, ·)) ≡ (x̄(·), F̄ (·), Ḡ(·), L̄(·), W̄ (·), µ̄(·, ·))

on a suitable common probability space (Ω̄, F̄ , P̄ ) such that

law of (X̄(k)(·), µ̄(k)(·, ·)) = law of (X(k)(·), µ(k)(·, ·)), ∀k ≥ 1, (3.21)

and P̄ -a.s.,
X̄(k)(·) → X̄(·) uniformly on [0, T ] (3.22)

and
µ̄(k)(·, ·) → µ̄(·, ·) weakly on R. (3.23)

Step 4. Construct the filtration F̄(k) = {F̄ (k)(s), s ≥ 0} and F̄ = {F̄ , s ≥ 0},
where

F̄ (k)(s) = σ{(W̄ (k)(t), x̄(k)(t)), t ≤ s} ∨ (µ̄(k))−1(Bs(R))

and
F̄(s) = σ{(W̄ (t), x̄(t)), t ≤ s} ∨ (µ̄)−1(Bs(R)), s ≥ 0.

By the definition of Bs(R) and the fact that the σ-algebra generated by the
cylinder sets of C([0, T ];�d) coincides with B(C([0, T ];�d)), F̄ (k)(s) is the
σ-algebra generated by

W̄ (k)(t1), . . . , W̄ (k)(tl), x̄(k)(t1), . . . , x̄(k)(tl), µ̄(k)(ς(j),t1), . . . , µ̄(k)(ς(j),tl),

t1, . . . , tl ≤ s, ς(j) ∈ C([0, T ], U) and j, l = 1, 2, . . ..

A similar statement can be made for F̄(s).
We need to show that W̄ (k)(·) = {W̄ (k)(s), s ≥ 0} is an F̄(k) Brownian

motion. We first note that W (k)(·) is a Brownian motion with respect to
{

σ{(W (k)(t), x(k)(t)), t ≤ s} ∨ (µ−1
u(k)(Bs(R)), s ≥ 0

}
.

This implies that for any 0 ≤ t ≤ s ≤ T and any bounded function H on
�(m+n+b)l (b is a positive integer), we have

E(k)
[
H(y(k))(W (k)(s) − W (k)(t))

]
= 0,
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where
y(k) = {W (k)(ti), x(k)(ti), µ(k)(ςja,ti)}

∀ ≤ 0 ≤ t1 ≤ t2 ≤ · · · ≤ tl ≤ t, a = 1, 2, . . . , b.

We have
Ē(k)

[
H(ȳ(k))(W̄ (k)(s) − W̄ (k)(t))

]
= 0,

where
ȳ(k) = {W̄ (k)(ti), x̄(k)(ti), µ̄(k)(ςja,ti)}

∀0 ≤ t1 ≤ t2 ≤ · · · ≤ 0 ≤ tl ≤ t, a = 1, 2, . . . , b,

since

law of (X̄(k)(·), µ̄(k)(·, ·)) = law of (X(k)(·), µ(k)(·, ·)), ∀k ≥ 1.

We therefore have

E(k)[(W (k)(s) − W (k)(t)) | F (k)(t)] = 0.

In order to show W̄ (k)(·) is an F̄(k) Brownian motion, we need

E(k)[(W (k)(s) − W (k)(t))(W (k)(s) − W (k)(t))� | F (k)(t)] = (s − t)I(m).

This can be shown similarly.
Step 5. Again, since

law of (X̄(k)(·), µ̄(k)(·, ·)) = law of (X(k)(·), µ(k)(·, ·)), ∀k ≥ 1,

the following stochastic integral equation (defined on (Ω̄, F̄ , F̄(k), P̄ )) holds:

x̄(k)(s) = ψ(0) +
∫ s

0

f̃(t, x̄(k)
t , µ̄(k)) dt

+
∫ s

0

g̃(t, x̄(k)
t , µ̄(k)) dW̄ (k)(t),

where
f̃(t, x̄(k)

t , µ̄(k)) =
∫

U

f(t, x̄(k)
t , u) ˙̄µ(k)(t, du)

and
g̃(t, x̄(k)

t , µ̄(k)) =
∫

U

g(t, x̄(k)
t , u) ˙̄µ(k)(t, du).

Note that the above integrals are well defined, since W̄ (k)(·) is a F̄(k) Brownian
motion. Moreover, for each s ∈ [0, T ],

lim
k→∞

∫ s

0

f̃(t, x̄(k)
t , µ̄(k)) dt =

∫ s

0

f̃(t, x̄t, µ̄) dt
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lim
k→∞

∫ s

0

e−αtL̃(t, x̄(k)
t , µ̄(k)) dt =

∫ s

0

e−αtL̃(t, x̄t, µ̄) dt, P̄ -a.s.,

e−α(T−t)Ψ(x̄(k)
T ) → e−α(T−t)Ψ(x̄T ), P̄ -a.s.,

and

lim
k→∞

∫ s

0

g̃(t, x̄(k)
t , µ̄(k)) dW̄ (k)(t)

=
∫ s

0

∫

U

g̃(t, x̄t, µ̄) dW̄ (t), P̄ -a.s.,

where
f̃(t, x̄t, µ̄) =

∫

U

f(t, x̄t, u) ˙̄µ(t, du),

L̃(t, x̄(k)
t , µ̄(k)) =

∫

U

L(t, x̄(k)
t , u) ˙̄µ(k)(t, du),

L̃(t, x̄t, µ̄) =
∫

U

L(t, x̄t, u) ˙̄µ(t, du),

and
g̃(t, x̄t, µ̄) =

∫

U

g(t, x̄t, u) ˙̄µ(t, du).

We have by taking the limit k → ∞

x̄(s) = ψ(0) +
∫ s

0

f̃(t, x̄t, µ̄) dt

+
∫ s

0

g̃(t, x̄t, µ̄) dW̄ (t), ∀s ∈ [0, T ], P̄ − a.s.

Moreover,

J(0, ψ;u(k)(·)) = Ē

[∫ T

0

e−αtL̃(t, x̄t, µ̄
(k)) dt + e−αT Ψ(x̄(k)

T )

]

→ sup
u(·)∈U [0,T ]

J(0, ψ;u(·))

as k → ∞.

Step 6. Let us consider the sequence

Ã(k)(s) ≡ (g̃g̃�)(s, x̄(k)
s , µ̄(k)), s ∈ [0, T ].

By the Lipschitz continuity and linear growth conditions on f and g, it is
tedious but straight forward to show that

sup
k

Ē

[∫ T

0

|Ã(k)(s)|2ds

]
< ∞.
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Hence the sequence {Ã(k)}∞k=1 is weakly relatively compact in the space
L2([0, T ] × Ω̄,Sn), where Sn is the space of symmetric n × n matrices.
We can then find a subsequence (still labelled by {k}) and a function
Ã ∈ L2([0, T ] × Ω̄,Sn) such that

Ã(k) → Ã, weakly on L2([0, T ] × Ω̄,Sn). (3.24)

Denoting by Ãij the (ij) entry of the matrix Ã, we claim that for almost all
(s, ω),

limk→∞Ã
(k)
ij (s, ω) ≤ Ãij(s, ω)

≤ limk→∞Ã
(k)
ij (s, ω), i, j = 1, 2, . . . , n. (3.25)

Indeed, if (3.25) is not true and on a set A ⊂ [0, T ] × Ω̄ of positive measure,

limk→∞Ã
(k)
ij (s, ω) > Ãij(s, ω),

then, by Fatou’s lemma, we have

limk→∞

∫

A

Ã
(k)
ij (s, ω)dsdP̄ (ω) >

∫

A

Ãij(s, ω)dsdP̄ (ω),

which is a contradiction to (3.24). The same can be said for lim, which proves
(3.25). Moreover, by the Lipschitz continuity and linear growth of f and g
and the fact that X̄(k)(·) → X̄(·) uniformly on [0, T ], for almost all (s, ω), we
have

limk→∞Ã(k)(s)
= limk→∞(g̃g̃�)(s, x̄(k)

s , µ̄(k)), (s, ω) ∈ [0, T ] × Ω̄, (3.26)

and

limk→∞Ã(k)(s)
= limk→∞(g̃g̃�)(s, x̄(k)

s , µ̄(k)), (s, ω) ∈ [0, T ] × Ω̄, (3.27)

Then, combining (3.25), (3.26), (3.27) and the Roxin condition, we have

Ã(s, ω) ∈ (gg�)(s, x̄s(ω), U), a.e.(s, ω). (3.28)

Modify Ã on a null set, if necessary, so that (3.28) holds for all (s, ω) ∈
[0, T ]× Ω̄. One can similarly prove that there are f̃ and L̃ ∈ L2([0, T ]× Ω̄,�)
such that

f̃ (k) → f̃ , L̃(k) → L̃, weakly on L2([0, T ] × Ω̄,�), (3.29)

and
f̃(s, ω) ∈ f(s, x̄s(ω), U), L̃(s, ω) ∈ L(s, x̄s(ω), U), (3.30)
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∀(s, ω) ∈ [0, T ] × Ω̄.

By (3.28), (3.30) the Roxin condition, and a measurable selection theorem (see
Corollary 2.26 of Li and Yong [LY91, p102]), there is a U -valued, F̄-adapted
process ū(·) such that

(f̃ , Ã, L̃)(s, ω) = (f, gg�, L)(s, x̄s(ω), ū(s, ω)), (3.31)

∀(s, ω) ∈ [0, T ] × Ω̄.

Step 7. The last step is to use Roxin condition to show that there exists
an m-dimensional Brownian motion defined on the filtered space (Ω̂, F̂ , P̂ , F̂)
which extends the filtered probability space (Ω̄, F̄ , P̄ , F̄). We, then, conclude
that

(Ω̂, F̂ , P̂ , F̂, Ŵ (·), ū(·)) ∈ U [0, T ]

is an optimal control.
We next prove that the Itô’s integral process Ī(g̃)(·) = {Ī(g̃)(s), s ∈ [0, T ]}

is an F̄-martingale, where

Ī(g̃)(s) =
∫ s

0

g̃(t, x̄t, µ̄) dW̄ (t), s ∈ [0, T ].

To see this, once again, let 0 ≤ t ≤ s ≤ T , and define

ȳ(k) ≡ {W̄ (k)(ti), x̄(k)(ti), µ̄(k)(ςja,ti)},

and
ȳ ≡ {W̄ (ti), x̄(ti), µ̄(ςja,ti)},

0 ≤ t1 ≤ t2 ≤ · · · ≤ tl ≤ s, a = 1, 2, . . . , b.

Since Ī(k)(g̃)(·) is a F̄(k)-martingale, for any bounded continuous function
H : �(m+n+b)l → �, we have

0 = Ē[Φ(ȳ(k)(Ī(k)(g̃)(s) − Ī(k)(g̃)(t))]
→ Ē[Φ(ȳ(Ī(g̃)(s) − Ī(g̃)(t))], (3.32)

since X̄(k)(·) → X̄(·) uniformly on [0, T ] and µ̄(k) → µ̄ weakly on R and by the
dominated convergence theorem. This proves that Ī(g̃)(·) is an F̄-martingale.
Furthermore,

〈Ī(k)(g̃)〉(s) =
∫ s

0

Ã(k)(t)dt,

where 〈Ī(k)(g̃)〉 is the quadratic variation of Ī(k)(g̃)(·). Hence,

(Ī(k)(g̃))(Ī(k)(g̃))� −
∫ s

0

Ã(k)(t)dt

is an F̄(k)-martingale. Recalling Ã(k)(·) → Ã(·) weakly on L2([0, T ] × Ω̄), we
have for any t, s ∈ [0, T ],
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∫ s

t

Ã(k)(λ)dλ →
∫ s

t

(gg�)(λ, x̄λ, ū(λ))dλ, weakly on L2(Ω).

On the other hand, by the dominated convergence theorem, we have, for real-
valued function H of appropriate dimension,

H(ȳ(k)) → H(ȳ), strongly on L2(Ω).

Thus,

Ē

[
H(ȳ(k))

∫ s

t

Ã(k)(λ)dλ

]
→ Ē

[
H(ȳ)

∫ s

t

(gg�)(λ, x̄λ, ū(λ))dλ

]
.

Therefore, using an argument similar to the above, we obtain that M̄(·) =
{M̄(s), s ∈ [0, T ]} is an F̄-martingale, where

M̄(s) ≡ (Ī(g))(Ī(g))�(s) −
∫ s

0

(gg�)(t, x̄t, ū(t))dt.

This implies that

Ī(g)(s) =
∫ s

0

(gg�)(t, x̄t, ū(t))dt.

By a martingale representation theorem (see Subsection of Chapter 1), there
is an extension (Ω̂, F̂ , F̂, P̂ ) of (Ω̄, F̄ , F̄, P̂ ) on which lives an m-dimensional
F̂ Brownian motion Ŵ (·) = {Ŵ (s), s ≥ 0}, such that

Ī(g)(s) =
∫ s

0

g(t, x̄t, ū(t)) dŴ (t).

Similarly, one can show that

F̄ (s) =
∫ s

0

f(t, x̄t, ū(t)) dt.

Putting into

x̄(s) = ψ(0) + F̄ (s) + Ī(g)(s), ∀s ∈ [0, T ], P̄ − a.s.,

with

Ē
[ ∫ T

0

e−αt(t, x̄t, ū(t)) dt + e−αT Ψ(x̄T )
]

= inf
u(·)∈U [0,T ]

J(0, ψ;u(·)),

we arrive at the conclusion that

(Ω̂, F̂ , F̂, P̂ , Ŵ (·), ū(·)) ∈ U [0, T ]

is an optimal control. This prove the theorem. �
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Proof of Theorem 3.2.11.
The idea in proving the existence of an optimal relaxed control µ∗(·, ·) is

to (1) observe that the space of relaxed control R is sequentially compact,
since [0, T ] × U is compact (see Theorem 3.2.1), and hence every sequence in
R has a convergent subsequence under the weak compact topology defined
by (3.14); (2) check that Ĵ(t, ψ; ·) : R → � is a (sequentially) upper semi-
continuous function defined on the sequentially compact space R; 3) provoke
a classical theorem (see, e.g., Rudin [Rud71]) that states any (sequentially)
upper semicontinuous real-valued function defined on a (sequentially) com-
pact space attends a maximum in the space, and hence Ĵ(t, ψ; ·) attains its
maximum at some point µ∗(·, ·) ∈ R (see, e.g., Yong and Zhou [YZ99, p.65]);
and (4) show that the value function for the Problem (ORCP) coincides with
that of the original Optimal Classical Control Problem (OCCP).

First, the following proposition is analogous to Theorem 10.1.1 of Kushner
and Dupuis [KD01, pp.271-275] for our setting. The detail of the proof is very
similar to that of Theorem 3.2.12 and, therefore, only a sketch is provided
here.

Proposition 3.2.16 Let Assumption 3.1.1 hold. Let

{(Ω(k),F (k), P (k),F(k),W (k)(·), µ(k)(·, ·))}∞k=1

be any sequence of admissible relaxed controls in Û [t, T ]. For each k = 1, 2, . . .,
let {x(k)(s; t, ψ, µ(k)(·, ·)), s ∈ [t − r, T ]} be the corresponding strong solution
of (3.16) through the initial datum (t, ψ(k)) ∈ [0, T ] × C. Assume that the
sequence of initial functions {ψ(k), k = 1, 2, · · · } converges to ψ ∈ C. The
sequence

{(x(k)(·),W (k)(·), µ(k)(·, ·)), k = 1, 2, . . .}
is tight. Denote by (x(·),W (·), µ(·)) the limit point of the sequence

{(x(k)(·),W (k)(·), µ(k)(·, ·)), k = 1, 2, . . .}

Define the filtration {H(s), s ∈ [t, T ]} by

H(s) = σ((x(λ),W (λ), µ(λ,G)), t ≤ λ ≤ s,G ∈ B(U)).

Then W (·) is is an (H(t, s), s ∈ [t, T ])-adapted Brownian motion, the six-tuple

{(Ω,F , P,F,W (·), µ(·, ·))}

is an admissible relaxed control and the process

x(·) = {x(s; t, ψ, µ(·, ·)), s ∈ [t − r, T ]}

is the strong solution process to (3.16) defined on

{(Ω,F , P,F,W (·), µ(·, ·))}

and with the initial datum (t, ψ) ∈ [0, T ] × C.
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A Sketch of Proof. Without loss of generality, we can and will assume that

{(Ω(k),F (k), P (k),F(k),W (k)(·), µ(k)(·, ·)), k = 1, 2, . . .}

is the maximizing sequence of admissible relaxed controls for Problem (ORCP).
We claim that the sequence of triplets

{(W (k)(·), µ(k)(·, ·), x(k)(·)), k = 1, 2, . . .} (3.33)

is tight and therefore has a subsequence that is also to be denoted by (3.33),
which converges weakly to some triplet (W (·), µ(·, ·), x(·)), where W (·) is a
standard Brownian motion, µ(·, ·) is the optimal relaxed control process, and
x(·) is the optimal state process (corresponding to the optimal relaxed control
process) that satisfies (3.16). Componentwise tightness implies tightness of the
products (cf. Remark 3.2.4 or [Bil99,p.65]). We therefore prove the following
componentwise results.

First, we observe that the sequence {W (k)(·)}∞k=1 is tight. This is because
they all have the same (Wiener) probability measure. Note that W (k)(·) is
continuous for each k = 1, 2, . . ., so is its limit W (·). To show that W (·)
is an m-dimensional standard Brownian motion, we will use the martingale
characterization theorem in Section 1.2.1 of Chapter 1 by showing that if Φ ∈
C2

0 (�m) (the space of real-valued twice continuously differentiable functions
on �m and with compact support), then MΦ(·) is a F-martingale, where

MΦ(s) ≡ Φ(W (s)) − Φ(0) −
∫ s

0

LwΦ(W (t)) dt, s ≥ 0,

and Lw is the differential operator defined by (1.8). To prove this, we have by
the fact that W (k)(·) is F(k)-Brownian motion,

E

[
H(x(k)(ti),W (k)(ti), µ(k)(ti), i ≤ p) (3.34)

×
(

Φ(W (k)(t + λ)) − Φ(W (k)(t)) −
∫ t+λ

t

LwΦ(W (k)(s))ds

)]
= 0.

By the probability 1 convergence which is implied by the Skorokhod repre-
sentation theorem,

E

[∣∣∣∣∣
∫ t+λ

t

LwΦ(W (k)(s)) ds −
∫ t+λ

t

LwΦ(W (s)) ds

∣∣∣∣∣

]
→ 0.

Using this result and taking limits in (3.34) yields

E

[
H(x(ti),W (ti), µ(ti), i ≤ p) (3.35)

×
(

Φ(W (t + λ)) − Φ(W (t)) −
∫ t+λ

t

LwΦ(W (s)) ds

)]
= 0.
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The set of random variables H(x(ti),W (ti), µ(ti), i ≤ p), as H(·), p, and ti
vary over all possibilities, induces the σ-algebra F(t). Thus, (3.35) implies
that

(Φ(W (s) − Φ(0) −
∫ s

0

LwΦ(W (t)) dt

is an F-martingale for all Φ of chosen class. Thus W (·) is a standard
F-Brownian motion.

Second, the sequence {(µ(k)(·, ·), k = 1, 2, . . .} is tight, because the space
R is (sequentially) weak compact. Furthermore, its weak limit µ(·) ∈ R and
µ([0, t];U) = t for all t ∈ [0, T ].

Third, the tightness of the sequence of processes {x(k)(·), k = 1, 2, ...}
follows from the Aldous criterion (cf. Theorem 3.2.6 or [Bil99, pp. 176-179]:
Given k = 1, 2, . . ., any bounded F-stopping time τ , and δ > 0, we have

E(k)[|x(k)(τ + δ) − x(k)(τ)|2 | F (k)(τ)] ≤ 2K2δ(δ + 1)

as a consequence of Assumption 3.1.1 and Itô’s isometry. To show that its limit
process x(·) = {x(s), s ∈ [t, T ]} satisfies (3.16), we note that the weak limit
(x(·),W (·), µ(·, ·)) is continuous on the time interval [t, T ]. This is because
it has been shown in the proof of Theorem 3.2.12 that both the pathwise
convergence of the Lebesque integral

lim
k→∞

∫ s

t

∫

U

f(λ, x
(k)
λ , u)µ̇(k)(λ, du) dλ =

∫ s

t

∫

U

f(λ, xλ, u)µ̇(λ, du) dλ, P -a.s.,

and of the stochastic integral

lim
k→∞

∫ s

t

∫

U

g(λ, x
(k)
λ , u)dW (k)(λ)µ̇(k)(λ, du)dλ

=
∫ s

t

∫

U

g(λ, xλ, u)µ̇(λ, du)dW (λ), P -a.s.

We assume that the probability spaces are chosen as required by the Sko-
rokhod representation (Theorem 3.2.7), so that we can suppose that the con-
vergence of

{(W (k)(·), µ(k)(·, ·), x(k)(·))}∞k=1

to its limit is with probability 1 in the topology of the path spaces of the
processes. Thus,

∫ s

t

∫

U

f(λ, x
(k)
λ , u)µ̇(k)(λ, du) dλ →

∫ s

t

∫

U

f(λ, xλ, u)µ̇(λ, du)d λ

and
∫ s

t

∫

U

g(λ, x
(k)
λ , u)µ̇(k)(λ, du) dW (k)(λ) →

∫ s

t

∫

U

g(λ, xλ, u)µ̇(λ, du) dW (λ)
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as k → ∞ uniformly on [t, T ] with probability 1. The sequence {µ(k)(·, ·)}∞k=1

converges weakly. In particular, for any Φ ∈ Cb([0, T ] × U),
∫ T

t

∫

U

Φ(λ, u)µ(k)(dλ, du) →
∫ T

t

∫

U

Φ(λ, u)µ(dλ, du).

Now, the Skorokhod representation theorem 3.2.7 and weak convergence imply
that

∫ s

t

∫

U

f(λ, x
(k)
λ , u)µ̇(k)(λ, du) dλ →

∫ s

t

∫

U

f(λ, xλ, u)µ̇(λ, du) dλ

and
∫ s

t

∫

U

g(λ, x
(k)
λ , u)µ̇(k)(λ, du) dW (k)(λ) →

∫ s

t

∫

U

g(λ, xλ, u)µ̇(λ, du) dW (λ)

as k → ∞ uniformly on [t, T ] with probability 1. Since ψ(k) ∈ C converges to
ψ ∈ C, we therefore prove that

x(s) = ψ(0) +
∫ s

t

∫

U

f(λ, xλ, u)µ̇(λ, du) dλ

+
∫ s

t

∫

U

g(λ, xλ, u)µ̇(λ, du) dW (λ). s ∈ [t, T ], (3.36)

We next claim that the weak limit (x(·),W (·), µ(·, ·)) is continuous on the
time interval [t, T ]. First, x(·) is a continuous process; this is because both the
pathwise Lebesque integral

lim
k→∞

∫ s

t

∫

U

f(λ, x
(k)
λ , u)µ̇(k)(λ, du) dλ =

∫ s

t

∫

U

f(λ, xλ, u)µ̇(λ, du) dλ, P -a.s.,

and the stochastic integral

lim
k→∞

∫ s

t

∫

U

g(λ, x
(k)
λ , u)µ̇(k)(λ, du) dW (k)(λ)

=
∫ s

t

∫

U

g(λ, xλ, u)µ̇(λ, du) dW (λ), P -a.s.

Similarly,
∫ T

t

∫

U

eα(s−t)L(s, xs, u)µ̇(k)(s, du) ds →
∫ T

t

∫

U

eα(s−t)L(s, xs, u)µ̇(s, du) ds,

and
e−α(T−t)Ψ(x(k)

T ) → e−α(T−t)Ψ(xT )

as k → ∞ with probability 1. �

We have therefore proved the following two propositions.
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Proposition 3.2.17 Let Assumption 3.1.1 hold. Suppose the sequence of ini-
tial segment functions {ψ(k)}∞k=1 ⊂ C converges to ψ ∈ C. Then

lim
k→∞

V̂ (t, ψ(k)) = V̂ (t, ψ).

Proposition 3.2.18 Let Assumption 3.1.1 hold. Let µ(·, ·) ∈ Û [t, T ] be the
relaxed control representation of u(·) ∈ U [t, T ] via (3.13). Then

V (t, ψ) := sup
u(·)∈U [0,T ]

J(t, ψ;u(·)) = V̂ (t, ψ) := sup
µ(·,·)∈U [0,T ]

Ĵ(t, ψ;µ(·, ·)).

Proof of Theorem 3.2.11 The theorem follows immediately from Proposi-
tions 3.2.17 and 3.2.18. �

3.3 Dynamic Programming Principle

3.3.1 Some Probabilistic Results

To establish and prove the dynamics programming principle (DDP), we need
some probabilistic results as follows.

First, we recall that if O is a nonempty set and if O is a collection of
subsets of O, the collection O is called a π-system if it is closed under the
finite intersection; that is, A,B ∈ O imply that A ∩ B ∈ O. It is a λ-system
if the following three conditions are satisfied: (i) O ∈ O; (ii) A,B ∈ O and
A ⊂ B imply that B − A ∈ O; and (iii) Ai ∈ O, Ai ↑ A, i = 1, 2, . . ., implies
that A ∈ O.

The following lemmas will be used later.

Lemma 3.3.1 Let O and Õ be two collections of subsets of O with O ⊂ Õ.
Suppose O is a π-system and Õ is a λ-system. Then σ(O) ⊂ Õ, where σ(O)
is the smallest σ-algebra containing O.

Proof. This is the well-known monotone class theorem, the proof of which
can be found in Lemma 1.1.2 of [YZ99].

Lemma 3.3.2 Let O be a π-system on O. Let H be a linear space of functions
from O to � such that

1 ∈ H; IA ∈ H, ∀A ∈ O,

and
ϕ(i) ∈ H with 0 ≤ ϕ(i) ↑ ϕ,ϕ is finite ⇒ ϕ ∈ H.

Then H contains all σ(O)-measurable functions from O to �, where 1 is the
constant function of value 1 and IA is the indicator function of A.
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Proof. Let
Õ = {A ⊂ O | IA ∈ H}.

Then Õ is a λ-system containing O. From Lemma 3.3.1 it can be shown that
σ(O) ⊂ Õ.

Now, for any σ(O)-measurable function ϕ : O → �, we set for i = 1, 2, . . .

ϕ(i) =
∑
j≥0

j2−iI{j2−i≤ϕ+(ω)<(j+1)2−i},

where ϕ+ ≡ max{ϕ, 0} denotes the positive part of ϕ. Clearly, ϕ(i) ∈ H and
0 ≤ ϕ(i) ↑ ϕ+. Hence, by our assumption, ϕ+ ∈ H. Similarly, ϕ− ∈ H, where
ϕ+ ≡ max{−ϕ, 0} denotes the negative part of ϕ. Thus, ϕ ∈ H. This proves
the lemma. �

First, let us introduce some notation. Define

Ct([0, T ];�m) := {η(· ∧ t) | η ∈ C([0, T ];�m)},
Bt(C([0, T ];�m)) := σ(B(Ct([0, T ];�m))),
Bt+(C([0, T ];�m)) := ∩s>tBs(C([0, T ];�m))), t ∈ [0, T ],

where σ(B(Ct([0, T ];�m))) denotes the smallest σ-algebra in C([0, T ];�m)
that contains B(Ct([0, T ];�m)). Clearly, both of the following are filtered mea-
surable spaces:

(C([0, T ];�m),B(C([0, T ];�m)), {Bt(C([0, T ];�m))}t≥0)

and
(C([0, T ];�m),B(C([0, T ];�m)), {Bt+(C([0, T ];�m))}t≥0).

However,

Bt+(C([0, T ];�m)) �= Bt(C([0, T ];�m)), ∀t ∈ [0, T ].

A set B ⊂ C([0, T ];�m) is called a Borel cylinder if there exists a partition
π = {0 ≤ t1 < t2 < · · · < tj ≤ T} of [0, T ] and A ∈ B((�m)j) such that

B = π−1(A) ≡ {ξ ∈ C([0, T ];�m) | (ξ(t1), ξ(t2), . . . , ξ(tj)) ∈ A}. (3.37)

For s ∈ [0, T ], let C(s) be the set of all Borel cylinder in Cs([0, T ];�m) of the
form (3.37) with partition π ⊂ [0, s].

Lemma 3.3.3 The σ-algebra σ(C(T )) generated by C(T ) coincides with the
Borel σ-algebra B(C[0, T ];�m)) of C([0, T ];�m).

Proof. Let the partition π = {0 ≤ t1 < t2 < · · · < tj ≤ T} of [0, T ] be given.
We define a point-mass projection map Π : C([0, T ];�m) → (�m)j associated
with the partition π as follows:

Π(ξ) = (ξ(t1), ξ(t2), . . . , ξ(tj)), ∀ξ ∈ C([0, T ];�m).
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Clearly, Π is continuous. Consequently, for any A ∈ B((�m)j), it follows that
Π−1(A) ∈ B(C([0, T ];�m)). This implies that

σ(C(T )) ⊂ B((C([0, T ];�m)). (3.38)

Next, for any ξ̂ ∈ C([0, T ];�m) and ε > 0, the closed ε-ball B(ξ̂; ε) in
C([0, T ];�n) can be written as

B(ξ̂; ε) ≡ {ξ ∈ C([0, T ];�m) | sup
t∈[0,T ]

|ξ(t) − ξ̂(t)| ≤ ε} (3.39)

=
⋂

t∈Q∩[0,T ]

{ξ ∈ C([0, T ];�m) | |ξ(t) − ξ̂(t)| ≤ ε} ∈ σ(C(T )),

since {ξ ∈ C([0, T ];�m) | |ξ(t) − ξ̂(t)| ≤ ε} is a Borel cylinder and Q is the
set of all rational numbers (which is countable). Because the set of all sets in
the form of the left-hand side of (3.39) is a basis of the closed (and therefore
open) sets in C([0, T ];�m), we have

B(C([0, T ];�m)) ⊂ σ(C(T )). (3.40)

Combining (3.38) and (3.40), we obtain the conclusion of the lemma. �

Lemma 3.3.4 Let (Ω,F , P ) be a probability space and let ζ : [0, T ]×Ω → �m

be a continuous process. Then there exists an Ω0 ∈ F with P (Ω0) = 1 such
that ζ : Ω0 → C([0, T ];�m), and for any s ∈ [0, T ],

Ω0

⋂
Fζ(s) = Ω0

⋂
ζ−1(Bs(C([0, T ];�m)), (3.41)

where Fζ = {Fζ(s), s ∈ [0, T ]} is the filtration of sub-σ-algebras generated by
the process ζ(·); that is, for all s ∈ [0, T ],

Fζ(s) = σ{ζ(t), 0 ≤ t ≤ s}.

Proof. Let t ∈ [0, s] and A ∈ B(�m) be fixed. Then

B(t) ≡ {ξ ∈ C([0, T ];�m) | ξ(t) ∈ A} ∈ C(s)

and

ω ∈ ζ−1(B(t)) ⇐⇒ ζ(·, ω) ∈ B(t) ⇐⇒ ζ(t, ω) ∈ A

⇐⇒ ω ∈ ζ−1(t, ·)(A).

Thus,
ζ−1(t, ·)(A) = ζ−1(B(t)).

Then by Lemma 3.3.3, we obtain (3.41). �
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Lemma 3.3.5 Let (Ω,F) and (Ω̃, F̃) be two measurable spaces and let (Ξ, d)
be a Polish (complete and separable) metric space. Let ζ : Ω → Ω̃ and ϕ :
Ω → Ξ be two random variables. Then ϕ is σ(ζ)-measurable; that is,

ϕ−1(B(Ξ)) ⊂ ζ−1(F̃) (3.42)

if and only if there exists a measurable map η : Ω̃ → Ξ such that

ϕ(ω) = η(ζ(ω)), ∀ω ∈ Ω. (3.43)

Proof. We only need to prove the necessity. First, we assume that Ξ = �.
For this case, set

H ≡ {η(ζ(·)) | η : Ω̃ → Ξ is measurable}.

Then H is a linear space and 1 ∈ H. We note here that ζ−1(F̃) forms a
π-system; that is, it is closed under finite intersections. Also, if A ∈ σ(ζ) ≡
ζ−1(F̃), then for some B ∈ F̃ , IA(·) = IB(ζ(·)) ∈ H. Now, suppose η(i) : Ω̃ →
Ξ is measurable for i = 1, 2, . . . and η(i)(ζ(·)) ∈ H such that 0 ≤ η(i)(ζ(·)) ↑
ξ(·), which is finite. Set

A = {ω̃ ∈ Ω̃ | sup
i

η(i)(ω̃) < ∞}.

Then A ∈ F̃ and ζ(Ω) ⊂ A. Define

η(ω̃) =
{

supi η(i)(ω̃) if ω̃ ∈ A

0 if ω̃ ∈ Ω̃ − A.

Clearly, η : Ω̃ → Ξ is measurable and ξ(·) = η(ζ(·)). Thus, ξ(·) ∈ H. By
Lemma 3.3.2, H contains all σ(ζ)-measurable random variables, in particular,
ϕ ∈ H, which lead to (3.43). This proves our conclusion for the case U = �.

Now, let (Ξ, d) be an uncountable Polish space. Then it is known that
(Ξ, d) is Borel isomorphic to the Borel measurable space of real numbers
(�,B(�)); that is, there exists a bijection h : Ξ → � such that h(B(Ξ)) =
B(�). Consider the map ϕ̃ = h ◦ ϕ : Ω → �, which satisfies

ϕ̃−1(B(�)) = ϕ−1 ◦ h−1(B(�)) = ϕ−1(B(Ξ)) ⊂ ζ−1(F̃).

Thus, there exists an η̃ : Ω̃ → � such that

ϕ̃(ω) = η̃(ζ(ω)), ∀ω ∈ Ω.

By taking η = h−1 ◦ η̃, we obtain the desired result.

Finally, if (Ξ, d) is countable or finite, we can prove the result by replacing
� in the above by the set of natural numbers N or {1, 2, . . . , n}. �
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Later we will take Ξ to be the control set U . Let Am
T (U) be the set of all

Bt+(C([0, T ];�m))-progressively measurable processes

η : [0, T ] × C([0, T ];�m) → U,

where U is the control set, which is assumed to be a Polish (complete and
separable) metric space.

Proposition 3.3.6 Let (Ω,F , P ) be a complete probability space and let U
be a Polish space. Let ζ : [0, T ] × Ω → �m be a continuous process and
Fζ(s) = σ(ζ(t); 0 ≤ t ≤ s). Then ϕ : [0, T ] × Ω → U is {Fζ(s)}-adapted if
and only if there exists an η ∈ Am

T (U) such that

ϕ(t, ω) = η(t, ζ(· ∧ t, ω)), t ∈ [0, T ], P − a.s. ω ∈ Ω.

Proof. We prove only the “only if” part. The “if” part is clear.
For any s ∈ [0, T ], we consider a mapping

θs(t, ω) ≡ (t ∧ s, ζ(· ∧ s, ω) : [0, T ] × Ω → [0, s] × Ct([0, T ];�m).

By Lemma 3.3.4, we have B([0, s]) × Fζ(s) = σ(θs). On the other hand,
(t, ω) �→ ϕ(t ∧ s, ω) is (B([0, s]) × Fζ(s))/B(U)-measurable. Thus, by
Lemma 3.3.5, there exists a measurable map

ηs : ([0, T ] × Cs([0, T ];�m),B([0, s]) × Bs(C([0, T ];�m)) → U

such that

ϕ(t ∧ s, ω) = ηs(t ∧ s, ζ(· ∧ s, ω)), ∀ω ∈ Ω, t ∈ [0, T ]. (3.44)

Now, for any i ≥ 1, let 0 = ti0 < ti1 < · · · be a partition of [0, T ] (with the
mesh maxj≥1 |tij − tij−1| → 0 as i → ∞) and define

η(i)(t, ξ) = η0(0, ξ(· ∧ 0))I{0}(t) (3.45)

+
∑
j≥1

ηti
j (t, ξ(· ∧ tij))I(ti

j−1,ti
j ]
(t), ∀(t, ξ) ∈ [0, T ] × C([0, T ];�m).

For any t ∈ [0, T ], there exists j such that tij−1 < t ≤ tij . Then

η(i)(t, ζ(· ∧ tij , ω)) = ηti
j (t, ζ(· ∧ tij , ω)) = ϕ(t, ω). (3.46)

Now, in the case U = �, N, {1, 2, . . . , n}, we may define

η(t, ξ) = limi→∞η(i)(t, ξ) (3.47)

to get the desired result. In the case where U is a general Polish space, we
need to amend the proof in the same fasion as in that of Lemma 3.3.5. �
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3.3.2 Continuity of the Value Function

For each t ∈ [0, T ], the following lemma shows that the value function V (t, ·) :
C → � is Lipschitz.

Lemma 3.3.7 Assume Assumptions (A3.1.1)-(A3.1.3) hold. The value func-
tion V satisfies the following properties: There is a constant KV ≥ 0 not
greater than 3Klip(T + 1)e3T (T+4m)K2

lip such that for all t ∈ [0, T ] and
φ, φ̃ ∈ C, we have

|V (t, φ) − V (t, ϕ)| ≤ KV ‖φ − ϕ‖.

Proof. Let t ∈ [0, T ] and φ, ϕ ∈ C. We have, by definition,

|V (t, φ) − V (t, ϕ)| ≤ sup
u(·)∈U [t,T ]

|J(t, φ;u(·)) − J(t, ϕ;u(·))|.

Let x(·) and y(·) be the solution processes of (3.1) under the control process
u(·) but with two different initial data: (t, φ) and (t, ϕ) ∈ [0, T ] × C, respec-
tively. Then by (A3.1.3) of Assumption 3.1.1, we have for all u(·) ∈ U [t, T ],

|J(t, φ;u(·) − J(t, ϕ;u(·))|

≤ E

[∫ T

t

|L(s, xs, u(s)) − L(s, ys, u(s))| ds + |Ψ(xT ) − Ψ(yT )|
]

≤ Kkip(1 + T − t)E

[
sup

s∈[−r,T ]

|x(s) − y(s)|2
]

.

Now,

E

[
sup

s∈[−r,T ]

|x(s) − y(s)|2
]
≤ 2E

[
sup

s∈[0,T ]

|x(s) − y(s)|2
]

+ 2‖φ − ϕ‖2,

while Hölder’s inequality, Doob’s maximal inequality, Itô’s isometry, Fubini’s
theorem and (A3.1.3) of Assumption 3.1.1 together yield

E

[
sup

s∈[0,T ]

|x(s) − y(s)|2
]

≤ 3|φ(0) − ϕ(0)|2 + 3TE

[∫ T

t

|f(s, xs, u(s)) − f(s, ys, u(s))|2 ds

]

+ 3m

n∑
i=1

m∑
j=1

E

[∫ T

t

|(gij(s, xs, u(s)) − gij(s, ys, u(s))) dWj(s)|2
]

≤ 3|φ(0) − ϕ(0)|2 + 3TK2
lip

∫ T

t

E[‖xs − ys‖2 ds
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+ 12mE

⎡
⎣
∫ T

t

n∑
i=1

m∑
j=1

|(gij(s, xs, u(s)) − gij(s, ys, u(s)))|2 ds

⎤
⎦

≤ 3|φ(0) − ϕ(0)|2 + 3(T + 4m)K2
lip

∫ T

t

E

[
sup

λ∈[t−r,s]

‖x(λ) − y(λ)‖2

]
ds.

Since |φ(0) − ϕ(0)| ≤ ‖φ − ϕ‖, Gronwall’s lemma gives

E

[
sup

s∈[t−r,T ]

‖x(s) − y(s)‖2

]
≤ 8‖φ − ϕ‖2e6T (T+4m)K2

lip .

Combining the above estimates, we obtain the assertion. �

3.3.3 The DDP

The advantage of the weak formulation of the control problem will be apparent
in the following lemmas and its use in the proof of the DPP. Let t ∈ [0, T ]
and u(·) ∈ U [t, T ]. Then under Assumption 3.1.1, for any F(t)-stopping time
τ ∈ [t, T ) and F(t, τ)-measurable random variable ξ : Ω → C, we can solve
the following controlled SHDE:

dx(s) = f(s, xs, u(s)) ds + g(s, xs, u(s)) dW (s), s ∈ [τ, T ], (3.48)

with the initial function xτ = ξ at the stopping time τ .

Lemma 3.3.8 Let t ∈ [0, T ] and (Ω,F , P,F,W (·), u(·)) ∈ U [t, T ]. Then for
any F-stopping time, τ ∈ [t, T ), and any F(τ)- measurable random variable
ξ : Ω → C,

J(τ, ξ(ω);u(·)) = E
[ ∫ T

τ

eα(s−τ)L(s, xs(·; τ, ξ, u(·)), u(s))ds

+ e−α(T−τ)Ψ(xT (·; τ, ξ, u(·))|F(τ)
]
(ω) P -a.s. ω.

Proof. Since u(·) is F-adapted, where F is the P -augmented natural filtration
generated by W (·), by Propostion 3.3.6 there is a function η ∈ Am

T (U) such
that

u(s, ω) = η(s,W (· ∧ s, ω)), P − a.s. ω ∈ Ω, ∀s ∈ [t, T ].

Then (3.48) can be written as

dx(s) = f(s, xs, η(s,W (· ∧ s))) ds

+g(s, xs, η(s,W (· ∧ s))) dW (s), s ∈ [τ, T ], (3.49)

with xτ = ξ. Due to Assumption 3.1.1, Theorem 1.3.12, and Theorem 1.3.16,
this equation has a strongly unique strong solution and, therefore, weak
uniqueness holds. In addition, we may write, for s ≥ τ ,
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u(s, ω) = η(s,W (· ∧ s, ω)) = η(s, W̃ (· ∧ s, ω) + W (τ, ω))

where W̃ (s) = W (s) − W (τ). Since τ is random, W̃ (·) is not a Brownian
motion under the probability measure P . However, we may, under the weak
formulation of the control problem, change the probability measure P as fol-
lows. Note first that

P{ω′ | τ(ω′) = τ(ω)|F(τ)}(ω)
= E[1{ω′:τ(ω′)=τ(ω)}|F(τ)](ω)
= 1{ω′:τ(ω′)=τ(ω)}(ω)
= 1, P − a.s. ω ∈ Ω.

This means that there is an Ω0 ∈ F with P (Ω0) = 1, so that for any fixed
ω0 ∈ Ω0, τ becomes a deterministic time τ(ω0); that is, τ = τ(ω0) almost
surely in the new probability space (Ω,F , P (·|F(τ))), where P (·|F(τ))) de-
notes the probability measure P restricted to the σ-sub-algebra F(τ). A sim-
ilar argument shows that W (τ) almost surely equals a constant W (τ(ω0), ω)
and also that ξ almost surely equals a constant ξ(ω0) when we work in the
probability space (Ω,F , P (·|F(τ))(ω0)). So, under the measure P (·|F(τ))(ω0),
for s ≥ τ(ω0), the process W̃ (·) will be a standard Brownian motion

W̃ (s) = W (s) − W (τ(ω0)),

and for any s ≥ τ(ω0),

u(s, ω) = η(s, W̃ (· ∧ s, ω) + W (τ(ω0), ω)).

It follows then that u(·) is adapted to the filtration F(τ(ω0)) generated by
the standard Brownian motion W̃ (s) for s ≥ τ(ω0). Hence, by the definition
of admissible controls,

(Ω,F , P (·|F(τ))(ω0), W̃ (·), u|[τ(ω0),T ]) ∈ U [τ(ω0), T ].

Note that for A ∈ B(C),

P [ξ ∈ A|F(τ)](ω0) = E[1{ξ∈A}|F(τ)](ω0) = E[1{ξ∈A}] = P{ξ ∈ A}.

This means that the two weak solutions

(Ω,F , P,F, x(·),W (·)) and (Ω,F , P (·|F(τ)(ω0)), F̃, x(·), W̃ (·))

of (3.1) have the same initial distribution. Then, by the weak uniqueness,

J(τ, ξ(ω);u(·)) = Eτ,ξ(ω),u(·)
[ ∫ T

τ

e−α(s−τ)L(s, xs, u(s)) ds + e−α(T−τ)Ψ(xT )
]

= E
[ ∫ T

τ

e−α(s−τ)L(s, xs(τ, ξ, u(·)), u(s)) ds

+ e−α(T−τ)Ψ(xT (τ, ξ, u(·))
∣∣∣F(τ)

]
(ω), P − a.s. ω. �
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The following dynamic programming principle (DDP) is due to Larssen
[Lar02].

Theorem 3.3.9 (Dynamic Programming Principle) Let Assumption 3.1.1
hold. Then for any initial datum (t, ψ) ∈ [0, T ] × C and F-stopping time
τ ∈ [t, T ],

V (t, ψ) = sup
u(·)∈U [t,T ]

E
[ ∫ τ

t

e−α(s−t)L(s, xs(·; t, ψ, u(·)), u(s)) ds

+ e−α(τ−t)V (τ, xτ (·; t, ψ, u(·)))
]
. (3.50)

Proof. Denote the right-hand side of (3.50) by V̄ (t, ψ). Given any ε > 0, there
exists an (Ω,F , P,F,W (·), u(·)) ∈ U [t, T ] such that

V (t, ψ) − ε ≤ J(t, ψ;u(·)).

Equivalently,

V (t, ψ) − ε ≤ J(t, ψ;u(·))

= E
[ ∫ T

t

e−α(s−t)L(s, xs(·; t, ψ, u(·)), u(s)) ds

+ e−α(T−t)Ψ(xT (·; t, ψ, u(·)))
]

= E
[ ∫ τ

t

e−α(s−t)L(s, xs(·; t, ψ, u(·)), u(s)) ds

+
∫ T

τ

e−α(s−t)L(s, xs(·; t, ψ, u(·)), u(s)) ds

+ e−α(T−t)Ψ(xT (·; t, ψ, u(·)))
]
.

Therefore,

V (t, ψ) − ε ≤ E
[ ∫ τ

t

e−α(s−t)L(s, xs(·; t, ψ, u(·)), u(s)) ds

+E
[ ∫ T

τ

e−α(s−τ)L(s, xs(·; t, ψ, u(·)), u(s)) ds

+ e−α(T−t)Ψ(xT (·; t, ψ, u(·)))
∣∣∣F(τ)

]]

= E
[ ∫ τ

t

e−α(s−t)L(s, xs(·; t, ψ, u(·)), u(s)) ds

+ e−α(τ−t)J(τ, xτ (·; t, ψ, u(·));u(·))
]

(by Lemma 3.3.11)

≤ E
[ ∫ τ

t

e−α(s−t)L(s, xs(·; t, ψ, u(·)), u(s)) ds

+ e−α(τ−t)V (τ, xτ (·; t, ψ, u(·))
]
,
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so by taking the supremum over u(·) ∈ U [t, T ], we have

V (t, ψ) − ε ≤ V̄ (t, ψ), ∀ε > 0.

This shows that

V (t, ψ) ≤ V̄ (t, ψ), ∀(t, ψ) ∈ [0, T ] × C. (3.51)

Conversely, we want to show that

V (t, ψ) ≥ V̄ (t, ψ), ∀(t, ψ) ∈ [0, T ] × C.

Let ε > 0; by Lemma 3.3.7 and its proof, there is a δ̃ = δ̃(ε) such that whenever

‖ψ − ψ̂‖ < δ̃,

|J(τ, ψ;u(·))−J(τ, ψ̂;u(·))|+ |V (τ, ψ)−V (τ, ψ̂)| ≤ ε, ∀u(·) ∈ U [τ, T ]. (3.52)

Now, let {Dj}j≥1 be a Borel partition of C. This means that

Dj ∈ B(C) for each j, ∪j≥1 Dj = C, and Di ∩ Dj = if i �= j.

We also assume that the Dj are chosen so that ‖φ − ϕ‖ < δ̃ whenever
φ and ϕ are both in Dj . Choose ψ(j) ∈ Dj . For each j, there exists an
(Ω(j),F (j), P (j),W (j)(·), u(j)(·)) ∈ U [τ, T ] such that

J(τ, ψ(j);u(j)(·)) ≤ V (τ, ψ(j)) + ε. (3.53)

For any ψ ∈ Dj , (3.52) implies in particular that

J(τ, ψ;u(j)(·)) ≥ J(τ, ψ(j);u(j)(·)) − ε and V (τ, ψ(j)) ≥ V (τ, ψ) − ε. (3.54)

Combining the above two inequalities, we see that

J(τ, ψ;u(j)(·)) ≥ J(τ, ψ(j);u(j)(·))−ε ≥ V (τ ;ψ(j))−2ε ≥ V (τ, ψ)−3ε. (3.55)

By the definition of the five-tuple

(Ω(j),F (j), P (j),F(j),W (j)(·), u(j)(·)) ∈ U [τ, T ],

there is a function ϕj ∈ AT (U) such that

u(j)(s, ω) = ϕ(j)(s,W (j)(· ∧ s, ω)), P (j) − a.s. ω ∈ Ω(j), ∀s ∈ [τ, T ].

Now, let (Ω,F , P,F,W (·), u(·)) ∈ U [t, T ] be arbitrary. Define the new control
ũ(·) = {ũ(s), s ∈ [t, T ]}, where

ũ(s, ω) = u(s, ω), if s ∈ [t, τ),
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and

ũ(s, ω) = ϕ(j)(s,W (j)(· ∧ s, ω)−W (τ, ω)) if s ∈ [τ, T ] and xs(t, ψ, u(·)) ∈ Dj .

Then (Ω,F , P,F,W (·), ũ(·)) ∈ U [t, T ]. Thus,

V (t, ψ) ≥ J(t, ψ; ũ(·))

= E

[∫ T

t

e−α(s−t)L(s, xs(·; t, ψ, ũ(·)), ũ(s)) ds

+ e−α(T−t)Ψ(xT (·; t, ψ, ũ(·)))
]

≥ E

[∫ τ

t

e−α(s−t)L(s, xs(·; t, ψ, u(·)), u(s)) ds

+E

[∫ T

τ

e−α(s−τ)L(s, xs(·; τ, xs(t, ψ, u(·)), ũ(s)) ds

+ e−α(T−t)Ψ(xT (·; τ, xτ (t, ψ, u(·)), ũ(·)))
∣∣∣F(τ)

]]
.

Therefore,

V (t, ψ) ≥ E

[∫ τ

t

e−α(s−t)L(s, xs(·; t, ψ, u(·)), u(s)) ds

+J(τ, xτ (·; t, ψ, u(·)); ũ(·))
]

(by Lemma reflem:3.3.8)

≥ E

[∫ τ

t

L(s, xs(·; t, ψ, u(·)), u(s)) ds

+ V (τ, xτ (·; t, ψ, u(·)))
]
− 3ε (by (3.55).

Since this holds for arbitrary (Ω,F , P,F(t),W (·), ũ(·)) ∈ U [t, T ], by taking
the supremum over U [t, T ] we obtain

V (t, ψ) ≥ V̄ (t, ψ) − 3ε, ∀ε > 0. (3.56)

Letting ε ↓ 0, we conclude that

V (t, ψ) ≥ V̄ (t, ψ), ∀(t, ψ) ∈ [0, T ] × C.

This proves the DDP. �
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Assumption 3.3.10 There exists a constant K > 0 such that

|f(t, φ, u)|+ |g(t, φ, u)|+ |L(t, φ, u)|+ |Ψ(φ)| ≤ K, ∀(t, φ, u) ∈ [0, T ]×C×U.

In addition to its continuity in the initial function ψ ∈ C as proved in
Lemma 3.3.7, the value function V has some regularity in the time variable as
well. By using Theorem 3.3.9, it can be shown below that the value function
V is Hölder continuous in time with respect to a parameter γ for any γ ≤ 1

2 ,
provided that the initial segment is at least γ-Hölder continuous. Notice that
the coefficients f, g, and L need not be Hölder continuous in time. Except for
the role of the initial segment, the statement and proof of the following lemma
are analogous to the nondelay case (see, e.g., Krylov [Kry80, p.167]). See also
Proposition 2 of Fischer and Nappo [FN06] for delay case.

Lemma 3.3.11 Assume Assumptions 3.1.1 and 3.8.1 hold. Let the initial
function ψ ∈ C. If ψ is γ-Hölder continuous with γ ≤ K(H), then the function
V (·, ψ) : [0, T ] → � is Hölder continuous; that is, there is a constant K(V ) > 0
depending only on K(H), K (the Lipschitz constant in Assumption 3.1.1), T ,
and the dimensions such that for all t, t̃ ∈ [0, T ]

|V (t, ψ) − V (t̃, ψ)| ≤ K(V )
(
|t − t̃|γ ∨

√
|t − t̃|

)
.

Proof. Let the initial function ψ ∈ C be γ-Hölder continuous with γ ≤ K(H).
Without loss of generality, we assume that s = t + h for some h > 0. We may
also assume that h ≤ 1

2 , because we can choose K(V ) ≥ 4K(T + 1) so that
the asserted inequality holds for |t− s| > 1

2 . By the DDP (Theorem 3.3.9), we
see that

|V (t, ψ) − V (s, ψ)|
= |V (t, ψ) − V (t + h, ψ)|

=
∣∣∣ sup

u(·)∈U [t,T ]

E
[ ∫ t+h

t

e−α(s−t)L(s, xs(·; t, ψ, u(·)), u(s)) ds

+ e−αhV (t + h, xt+h(t, ψ, u(·))
]

− V (t + h, ψ)
∣∣∣

≤ sup
u(·)∈U [t,T ]

E

[∫ t+h

t

e−α(s−t)L(s, xs(·; t, ψ, u(·)), u(s)) ds

]

+ sup
u(·)∈U [t,T ]

E
[
|e−αhV (t + h, xt+h(·; t, ψ, u(·)) − V (t + h, ψ)|

]

≤ Kh + sup
u(·)∈U [t,T ]

L(V )E[‖xt+h(·; t, ψ, u(·)) − ψ‖],
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where K is the largest Lipschitz constant from Assumption 3.1.1 and L(V ) is
the Lipschitz constant for V in the segment variable according to Lemma 3.3.7.
Notice that ψ = xt(t, ψ, u(·)) for all u(·) ∈ U [t, T ]. By the linear growth
condition (Assumption 3.1.1) of f and g, the Hölder inequality, Doob-Davis-
Gundy’s maximal inequality (Theorem 1.2.11), and Itó’s isometry, we have
for arbitrary u(·),

E[‖xt+h(·; t, ψ, u(·)) − ψ‖] ≤ sup
θ∈[−r,−h]

|ψ(θ + h) − ψ(θ)|+ sup
θ∈[−r,0]

|ψ(0)−ψ(θ)|

+E

[∫ t+h

t

|f(s, xs(·; t, ψ, u(·)), u(s))| ds

]

+E

⎡
⎣
∣∣∣∣∣
∫ t+h

t

g(s, xs(·; t, ψ, u(·)), u(s)) dW (s)

∣∣∣∣∣
2
⎤
⎦

1
2

≤ 2K(H)hγ + Kh + 4Km
√

h.

Putting everything together, we have the assertion of the lemma. �

3.4 The Infinite-Dimensional HJB Equation

We will use the dynamic programming principle (Theorem 3.3.9) to derive the
HJBE. Recall that {xs(·; t, ψ, u(·)), s ∈ [t, T ] is a C-valued (strong) Markov
process whenever u(·) ∈ U [t, T ]. Therefore, using Theorem 2.4.1, we have the
following.

Theorem 3.4.1 Suppose that Φ ∈ C1,2
lip ([0, T ]×C)∩D(S). Let u(·) ∈ U [t, T ]

with lims↓t u(s) = u ∈ U and {xs(·; t, ψ, u(·)), s ∈ [t, T ]} be the C-valued
Markov process of (3.1) with the initial datum (t, ψ) ∈ [0, T ] × C. Then

lim
ε↓0

E[Φ(t + ε, xt+ε(t, ψ, u(·)))] − Φ(t, ψ)
ε

= ∂tΦ(t, ψ) + AuΦ(t, ψ), (3.57)

where

AuΦ(t, ψ) = SΦ(t, ψ) + DΦ(t, ψ)(f(t, ψ, u)1{0}) (3.58)

+
1
2

m∑
j=1

D2Φ(t, ψ)(g(t, ψ, u)(ej)1{0}, g(t, ψ, u)(ej)1{0}),

where ej , j = 1, 2, . . . ,m, is the jth unit vector of the standard basis in �m.

Heuristic Derivation of the HJB Equation

Let u ∈ U . We define the Fréchet differential operator Au as follows:
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AuΦ(t, ψ) ≡ S(Φ)(t, ψ) + DΦ(t, ψ)(f(t, ψ, u)1{0}) (3.59)

+
1
2

m∑
j=1

D2Φ(t, ψ)(g(t, ψ, u)ej1{0}, g(t, ψ, u)ej1{0}),

for any Φ ∈ C1,2
lip ([0, T ]×C)∩D(S), where ej is the jth vector of the standard

basis in �m.
To recall the meaning of the terms involved in this differential operator,

we remind the readers of the following definitions given earlier in this volume.
First, S(Φ)(t, ψ) is defined (see (2.11) of Chapter 2) as

S(Φ)(t, ψ) = lim
ε↓0

Φ(t, ψ̃t+ε) − Φ(t, ψ)
ε

(3.60)

and ψ̃ : [−r, T ] → �n is the extension of ψ ∈ C from [−r, 0] to [−r, T ] and is
defined by

ψ̃(t) =
{

ψ(0) for t ≥ 0
ψ(t) for t ∈ [−r, 0).

Second, DΦ(t, ψ) ∈ C∗ and D2Φ(t, ψ) ∈ C† are the first- and second-
order Fréchet derivatives of Φ with respect to its second argument ψ ∈ C.
In addition, DΦ(t, ψ) ∈ (C ⊕ B)∗ is the extension of of DΦ(t, ψ) from C∗ to
(C ⊕ B)∗ (see Lemma 2.2.3 of Chapter 2) and D2V (t, ψ) ∈ (C ⊕ B)† is the
extension of D2V (t, ψ) from C† to (C⊕B)† (see Lemma 2.2.4 of Chapter 2).

Finally, the function 1{0} : [−r, 0] → � is defined by

1{0}(θ) =
{

0 for θ ∈ [−r, 0)
1 for θ = 0.

Without loss of generality, we can and will assume that for every u ∈ U , the
domain of the generator Au is large enough to contain C1,2

lip ([0, T ]×C)∩D(S).

From the DDP (Theorem 3.3.9), if we take a constant control u(·) ≡ u ∈
U [t, T ], then for ∀δ ≥ 0,

V (t, ψ) ≥ E
[ ∫ t+δ

t

e−α(s−t)L(s, xs(·; t, ψ, v), v) ds

+ e−αδV (t + δ, xt+δ(t, ψ, v))
]
.

From this principle, we have
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0 ≥ lim
δ↓0

1
δ
E

[ ∫ t+δ

t

e−α(s−t)L(s, xs(·; t, ψ, u), u) ds

+ e−αδV (t + δ, xt+δ(·; t, ψ, u)) − V (t, ψ)
]

= lim
δ↓0

1
δ
E

[ ∫ t+δ

t

e−α(s−t)L(s, xs(·; t, ψ, u), u) ds

+ lim
δ↓0

1
δ
E[e−αδV (t + δ, xt+δ(·; t, ψ, u)) − e−αδV (t + xt+δ(·; t, ψ, u))]

+ lim
δ↓0

1
δ
E[e−αδV (t, xt+δ(t, ψ, u)) − e−αδV (t, ψ))]

+ lim
δ↓0

1
δ
[(e−αδ − 1)V (t, ψ)]

= −αV (t, ψ) + ∂tV (t, ψ) + AuV (t, ψ) + L(t, ψ, u) (3.61)

for all (t, ψ) ∈ [0, T ] × C, provided that V ∈ C1,2
lip ([0, T ] × C) ∩ D(S).

Moreover, if u∗(·) ∈ U [t, T ] is the optimal control policy that satisfies
lims↓t u∗(s) = v∗, we should have, ∀δ ≥ 0, that

V (t, ψ) = E
[ ∫ t+δ

t

e−α(s−t)L(s, x∗
s(·; t, ψ, u∗(·)), u∗(s)) ds

+ e−αδV (t + δ, x∗
t+δ(·; t, ψ, u∗(·))

]
, (3.62)

where x∗
s(t, ψ, u∗(·)) is the C-valued solution process corresponding to the

initial datum (t, ψ) and the optimal control u∗(·) ∈ U [t, T ]. Similarly, under
the strong assumption on u∗(·) (including the right-continuity at the initial
time t), we can get

0 = −αV (t, ψ) + ∂tV (t, ψ) + Av∗
V (t, ψ) + L(t, ψ, v∗). (3.63)

Inequalities (3.61) and (3.62) are equivalent to the HJBE

0 = −αV (t, ψ) + ∂tV (t, ψ) + max
u∈U

[AuV (t, ψ) + L(t, ψ, u)].

We therefore have the following result.

Theorem 3.4.2 Let V : [0, T ]×C → � be the value function defined by (3.7).
Suppose V ∈ C1,2

lip ([0, T ]×C)∩D(S). Then the value function V satisfies the
following HJBE:

αV (t, ψ) − ∂tV (t, ψ) − max
u∈U

[AuV (t, ψ) + L(t, ψ, u)] = 0 (3.64)

on [0, T ] × C, and V (T, ψ) = Ψ(ψ), ∀ψ ∈ C, where
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AuV (t, ψ) ≡ SV (t, ψ) + DV (t, ψ)(f(t, ψ, u)1{0})

+
1
2

m∑
j=1

D2V (t, ψ)(g(t, ψ, u)ej1{0}, g(t, ψ, u)ej1{0}).

Note that it is not known that the value function V satisfies the necessary
smoothness condition V ∈ C1,2

lip ([0, T ] × C) ∩ D(S). In fact, the following
simple example shows that the value function does not possess the smoothness
condition for it to be a classical solution of the HJBE (3.64) even for a very
simple deterministic control problem.

The following is an example taken from Example 2.3 of [FS93, p.57].

Example. Consider a one-dimensional simple deterministic control problem
described by ẋ(s) = u(s), s ∈ [0, 1), with the running cost function L ≡ 0 and
the terminal cost function Ψ(x) = x ∈ � and a control set U = [−a, a] with
some constant a > 0. Since the boundary data are increasing and the running
cost is zero, the optimal control is u∗(s) ≡ −a. Hence, the value function is

V (t, x) =
{

−1 if x + at ≤ a − 1
x + at − a if x + at ≥ a − 1 (3.65)

for (t, x) ∈ [0, 1] × �. Note that the value function is differentiable except on
the set {(t, x) | x + at = a − 1} and it is a generalized solution of

−∂tV (t, x) + a |∂xV (t, x)| = 0, (3.66)

with the corresponding terminal boundary condition given by

V (1, x) = Ψ(x) = x, x ∈ [−1, 1]. (3.67)

The above example shows that in general we need to seek a weaker con-
dition for the HJBE (3.64) such as a viscosity solution instead of a solution
for HJBE (3.64) in the classical sense. In fact, it will be shown that the value
function is a unique viscosity solution of the HJBE (3.64). These results will
be given in Sections 3.5 and 3.6.

3.5 Viscosity Solution

In this section, we shall show that the value function V : [0, T ] × C → �
defined by Equation (3.7) is actually a viscosity solution of the HJBE (3.64).

Definitions of Viscosity Solution

First, let us define the viscosity solution of (3.64) as follows.
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Definition 3.5.1 An upper semicontinuous (respectively, lower semicontin-
uous) function w : (0, T ] × C) → � is said to be a viscosity subsolution
(respectively, supersolution) of the HJBE (3.64) if

w(T, φ) ≤ (≥)Ψ(φ), ∀φ ∈ C,

and if, for every Γ ∈ C1,2
lip ([0, T ]×C)∩D(S) and for every (t, ψ) ∈ [0, T ]×C

satisfying Γ ≥ (≤)w on [0, T ] × C and Γ (t, ψ) = w(t, ψ), we have

αΓ (t, ψ) − ∂tΓ (t, ψ) − max
v∈U

[AvΓ (t, ψ) + L(t, ψ, v)] ≤ (≥) 0. (3.68)

We say that w is a viscosity solution of the HJBE (3.64) if it is both a viscosity
supersolution and a viscosity subsolution of the HJBE (3.64).

Definition 3.5.2 Let a function Φ : [0, T ] × C → � be given. We say that
(p, q,Q) ∈ �×C∗×C† belongs to D1,2,+

t+,φ Φ(t, φ), the second-order superdiffer-
ntial of Φ at (t, φ) ∈ (0, T ) × C, if, for all ψ ∈ C, s ≥ t,

Φ(s, ψ) ≤ Φ(t, φ) + p(s − t) + q(ψ − φ) (3.69)

+
1
2
Q(ψ − φ, ψ − φ) + o(s − t + ‖ψ − φ‖2).

The second-order one-sided parabolic subdifferential of Φ at (t, φ) ∈ (0, T )×C,
D1,2,−

t+,φ Φ(t, φ), is defined as those (p, q,Q) ∈ �×C∗ ×C† such that the above
inequality is reversed; that is,

Φ(s, ψ) ≥ Φ(t, φ) + p(s − t) + q(ψ − φ) (3.70)

+
1
2
Q(ψ − φ, ψ − φ) + o(s − t + ‖ψ − φ‖2). (3.71)

Remark 3.5.3 The second-order one-sided parabolic subdifferential and
second-order one-sided parabolic superdifferential have the following relation-
ship:

D1,2,−
t+,φ Φ(t, φ) = −D1,2,+

t+,φ (−Φ)(t, φ).

Lemma 3.5.4 Let w : (0, T ] × C → � and let (t, ψ) ∈ (0, T ) × C. Then
(p, q,Q) ∈ D1,2,+

t+,φ w(t, ψ) if and only if there exists a function Φ ∈ C1,2((0, T )×
C) such that w − Φ attains a strict global maximum at (t, ψ) relative to the
set of (s, φ) such that s ≥ t and

(Φ(t, ψ), ∂tΦ(t, ψ),DΦ(t, ψ),D2Φ(t, ψ)) = (w(t, ψ), p, q,Q). (3.72)

Moreover, if w has polynomial growth (i.e., there exist positive constants Kp

and k ≥ 1 such that

|w(s, φ)| ≤ Kp(1 + ‖φ‖2)k, ∀(s, φ) ∈ (0, T ) × C), (3.73)

then Φ can be chosen so that Φ ∂tΦ, DΦ, and D2Φ satisfy (3.73) (with possibly
different constants Kp).
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Lemma 3.5.5 Let v be an upper-semicontinuous function on (0, T )×C and
let (t̄, ψ̄) ∈ (0, T )×C. Then (p, q,Q) ∈ D̄1,2

t+,ψv(t̄, ψ̄) if and only if there exists
a function Φ ∈ C1,2((0, T ) × C) such that v − Φ ∈ C((0, T ) × C) attains a
strict global maximum at (t̄, ψ̄) relative to the set of (t, ψ) ∈ [t̄, T ) × C and

(Φ(t̄, ψ̄), ∂tΦ(t̄, ψ̄),DΦ(t̄, ψ̄),D2Φ(t̄, ψ̄)) = (v(t̄, ψ̄), p, q,Q). (3.74)

Moreover, if v has polynomial growth (i.e., if there exists a constant k ≥ 1
such that

|v(t, ψ)| ≤ C(1 + ‖ψ‖k) ∀(t, ψ) ∈ [0, T ] × C), (3.75)

then Φ can be chosen so that Φ, ∂tΦ, DΦ, and D2Φ satisfy (3.69) under the
appropriate norms and with possibly different constants C.

Proof. The proof of this lemma is an extension of Lemma 5.4 in Yong and
Zhou [YZ99, Chap.4] from an Euclidean space to the infinite-dimensional
space C.

Suppose (p, q,Q) ∈ D̄1,2
t+,ψv(t̄, ψ̄). Define the function γ : (0, T ) × C → �

as

γ(t, ψ) =
1

t − t̄ + ‖ψ − ψ̄‖2
[v(t, ψ) − v(t̄, ψ̄)

− p(t − t̄) − q(ψ − ψ̄) − 1
2
Q(φ − ψ, φ − ψ)] ∨ 0

for (t, ψ) �= (t̄, ψ̄),

and γ(t, ψ) = 0 otherwise.
We also define the function ε : � → � by

ε(r) = sup{γ(t, ψ) | (t, ψ) ∈ (t̄, T ] × C, t − t̄ + ‖ψ − ψ̄‖2 ≤ r} if r > 0

and ε(r) = 0 if r ≤ 0. Then it follows from the definition of D̄1,2
t+,ψv(t, ψ) that

v(t, ψ) − [v(t̄, ψ̄) + p(t − t̄) + q(ψ − ψ̄) +
1
2
Q(φ − ψ, φ − ψ)]

≤ (t − t̄ + ‖ψ − ψ̄‖2)ε(t − t̄ + ‖ψ − ψ̄‖2) ∀(t, ψ) ∈ [t̄, T ] × C.

Define the function α : �+ → � by

α(ρ) =
2
ρ

∫ 2ρ

0

∫ r

0

ε(θ) dθ dr, ρ > 0. (3.76)

Then it is easy to see that its first-order derivative

α̇(ρ) = − 2
ρ2

∫ 2ρ

0

∫ r

0

ε(θ) dθ dr +
4
ρ

∫ 2ρ

0

ε(θ) dθ

and its second order-derivative
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α̈(ρ) =
4
ρ3

∫ 2ρ

0

∫ r

0

ε(θ) dθ dr − 8
ρ2

∫ 2ρ

0

ε(θ) dθ +
8
ρ
ε(2ρ).

Consequently,

|α(ρ)| ≤ 4ρε(2ρ), |α̇(ρ)| ≤ 12ρε(2ρ), and |α̈(ρ)| ≤ 32ρε(2ρ)
ρ

.

Now, we define the function β : [0, T ] × C → � by

β(t, ψ) =
{

α(ρ(t, ψ)) + ρ2(t, ψ) if (t, ψ) �= (t̄, ψ̄)
0 otherwise,

where ρ(t, ψ) = t − t̄ + ‖ψ − ψ̄‖2.
Finally, we define the function Φ : [t̄, T ] × C → � by

Φ(t, ψ) = v(t̄, ψ̄) + p(t − t̄) + q(ψ − ψ̄)

+
1
2
Q(φ − ψ, φ − ψ) + β(t, ψ), ∀(t, ψ) ∈ [0, T ] × C. (3.77)

We claim that Φ ∈ C1,2
lip ([0, T ] × C) and it satisfies the following three

conditions:
(i) v(t̄, ψ̄) = Φ(t̄, ψ̄).
(ii) v(t, ψ) < Φ(t, ψ) for all (t, ψ) �= (t̄, ψ̄).
(iii) (Φ(t̄, ψ̄), ∂tΦ(t̄, ψ̄),DΦ(t̄, ψ̄),D2Φ(t̄, ψ̄)) = (v(t̄, ψ̄), p, q,Q).

Note that (i) is trivial by the definition of Φ. The proofs for (ii) and (iii)
are very similar to those of Lemma 2.7 and Lemma 2.8 of Yong and Zhou
[YZ99] and are omitted here. �

Proposition 3.5.6 A function w ∈ C([0, T ] × C) is a viscosity solution of
the HJBE (3.64) if

−p− sup
u∈U

G(t, φ, u, q,Q) ≤ 0, ∀(p, q,Q) ∈ D1,2,+
t+,φ w(t, φ),∀(t, φ) ∈ [0, T )×C,

−p− sup
u∈U

G(t, φ, u, q,Q) ≥ 0, ∀(p, q,Q) ∈ D1,2,−
t+,φ w(t, φ),∀(t, φ) ∈ [0, T )×C,

and
w(T, φ) = Ψ(φ), ∀φ ∈ C,

where the function G is defined as

G(t, φ, u, q,Q) = S(Φ)(t, ψ) + q(f(t, φ, v)1{0})

+
1
2

m∑
j=1

Q(g(t, ψ, v)(ej)1{0}, g(t, ψ, v)(ej)1{0}). (3.78)

Proof. The proposition follows immediately from Lemma 3.5.4 and
Lemma 3.5.5. �

For our value function V defined by (3.7), we now show that it has the
following property.
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Lemma 3.5.7 Let V : [0, T ] ×C → � be the value function defined in (3.7).
Then there exists a constant k > 0 and a positive integer p such that for every
(t, ψ) ∈ [0, T ] × C,

|V (t, ψ)| ≤ K(1 + ‖ψ‖2)k. (3.79)

Proof. It is clear that V has at most a polynomial growth, since L and Φ
have at most a polynomial growth. This proves the lemma. �

Theorem 3.5.8 The value function V : [0, T ] × C → � defined in (3.7) is a
viscosity solution of the HJBE:

αV (t, ψ) − ∂tV (t, ψ) − max
v∈U

[AvV (t, ψ) + L(t, ψ, v)] = 0 (3.80)

on [0, T ] × C, and V (T, ψ) = Ψ(ψ),∀ψ ∈ C, where

AvV (t, ψ) = SV (t, ψ) + DV (t, ψ)(f(t, ψ, v)1{0})

+
1
2

m∑
j=1

D2V (t, ψ)(g(t, ψ, v)(ej)1{0}, g(t, ψ, v)(ej)1{0}), (3.81)

where ej , j = 1, 2, . . . ,m, is the jth unit vector of the standard basis in �m.

Proof. Let Γ ∈ C1,2
lip ([0, T ] × C) ∩ D(S). For (t, ψ) ∈ [0, T ] × C such that

Γ ≤ V on [0, T ] × C and Γ (t, ψ) = V (t, ψ), we want to prove the viscosity
supersolution inequality, that is,

αΓ (t, ψ) − ∂tΓ (t, ψ) − max
v∈U

[AvΓ (t, ψ) + L(t, ψ, v)] ≥ 0. (3.82)

Let u(·) ∈ U [t, T ]. Since Γ ∈ C1,2
lip ([0, T ] × C) ∩ D(S) (by virtue of Theo-

rem 3.4.1) for t ≤ s ≤ T , we have

E
[
e−α(s−t)Γ (s, xs(·; t, ψ, u(·)))

]
− Γ (t, ψ)

= E

[∫ s

t

e−α(ξ−t)

(
∂ξΓ (ξ, xξ(·; t, ψ, u(·)))

+ Au(ξ)Γ (ξ, xξ(·; t, ψ, u(·))) − αΓ (ξ, xξ(·; t, ψ, u(·)))
)

dξ

]
. (3.83)

On the other hand, for any s ∈ [t, T ], the DDP (Theorem 3.3.9) gives,

V (t, ψ) = max
u(·)∈U [t,T ]

E

{∫ s

t

e−α(ξ−t)L(ξ, xξ(·; t, ψ, u(·)), u(ξ))dξ

+ e−α(s−t)V (s, xs(·; t, ψ, u(·)))
}

. (3.84)

Therefore, we have
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V (t, ψ) ≥ E

[ ∫ s

t

e−α(ξ−t)L(ξ, xξ(·; t, ψ, u(·)), u(ξ)) dξ

]

+ E
[
e−α(s−t)V (s, xs(·; t, ψ, u(·)))

]
. (3.85)

By virtue of (3.177) and using Γ ≤ V, Γ (t, ψ) = V (t, ψ), we can get

0 ≥ E

[ ∫ s

t

e−α(ξ−t)L(ξ, xξ(·; t, ψ, u(·)), u(ξ))dξ

]

+ E
[
e−α(s−t)V (s, xs(·; t, ψ, u(·)))

]
− V (t, ψ)

≥ E

[ ∫ s

t

e−α(ξ−t)L(ξ, xξ(·; t, ψ, u(·)), u(ξ)) dξ

]

+ E
[
e−α(s−t)Γ (s, xs(·; t, ψ, u(·)))

]
− Γ (t, ψ)

≥ E

∫ s

t

e−α(ξ−t)

[
− αΓ (ξ, xξ(·; t, ψ, u(·))) + ∂ξΓ (ξ, xξ(·; t, ψ, u(·)))

+ AuΓ (ξ, xξ(·; t, ψ, u(·))) + L(ξ, xξ(·; t, ψ, u(·)), u(ξ))
]

dξ.

Dividing both sides by (s − t), we have

0 ≤ E

[
1

s − t

∫ s

t

e−α(ξ−t)

(
αΓ (ξ, xξ(·; t, ψ, u(·)))

− ∂ξΓ (ξ, xξ(·; t, ψ, u(·))) − Au(ξ)Γ (ξ, xξ(·; t, ψ, u(·)))

−L(ξ, xξ(·; t, ψ, u(·)), u(ξ))
)

dξ

]
. (3.86)

Now, let s ↓ t in (3.86) and lims↓t u(s) = v, and we obtain

αΓ (t, ψ) − ∂tΓ (t, ψ) − [AvΓ (t, ψ) + L(t, ψ, v)] ≥ 0. (3.87)

Since v ∈ U is arbitrary, we prove that V is a viscosity supersolution.
Next, we want to prove that V is a viscosity subsolution. Let Γ ∈

C1,2
lip ([0, T ]×C)∩D(S). For (t, ψ) ∈ [0, T ]×C satisfying Γ ≥ V on [0, T ]×C

and Γ (t, ψ) = V (t, ψ), we want to prove that

αΓ (t, ψ) − ∂tΓ (t, ψ) − max
v∈U

[AvΓ (t, ψ) + L(t, ψ, v)] ≤ 0. (3.88)

We assume the contrary and try to obtain a contradiction. Let suppose that
there exit (t, ψ) ∈ [0, T ] × C, Γ ∈ C1,2

lip ([0, T ] × C) ∩ D(S), with Γ ≥ V
on [0, T ] × C and Γ (t, ψ) = V (t, ψ), and δ > 0 such that for all control
u(·) ∈ U [t, T ] with lims↓t u(s) = v,
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αΓ (τ, φ) − ∂tΓ (τ, φ) − AvΓ (τ, φ) − L(τ, φ, v) ≥ δ (3.89)

for all (τ, φ) ∈ N(t, ψ), where N(t, ψ) is a neighborhood of (t, ψ). Let u(·) ∈
U [t, T ] with lims↓t u(s) = v, and t1 such that for t ≤ s ≤ t1, the solution
x(s; t, ψ, u(·)) ∈ N(t, ψ). Therefore, for any s ∈ [t, t1], we have almost surely

αΓ (s, xs(t, ψ, u(·))) − ∂tΓ (s, xs(·; t, ψ, u(·)))
−AvΓ (s, xs(·; t, ψ, u(·))) − L(s, xs(·; t, ψ, u(·)), u(s)) ≥ δ. (3.90)

On the other hand, since Γ ≥ V , using the definition of J and V , we can
get

J(t, ψ;u(·)) ≤ E

[∫ t1

t

e−α(s−t)L(s, xs, u(s))ds + e−α(t1−t)V (t1, xt1)
]

≤ E

[ ∫ t1

t

e−α(s−t)L(s, xs, u(s)) ds

+e−α(t1−t)Γ (t1, xt1(t, ψ, u(·)))
]
.

Using (3.90), we have

J(t, ψ;u(·)) ≤ E

[ ∫ t1

t

e−α(s−t)

(
− δ + αΓ (s, xs(·; t, ψ, u(·)))

− ∂tΓ (s, xs(·; t, ψ, u(·))) − Au(s)Γ (s, xs(·; t, ψ, u(·)))
)

ds

+ e−α(t1−t)Γ (t1, xt1(t, ψ, u(·)))
]
. (3.91)

In addition, similar to (3.86), we can get

E
[
e−α(t1−t)Γ (t1, xt1(·; t, ψ, u(·)))

]
− Γ (t, ψ)

= E

[ ∫ t1

t

e−α(s−t)

(
∂sΓ (s, xs(·; t, ψ, u(·))) + Au(s)Γ (s, xs(·; t, ψ, u(·)))

− αΓ (s, xs(·; t, ψ, u(·)))
)

ds

]
. (3.92)

Therefore, we can get

J(t, ψ;u(·)) ≤ −
∫ t1

t

e−α(s−t)δ ds + Γ (t, ψ)

= − δ

α
(1 − e−α(t1−t)) + V (t, ψ)

Taking the supremum over all admissible controls u(·) ∈ U [t, T ], we have

V (t, ψ) ≤ − δ

α
(1 − e−α(t1−t)) + V (t, ψ).

This contradicts the fact that δ > 0. Therefore, V (t, ψ) is a viscosity subsolu-
tion. This completes the proof of the theorem. �
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3.6 Uniqueness

In this section, we will show that the value function V : [0, T ] × C → � of
Problem (OCCP) is the unique viscosity solution of the HJBE (3.64). We first
need the following comparison principle.

Theorem 3.6.1 (Comparison Principle) Assume that V1(t, ψ) and V2(t, ψ)
are both continuous with respect to the argument (t, ψ) ∈ [0, T ] × C and are
respectively the viscosity subsolution and supersolution of (3.64) with at most
a polynomial growth (Lemma 3.5.7). In other words, there exists a real number
Λ > 0 and a positive integer k ≥ 1 such that

|Vi(t, ψ)| ≤ Λ(1 + ‖ψ‖2)k, ∀(t, ψ) ∈ [0, T ] × C, i = 1, 2.

Then
V1(t, ψ) ≤ V2(t, ψ), ∀(t, ψ) ∈ [0, T ] × C. (3.93)

Before we proceed to the proof of Theorem 3.6.1, we will use the following
result proven in Ekeland and Lebourg [EL76] and also in a general form in
Stegall [Ste78] and Bourgain [Bou79]. The reader is also referred to Crandall
et al. [CIL92] and Lions [Lio82, Lio89] for an application example of this result
in a setting similar but significantly different in details from what are to be
presented below. A similar proof of uniqueness of viscosity solution is also
done in Chang et al. [CPP07a].

Lemma 3.6.2 Let Φ be a bounded and upper-semicontinuous real-valued
function on a closed ball B of a Banach space Ξ that has the Radon-Nikodym
property. Then for any ε > 0, there exists an element u∗ ∈ Ξ∗ with norm at
most ε, where Ξ∗ is the topological dual of Ξ, such that Φ + u∗ attains its
maximum on B.

Note that every separable Hilbert space (Ξ, ‖ · ‖Ξ) satisfies the Radon-
Nikodym property (see, e.g., [EL76]). In order to apply Lemma 3.6.2, we
will therefore restrict ourself to a subspace Ξ of the product space C × C
(C = C([−r, 0];�n)), which is a separable Hilbert space and dense in C×C.
A good candidates is the product space W 1,2((−r, 0);�n)×W 1,2((−r, 0);�n),
where W 1,2((−r, 0);�n) is the Sobolev space defined by

W 1,2((−r, 0);�n) = {φ ∈ C | φ is absolutely continuous on (−r, 0)
and ‖φ‖1,2 < ∞},

‖φ‖2
1,2 ≡ ‖φ‖2

2 + ‖φ̇‖2
2,

and φ̇ is the derivative of φ in the distributional sense. Note that it can be
shown that the Hilbertian norm ‖ · ‖1,2 is weaker than the sup-norm ‖ · ‖; that
is, there exists a constant K > 0 such that

‖φ‖1,2 ≤ K‖φ‖, ∀φ ∈ W 1,2((−r, 0);�n).
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From the Sobolev embedding theorems (see, e.g., Adams [Ada75]), it is
known that W 1,2((−r, 0);�n) ⊂ C and that W 1,2((−r, 0);�n) is dense in C.
For more about Sobolev spaces and corresponding results, one can refer to
[Ada75].

Before we proceed to the proof of the Comparison Principle, first let us
establish some results that will be needed in the proof.

Let V1 and V2 be respectively a viscosity subsolution and supersolution of
(3.64). For any 0 < δ, γ < 1, and for all ψ, φ ∈ C and t, s ∈ [0, T ], define

Θδγ(t, s, ψ, φ) ≡ 1
δ

[
‖ψ − φ‖2

2 + ‖ψ0 − φ0‖2
2 + |t − s|2

]
(3.94)

+γ
[
exp(1 + ‖ψ‖2

2 + ‖ψ0‖2
2) + exp(1 + ‖φ‖2

2 + ‖φ0‖2
2)
]
,

and
Φδγ(t, s, ψ, φ) ≡ V1(t, ψ) − V2(s, φ) − Θδγ(t, s, ψ, φ), (3.95)

where ψ0, φ0 ∈ C with ψ0(θ) = θ
−r ψ(−r − θ) and φ0(θ) = θ

−rφ(−r − θ) for
θ ∈ [−r, 0].

Moreover, using the polynomial growth condition for V1 and V2, we have

lim
‖ψ‖2,‖φ‖2→∞

Φδγ(t, s, ψ, φ) = −∞. (3.96)

The function Φδγ is a real-valued function that is bounded above and con-
tinuous on [0, T ] × [0, T ] × W 1,2((−r, 0);�n) × W 1,2((−r, 0);�n) (since the
Hilbertian norm ‖ · ‖1,2 is weaker than the sup-norm ‖ · ‖). Therefore, from
Lemma 3.6.2 (which is applicable by virtue of (3.96)), for any 1 > ε > 0
there exits a continuous linear functional Tε in the topological dual of
W 1,2((−r, 0);�n) × W 1,2((−r, 0);�n), with norm at most ε, such that the
function Φδγ + Tε attains it maximum in [0, T ] × [0, T ] × W 1,2((−r, 0);�n) ×
W 1,2((−r, 0);�n) (see Lemma 3.6.2). Let us denote by

(tδγε, sδγε, ψδγε, φδγε)

the global maximum of Φδγ + Tε on [0, T ] × [0, T ] × W 1,2((−r, 0);�n) ×
W 1,2((−r, 0);�n). Without loss of generality, we assume that for any given
δ, γ, and ε, there exists a constant Mδγε such that the maximum value
Φδγ + Tε + Mδγε is zero. In other words, we have

Φδγ(tδγε, sδγε, ψδγε, φδγε) + Tε(ψδγε, φδγε) + Mδγε = 0. (3.97)

We have the following lemmas.

Lemma 3.6.3 (tδγε, sδγε, ψδγε, φδγε) is the global maximum of Φδγ + Tε in
[0, T ] × [0, T ] × C × C.

Proof. Let (t, s, ψ, φ) ∈ [0, T ] × [0, T ] × C × C. By virtue of the density of
W 1,2((−r, 0);�n) in C, we can find a sequence (tk, sk, ψk, φk) in [0, T ]×[0, T ]×
W 1,2((−r, 0);�n) × W 1,2((−r, 0);�n) such that
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(tk, sk, ψk, φk) → (t, s, ψ, φ) as k → ∞.

It is known that

Φδγ(tk, sk, ψk, φk) + Tε(ψk, φk) ≤ Φδγ(tδγε, sδγε, ψδγε, φδγε) + Tε(ψδγε, φδγε).

Taking the limit as k goes to ∞ in the last inequality, we obtain

Φδγ(t, s, ψ, φ) + Tε(ψ, φ) ≤ Φδγ(tδγε, sδγε, ψδγε, φδγε) + Tε(ψδγε, φδγε).

This shows that (tδγε, sδγε, ψδγε, φδγε) is the global maximum over [0, T ] ×
[0, T ] × C × C. �

Lemma 3.6.4 For each fixed γ > 0, we can find a constant Λγ > 0 such that

‖ψδγε‖2 + ‖ψ0
δγε‖2 + ‖φδγε‖2 + ‖φ0

δγε‖2 ≤ Λγ (3.98)

and

lim
ε↓0,δ↓0

(
‖ψδγε − φδγε‖2

2 + ‖ψ0
δγε − φ0

δγε‖2
2 + |tδγε − sδγε|2

)
= 0, (3.99)

Proof. Noting that (tδγε, sδγε, ψδγε, φδγε) is the global maximum of Φδγ + Tε,
we can obtain

Φδγ(tδγε, tδγε, ψδγε, ψδγε) + Tε(ψδγε, ψδγε)
+ Φδγ(sδγε, sδγε, φδγε, φδγε) + Tε(φδγε, φδγε)

≤ 2Φδγ(tδγε, sδγε, ψδγε, φδγε) + 2Tε(ψδγε, φδγε).

It implies that

V1(tδγε, ψδγε) − V2(tδγε, ψδγε) − 2γ(exp(1 + ‖ψδγε‖2
2 + ‖ψ0

δγε‖2
2))

+ Tε(ψδγε, ψδγε) + V1(sδγε, φδγε) − V2(sδγε, φδγε)
− 2γ(exp(1 + ‖φδγε‖2

2 + ‖φ0
δγε‖2

2)) + Tε(φδγε, φδγε)
≤ 2V1(tδγε, ψδγε) − 2V2(sδγε, φδγε)

−2
δ

[
‖ψδγε − φδγε‖2

2 + ‖ψ0
δγε − φ0

δγε‖2
2 + |tδγε − sδγε|2

]

− 2γ
(

exp(1 + ‖ψδγε‖2
2 + ‖ψ0

δγε‖2
2) + exp(1 + ‖φδγε‖2

2 + ‖φ0
δγε‖2

2)
)

+ 2Tε(ψδγε, φδγε). (3.100)

From the above inequality, it is easy to obtain

2
δ

[
‖ψδγε − φδγε‖2

2 + ‖ψ0
δγε − φ0

δγε‖2
2 + |tδγε − sδγε|2

]

≤ [V1(tδγε, ψδγε) − V1(sδγε, φδγε)] + [V2(tδγε, ψδγε) − V2(sδγε, φδγε)]
+ 2Tε(ψδγε, φδγε) − [Tε(ψδγε, ψδγε) + Tε(φδγε, φδγε)]. (3.101)
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From the polynomial growth condition of V1 and V2, and the fact that the
norm of Tε is ε ∈ (0, 1), we can find a constant Λ > 0 and a positive integer
k ≥ 1 such that

2
δ

[
‖ψδγε−ψδγε‖2

2+‖ψ0
δγε−φ0

δγε‖2
2+|tδγε−sδγε|2

]
≤ Λ(1+‖ψδγε‖2+‖φδγε‖2)k.

(3.102)
So,

‖ψδγε −φδγε‖2
2 + ‖ψ0

δγε −φ0
δγε‖2

2 + |tδγε − sδγε|2 ≤ δΛ(1 + ‖ψδγε‖2 + ‖φδγε‖2)k.
(3.103)

On the other hand, because (tδγε, sδγε, ψδγε, φδγε) is the global maximum
of Φδγ + Tε, we obtain

Φδγ(tδγε, sδγε, 0, 0) + Tε(0, 0) ≤ Φδγ(tδγε, sδγε, ψδγε, φδγε) + Tε(ψδγε, φδγε)
(3.104)

In addition, by the definition of Φδγ and the polynomial growth condition of
V1, V2, we can get a Λ > 0 and a positive integer k ≥ 1 such that

|Φδγ(tδγε, sδγε, 0, 0) + Tε(0, 0)| ≤ Λ(1 + ‖ψδγε‖2 + ‖φδγε‖2)k

and
V1(tδγε, ψδγε) − V2(sδγε, φδγε) ≤ Λ(1 + ‖ψδγε‖2 + ‖φδγε‖2)k.

Therefore, by virtue of (3.104) and the definition of Φδγ , we have

γ
[
exp(1 + ‖ψδγε‖2

2 + ‖ψ0
δγε‖2

2) + exp(1 + ‖φδγε‖2
2 + ‖φ0

δγε‖2
2)
]

≤ V1(tδγε, ψδγε) − V2(sδγε, φδγε)

−1
δ

[
‖ψδγε − φδγε‖2

2 + ‖ψ0
δγε − φ0

δγε‖2
2 + |tδγε − sδγε|2

]

− Φδγ(tδγε, sδγε, 0, 0) + Tε(ψδγε, φδγε) − Tε(0, 0)
≤ 3Λ(1 + ‖ψδγε‖2 + ‖φδγε‖2)k. (3.105)

It follows that

γ
[
exp(1 + ‖ψδγε‖2

2 + ‖ψ0
δγε‖2

2) + exp(1 + ‖φδγε‖2
2 + ‖φ0

δγε‖2
2)
]

(1 + ‖ψδγε‖2 + ‖φδγε‖2)k
≤ 3Λ.

Consequently, there exists Λγ < ∞ such that

‖ψδγε‖2 + ‖ψ0
δγε‖2 + ‖φδγε‖2 + ‖φ0

δγε‖2 ≤ Λγ . (3.106)

In order to obtain (3.99), we set δ to zero in (3.103) using the above
inequality. �

Now, let us introduce a functional F : C → � defined by
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F (ψ) ≡ ‖ψ‖2
2 (3.107)

and the linear map H : C → C defined by

H(ψ)(θ) ≡ θ

−r
ψ(−r − θ) = ψ0(θ), θ ∈ [−r, 0]. (3.108)

Note that H(ψ)(0) = ψ0(0) = 0 and H(ψ)(−r) = ψ0(−r) = −ψ(0). It is not
hard to show that the map F is Fréchet differentiable and its derivative is
given by

DF (ϕ)h = 2
∫ 0

−r

ϕ(θ) · h(θ) dθ ≡ 2〈u, h〉2,

where 〈·, ·〉2 and ‖ · ‖2 are the inner product and the Hilbertian norm in the
Hilbert space L2([−r, 0];�n). This comes from the fact that

‖ψ + h‖2
2 − ‖ψ‖2

2 = 2〈ψ, h〉2 + ‖h‖2
2,

and we can always find a constant Λ > 0 such that

|‖ψ + h‖2
2 − ‖ψ‖2

2 − 2〈ψ, h〉2|
‖h‖ =

‖h‖2
2

‖h‖ ≤ Λ‖h‖2

‖h‖ = Λ‖h‖. (3.109)

Moreover, we have

2〈ψ + h, 〉2 − 2〈ψ, ·〉2 = 2〈h, ·〉2.

We deduce that F is twice differentiable and D2F (u)(h, k) = 2〈h, k〉2.
In addition, the map H is linear, thus twice Fréchet differentiable. There-

fore, DH(ψ)(h) = H(h) and D2H(ψ)(h, k) = 0, for all ψ, h, k ∈ C.
From the definition of Θδγ and the definition of F , we obtain

Θδγ(t, s, ψ, φ) =
1
δ

[
F (ψ − φ) + F (ψ0 − φ0) + |t − s|2

]

+ γ[e1+F (ψ)+F (H(ψ)) + e1+F (φ)+F (H(φ))].

The following chain rule, quoted in Theorem 5.2.5 in Siddiqi [Sid04], is needed
to get the Fréchet derivatives of Θδγ :

Theorem 3.6.5 (Chain Rule) Let X ,Y, and Z be real Banach spaces. If
S : X → Y and T : Y → Z are Fréchet differentiable at x and y = S(x) ∈ Y,
respectively, then U = T ◦ S is Fréchet differentiable at x and its Fréchet
derivative is given by

DxU(x) = DyT (S(x))DxS(x).

Given the above chain rule, we can say that Θδγ is Fréchet differentiable.
Actually, for h, k ∈ C, we can get
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DψΘδγ(t, s, ψ, φ)(h)

=
2
δ

[
〈ψ − φ, h〉2 + 〈H(ψ − φ),H(h)〉2

]

+ 2γe1+F (ψ)+F (H(ψ))[〈ψ, h〉2 + 〈H(ψ),H(h)〉2]. (3.110)

Similarly,

DφΘδγ(t, s, ψ, φ)(k)

=
2
δ

[
〈φ − ψ, k〉2 + 〈H(φ − ψ),H(k)〉2

]

+ 2γe1+F (φ)+F (H(φ))[〈φ, k〉2 + 〈H(φ),H(k)〉2]. (3.111)

Furthermore,

D2
ψΘδγ(t, s, ψ, φ)(h, k)

=
2
δ

[
〈h, k〉2 + 〈H(h),H(k)〉2

]

+ 2γe1+F (ψ)+F (H(ψ))
[
2(〈ψ, k〉2+〈H(ψ),H(k)〉2)(〈ψ, h〉2+〈H(ψ),H(h)〉2)

+ 〈k, h〉2 + 〈H(k),H(h)〉2
]
. (3.112)

Similarly,

D2
φΘδγ(t, s, ψ, φ)(h, k) (3.113)

=
2
δ

[
〈h, k〉2 + 〈H(h),H(k)〉2

]

+ 2γe1+F (φ)+F (H(φ))
[
2(〈φ, k〉2 + 〈H(φ),H(k)〉2)(〈φ, h〉2 + 〈H(φ),H(h)〉2)

+ 〈k, h〉2 + 〈H(k),H(h)〉2
]
. (3.114)

By the Hahn-Banach theorem (see, e.g., [Sid04]), we can extent the continuous
linear functional Tε to the space C × C and its norm is preserved. Thus, the
first-order Fréchet derivatives of Tε is just Tε, that is,

DψTε(ψ, φ)h = Tε(h, φ),

DφTε(ψ, φ)k = Tε(ψ, k) ∀ψ, φ, h, k ∈ C.

For the second derivative, we have

D2
ψTε(ψ, φ)(h, k) = 0, (3.115)

D2
φTε(ψ, φ)(h, k) = 0, ∀ψ, φ, h, k ∈ C.

Observe that we can extend DψΘδγ(t, s, ψ, φ) and D2
ψΘδγ(t, s, ψ, φ), the

first- and second-order Fréchet derivatives of Θδγ with respect to ψ, to the
space C ⊕ B (see Lemma 2.2.3 and Lemma 2.2.4 in Chapter 2) by setting
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DψΘδγ(t, s, ψ, φ)(h + v1{0}) (3.116)

=
2
δ

[
〈ψ − φ, h + v1{0}〉2 + 〈H(ψ − φ),H(h + v1{0}〉2

]

+ 2γe1+F (ψ)+F (H(ψ))[〈ψ, h + v1{0}〉2 + 〈H(ψ),H(h + v1{0})〉2].
and

D2
ψΘδγ(t, s, ψ, φ)(h + v1{0}, k + w1{0})

=
2
δ

[
〈h + v1{0}, k + w1{0}〉2 + 〈H(h + v1{0}),H(k + w1{0}〉2

]

+2γe1+F (ψ)+F (H(ψ))
[
2(〈ψ, k + w1{0}〉2 + 〈H(ψ),H(k + w1{0})〉2)

×(〈ψ, h + v1{0}〉2 + 〈H(ψ),H(h + v1{0})〉2)

+〈k + w1{0}, h + v1{0}〉2 + 〈H(k + w1{0}),H(h + v1{0}〉2)
]
, (3.117)

for v, w ∈ �n and h, k ∈ C.
Moreover, it is easy to see that these extensions are continuous in that

there exists a constant Λ > 0 such that

|〈ψ − φ, h + v1{0}〉2| ≤ ‖ψ − φ‖2 · ‖h + v1{0}‖2

≤ Λ‖ψ − φ‖2(‖h‖ + |v|), (3.118)

|〈ψ, h + v1{0}〉2| ≤ ‖ψ‖2 · ‖h + v1{0}‖2

≤ Λ‖ψ‖2(‖h‖ + |v|), (3.119)

|〈ψ, k + w1{0}〉2| ≤ ‖ψ‖2 · ‖k + w1{0}‖2

≤ Λ‖ψ‖2(‖k‖ + |w|), (3.120)

and

|〈k + w1{0}, h + v1{0}〉2| ≤ ‖k + w1{0}‖2‖h + v1{0}‖2

≤ Λ(‖k‖ + |w|)(‖h‖ + |v|). (3.121)

Similarly, we can extend the first- and second-order Fréchet derivatives of
Θδγ with respect to φ to the space C ⊕ B and obtain similar expressions for
DφΘδγ(t, s, ψ, φ)(k + w1{0}) and D2

φΘδγ(t, s, ψ, φ)(h + v1{0}, k + w1{0}).
The same is also true for the bounded linear functional Tε whose extension

is still written as Tε.
In addition, it is easy to verify that for any φ ∈ C and v, w ∈ �n, we have

〈φ, v1{0}〉2 =
∫ 0

−r

φ(θ) · v1{0}(θ)dθ = 0, (3.122)

〈w1{0}, v1{0}〉2 =
∫ 0

−r

w1{0}(θ) · v1{0}(θ)dθ = 0, (3.123)
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H(v1{0}) = v1{−r}, (3.124)

〈H(ψ),H(v1{0})〉2 = 0, 〈H(w1{0}),H(v1{0})〉2 = 0. (3.125)

These observations will be used later.
Next, we need several lemmas about the operator S.

Lemma 3.6.6 Given φ ∈ C, we have

S(F )(φ) = |φ(0)|2 − |φ(−r)|2, (3.126)

S(F )(φ0) = −|φ(0)|2, (3.127)

where F is the functional defined in (3.107) and S is the operator defined in
(3.60).

Proof. Recall that

S(F )(φ) = lim
t↓0

1
t

[
F (φ̃t) − F (φ)

]
(3.128)

for all φ ∈ C, where φ̃ : [−r, T ] → �n is an extension of φ defined by

φ̃(t) =
{

φ(t) if t ∈ [−r, 0)
φ(0) if t ≥ 0, (3.129)

and, again, φ̃t ∈ C is defined by

φ̃t(θ) = φ̃(t + θ), θ ∈ [−r, 0].

Therefore, we have

S(F )(φ) = lim
t→0+

1
t

[
‖φ̃t‖2

2 − ‖φ‖2
2

]

= lim
t→0+

1
t

[∫ 0

−r

|φ̃t(θ)|2 dθ −
∫ 0

−r

|φ(θ)|2 dθ

]

= lim
t→0+

1
t

[∫ 0

−r

|φ̃(θ + t)|2 dθ −
∫ 0

−r

|φ(θ)|2 dθ

]

= lim
t→0+

1
t

[∫ t

−r+t

|φ̃(θ)|2 dθ −
∫ 0

−r

|φ(θ)|2 dθ

]

= lim
t→0+

1
t

[∫ 0

−r+t

|φ̃(θ)|2 dθ +
∫ t

0

|φ̃(θ)|2 dθ −
∫ 0

−r

|φ(θ)|2 dθ

]

= lim
t→0+

1
t

[∫ 0

−r+t

|φ(θ)|2 dθ +
∫ t

0

|φ(0)|2dθ −
∫ 0

−r

|φ(θ)|2 dθ

]

= lim
t→0+

1
t

[∫ 0

−r+t

|φ(θ)|2 dθ −
∫ 0

−r

|φ(θ)|2dθ

]

+ lim
t→0+

1
t

∫ t

0

|φ(0)|2dθ
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= lim
t→0+

1
t

∫ t

0

|φ(0)|2 dθ − lim
t→0+

1
t

[∫ −r+t

−r

|φ(θ)|2 dθ

]

= |φ(0)|2 − |φ(−r)|2. (3.130)

Similarly, we have

S(F )(φ0) = |φ0(0)|2 − |φ0(−r)|2 = −|φ(0)|2. �

Let Sψ and Sφ denote the operator S applied to ψ and φ, respectively. We
have the following lemma.

Lemma 3.6.7 Given φ, ψ ∈ C,

Sψ(F )(φ − ψ) + Sφ(F )(φ − ψ) = |ψ(0) − φ(0)|2 − |ψ(−r) − φ(−r)|2 (3.131)

and

Sψ(F )(φ0 − ψ0) + Sφ(F )(φ0 − ψ0) = −|ψ(0) − φ(0)|2, (3.132)

where F is the functional defined in (3.107) and S is the operator defined in
(3.60).

Proof. To proof the lemma, we need the following result, which can be easily
proved by definition provided that ψ ∈ D(S̃):

S(F )(ψ) = DF (ψ)S̃(ψ), (3.133)

where DF (ψ) is the Fréchet derivative of F (ψ) and S̃ : D(S̃) ⊂ C → C is
defined by

S̃(ψ) = lim
t↓0

ψ̃t − ψ

t
.

We first assume that ψ ∈ D(S̃), the domain of the operator S̃, consists of
those ψ ∈ C for which the above limit exists. It can be shown that

D(S̃) = {ψ ∈ C | ψ is absolutely continuous and ψ̇(0+) = 0}.
In this case, we have

S(F )(ψ) = DF (ψ)S̃(ψ) = 2(ψ|S̃(ψ)).

On the other hand, by virtue of Lemma 3.6.6, we have

S(F )(ψ) = |ψ(0)|2 − |ψ(−r)|2.
Therefore, we have

(ψ|S̃(ψ)) =
1
2

[
|ψ(0)|2 − |ψ(−r)|2

]
.

Since S̃ is a linear operator, we have

(ψ − φ|S̃(ψ) − S̃(φ)) = (ψ − φ|S̃(ψ − φ))

=
1
2

[
|ψ(0) − φ(0)|2 − |ψ(−r) − φ(−r)|2

]
.(3.134)
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Given the above results, now we can get

Sψ(F )(ψ − φ) + Sφ(F )(ψ − φ)

= lim
t↓0

1
t

[
‖ψ̃t − φ‖2

2 − ‖ψ − φ‖2
2 + ‖ψ − φ̃t‖2

2 − ‖ψ − φ‖2
2

]

= lim
t↓0

1
t

[
‖ψ̃t‖2

2 − ‖ψ‖2
2 + ‖φ̃t‖2

2 − ‖φ‖2
2

−2 [(ψ̃t|φ) − (ψ|φ) + (ψ|φ̃t) − (ψ|φ)]
]

= S(F )(ψ) + S(F )(φ) − 2[(S̃(ψ)|φ) + (ψ|S̃(φ))]
= 2(ψ|S̃(ψ)) + 2(φ|S̃(φ)) − 2[(S̃(ψ)|φ) + (ψ|S̃(φ))]
= 2(ψ − φ|S̃(ψ − φ))
= [|ψ(0) − φ(0)|2 − |ψ(−r) − φ(−r)|2],

provided that ψ, φ ∈ D(S̃).
For any ψ, φ ∈ C, one can construct sequences {ψk}∞k=1 and {φk}∞k=1 in

D(S̃) such that

lim
k→∞

‖ψk − ψ‖ = 0 and lim
k→∞

‖φk − φ‖ = 0.

Consequently by the linearity of the S operator and continuity of F : C → �,
we have

Sψ(F )(ψ − φ) + Sφ(F )(ψ − φ) = lim
k→∞

(
Sψ(F )(ψk − φk) + Sφ(F )(ψk − φk)

)

= lim
k→∞

[|ψk(0) − φk(0)|2 − |ψk(−r)−φk(−r)|2]

= [|ψ(0) − φ(0)|2 − |ψ(−r) − φ(−r)|2].

By the same argument, we have

Sψ(F )(ψ0 − φ0) + Sφ(F )(ψ0 − φ0) = |ψ0(0) − φ0(0)|2 − |ψ0(−r) − φ0(−r)|2

= −|ψ(0) − φ(0)|2. �

Lemma 3.6.8 Given φ ∈ C, we define a new operator G as follows

G(φ) = e1+F (φ)+F (φ0). (3.135)

We have
S(G)(φ) = (−|φ(−r)|2)e1+F (φ)+F (φ0), (3.136)

where F is the functional defined in (4.88) and S is the operator defined in
(3.60).

Proof. Recall that

S(G)(φ) = lim
t↓0

1
t

[
G(φ̃t) − G(φ)

]
(3.137)
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for all φ ∈ C, where φ̃ : [−r, T ] → R
n is an extension of φ defined by

φ̃(t) =
{

φ(t) if t ∈ [−r, 0)
φ(0) if t ≥ 0, (3.138)

and, again, φ̃t ∈ C is defined by

φ̃t(θ) = φ̃(t + θ), θ ∈ [−r, 0].

We have

S(G)(φ)

= lim
t→0+

1
t

[
e1+

∫ 0
−r

|φ̃t(θ)|2dθ+
∫ 0
−r

|φ̃0
t (θ)|2dθ

− e1+
∫ 0
−r

|φ(θ)|2dθ+
∫ 0
−r

|φ0(θ)|2dθ
]

= lim
t→0+

1
t

[
e1+

∫ 0
−r

|φ̃(θ+t)|2dθ+
∫ 0
−r

|φ̃0(θ+t)|2dθ

− e1+
∫ 0
−r

|φ(θ)|2dθ+
∫ 0
−r

|φ0(θ)|2dθ
]

= lim
t→0+

1
t

[
e1+

∫ t
−r+t

|φ̃(θ)|2dθ+
∫ t
−r+t

|φ̃0(θ)|2dθ

− e1+
∫ 0
−r

|φ(θ)|2dθ+
∫ 0
−r

|φ0(θ)|2dθ
]

= lim
t→0+

1
t

[
e1+

∫ 0
−r+t

|φ(θ)|2dθ+
∫ t
0 |φ(0)|2dθ+

∫ 0
−r+t

|φ0(θ)|2dθ+
∫ t
0 |φ0(0)|2dθ

− e1+
∫ 0
−r

|φ(θ)|2dθ+
∫ 0
−r

|φ0(θ)|2dθ
]

= lim
t→0+

1
t

[
e1+

∫ 0
−r+t

|φ(θ)|2dθ+t|φ(0)|2+
∫ 0
−r+t

|φ0(θ)|2dθ+t|φ0(0)|2

− e1+
∫ 0
−r

|φ(θ)|2dθ+
∫ 0
−r

|φ0(θ)|2dθ
]
. (3.139)

Using the L’Hospital rule on the last equality, we obtain

S(G)(φ)

= lim
t→0+

e1+
∫ 0
−r+t

|φ(θ)|2dθ+t|φ(0)|2+
∫ 0
−r+t

|φ0(θ)|2dθ+t|φ0(0)|2
(
|φ(0)|2

−|φ(−r + t)|2 + |φ0(0)|2 − |φ0(−r + t)|2
)

= (|φ(0)|2 − |φ(−r)|2 − |φ0(−r)|2)e1+
∫ 0
−r

|φ(θ)|2dθ)+
∫ 0
−r

|φ0(θ)|2dθ

= (|φ(0)|2 − |φ(−r)|2 − |φ(0)|2)e1+
∫ 0
−r

|φ(θ)|2dθ+
∫ 0
−r

|φ0(θ)|2dθ

= −|φ(−r)|2e1+F (φ)+F (φ0). � (3.140)

Lemma 3.6.9 For any ψ, φ ∈ C, we have

lim
ε↓0

|Sψ(Tε)(ψ, φ)| = 0 and lim
ε↓0

|Sφ(Tε)(ψ, φ)| = 0. (3.141)
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Proof. We will only prove the first equality in the Lemma, since the second
one can be proved similarly.

We first assume that ψ ∈ D(S̃), where the operator S̃ : D(S̃) ⊂ C → C
and D(S̃) are defined in the proof of Lemma 3.6.8. In this case,

lim
ε↓0

|Sψ(Tε)(ψ, φ)| = lim
ε↓0

∣∣∣∣∣limt↓0

Tε(ψ̃t, φ) − Tε(ψ, φ)
t

∣∣∣∣∣

= lim
ε↓0

∣∣∣∣∣(Tε) lim
t↓0

(
ψ̃t − ψ

t
, φ

)∣∣∣∣∣

≤ lim
ε↓0

‖Tε‖
(∥∥∥ lim

t↓0

ψ̃t − ψ

t

∥∥∥ + ‖φ‖
)

≤ lim
ε↓0

ε
(
‖S̃ψ‖ + ‖φ‖

)
= 0, (3.142)

because Tε is a bounded linear functional on C × C with norm equal to ε.
For any ψ, φ ∈ C, one can construct a sequence of

ψk ∈ D(S̃), k = 1, 2, · · · ,

such that
lim

k→∞
‖ψk − ψ‖ = 0.

We have
lim
ε↓0

|Sψ(Tε)(ψk, φ)| = 0, ∀k = 1, 2, . . . .

Consequently,
lim
ε↓0

|Sψ(Tε)(ψ, φ)| = 0

by the limit process. �

Given all of the above results, now we are ready to prove Theorem 3.6.1.

Proof of Theorem 3.6.1. Define

Γ1(t, ψ) ≡ V2(sδγε, φδγε) + Θδγ(t, sδγε, ψ, φδγε) − Tε(ψ, φδγε) − Mδγε (3.143)

and

Γ2(s, φ) ≡ V1(tδγε, ψδγε) − Θδγ(tδγε, s, ψδγε, φ) + Tε(ψδγε, φ) + Mδγε (3.144)

for all s, t ∈ [0, T ] and ψ, φ ∈ C. Recall that

Φδγ(t, s, ψ, φ) = V1(t, ψ) − V2(s, φ) − Θδγ(t, s, ψ, φ)

and that Φδγ + Tε + Mδγε reaches its maximum value zero at (tδγε, sδγε, ψδγε,
φδγε) in [0, T ] × [0, T ] × C × C.
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By the definition of Γ1 and Γ2, it is easy to verify that for all φ and ψ, we
have

Γ1(t, ψ) ≥ V1(t, ψ), Γ2(s, φ) ≤ V2(s, φ), ∀t, s ∈ [0, T ] and φ, ψ ∈ C,

and

V1(tδγε, ψδγε) = Γ1(tδγε, ψδγε) and V2(sδγε, φδγε) = Γ2(sδγε, φδγε).

Using the definitions of the viscosity subsolution of V1 and Γ1, we have

αV1(tδγε, ψδγε) − ∂tΓ1(tδγε, ψδγε)

− sup
v∈U

[Av(Γ1)(tδγε, ψδγε)−L(tδγε, ψδγε, v)]
}
≤ 0. (3.145)

By the definitions of the operator Av and Γ1 and the fact that the second-
order Fréchet derivatives of Tε = 0, we have, by combining (3.110), (3.111),
(3.112), (3.113), (3.116), (3.117), (3.122), (3.123), (3.124), and (3.125),

Av(Γ1)(tδγε, ψδγε)

= S(Γ1)(tδγε, ψδγε) + DψΘδγ(· · · )(f(tδγε, ψδγε, v)1{0})

1
2

m∑
j=1

D2
ψΘδγ(· · · )

(
g(tδγε, ψδγε, v)(ej)1{0}, g(tδγε, ψδγε, v)(ej)1{0}

)

− DψTε(ψδγε, φδγε)(f(tδγε, ψδγε, v)1{0})

= S(Γ1)(tδγε, ψδγε) − Tε(f(tδγε, ψδγε, v)1{0}, φδγε).

Note that Θδγ(· · · ) is an abbreviation for Θδγ(tδγε, sδγε, ψδγε, φδγε) in the
above equation and the following.

Inequality (3.145) and the above equation together yield that

αV1(tδγε, ψδγε) − S(Γ1)(tδγε, ψδγε) − ∂tΓ1(tδγε, ψδγε) (3.146)

− sup
v∈U

[
− Tε(f(tδγε, ψδγε, v)1{0}, φδγε) + L(tδγε, ψδγε, v)

]
≤ 0.

Similarly, using the definitions of the viscosity supersolution of V2 and Γ2 and
by the virtue of the same techniques similar to (3.146), we have

αV2(sδγε, φδγε) − S(Γ2)(sδγε, φδγε) − ∂sΓ2(sδγε, φδγε)

− sup
v∈U

[
Tε(ψδγε, f(sδγε, φδγε, v)1{0}) + L(sδγε, φδγε, v)

]
≥ 0. (3.147)

Inequality (3.146) is equivalent to

αV1(tδγε, ψδγε) − S(Γ1)(tδγε, ψδγε) − 2(tδγε − sδγε)

− sup
v∈U

[
− Tε(f(tδγε, ψδγε, v)1{0}, φδγε) + L(tδγε, ψδγε)

]
≤ 0. (3.148)
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Similarly, Inequality (3.147) is equivalent to

αV2(sδγε, φδγε) − S(Γ2)(sδγε, φδγε) − 2(sδγε − tδγε)

− sup
v∈U

[
Tε(ψδγε, f(sδγε, φδγε, v)1{0}) + L(sδγε, φδγε, v)

]
≥ 0. (3.149)

By virtue of (3.148) and (3.149), we obtain

α(V1(tδγε, ψδγε) − V2(sδγε, φδγε))

≤ S(Γ1)(tδγε, ψδγε) − S(Γ2)(sδγε, φδγε) + 4(tδγε − sδγε)

+ sup
v∈U

[L(tδγε, ψδγε, v) − Tε(f(tδγε, ψδγε, v)1{0}, φδγε)]

− sup
v∈U

[L(sδγε, φδγε, v) + Tε(ψδγε, f(sδγε, φδγε, v)1{0})]. (3.150)

From definition (3.60) of S, it is clear that S is linear and takes the value zero
on constants. Recall that

Γ1(t, ψ) = V2(sδγε, φδγε) + Θδγ(t, sδγε, ψ, φδγε)
− Tε(ψ, φδγε) − Mδγε (3.151)

and

Γ2(s, φ) = V1(tδγε, ψδγε) − Θδγ(tδγε, s, ψδγε, φ) (3.152)
+ Tε(ψδγε, φ) + Mδγε.

Thus, we have

S(Γ1)(tδγε, ψδγε) = Sψ(Θδγ)(tδγε, sδγε, ψδγε, φδγε)
Sψ(Tε)(ψδγε, φδγε) (3.153)

and

S(Γ2)(sδγε, φδγε) = −Sφ(Θδγ)(tδγε, sδγε, ψδγε, φδγε)
+Sφ(Tε)(ψδγε, φδγε). (3.154)

Therefore,

S(Γ1)(tδγε, ψδγε) − S(Γ2)(sδγε, φδγε)
= Sψ(Θδγ)(tδγε, sδγε, ψδγε, φδγε) + Sφ(Θδγ)(tδγε, sδγε, ψδγε, φδγε)

− [Sψ(Tε)(ψδγε, φδγε) + Sφ(Tε)(ψδγε, φδγε)]. (3.155)

Recall that

Θδγ(t, s, ψ, φ) =
1
δ

[
F (ψ − φ) + F (ψ0 − φ0) + |t − s|2

]
+ γ(G(ψ) + G(φ)).
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Therefore, we have
(
Sψ(Θδγ) + Sφ(Θδγ)

)
(tδγε, sδγε, ψδγε, φδγε)

≡ Sψ(Θδγ)(tδγε, sδγε, ψδγε, φδγε)
+Sφ(Θδγ)(tδγε, sδγε, ψδγε, φδγε)

=
1
δ
[Sψ(F )(ψδγε − φδγε) + Sφ(F )(ψδγε − φδγε)

+Sψ(F )(ψ0
δγε − φ0

δγε) + Sφ(F )(ψ0
δγε − φ0

δγε)]
+ γ[Sψ(G)(ψδγε) + Sφ(G)(φδγε)]. (3.156)

Using Lemma 3.6.7 and Lemma 3.6.8, we deduce that
(
Sψ(Θδγ) + Sφ(Θδγ)

)
(tδγε, sδγε, ψδγε, φδγε)

=
1
δ

[
− |ψδγε(−r) − φδγε(−r)|2

]

−γ

(
|ψδγε(−r)|2e1+F (ψδγε)+F (ψ0

δγε)

+|φδγε(−r)|2e1+F (φδγε)+F (φ0
δγε)

)

≤ 0. (3.157)

Thus, by virtue of (3.155) and Lemma 3.6.9, we have

lim sup
δ↓0,ε↓0

[
S(Γ1)(tδγε, ψδγε) − S(Γ2)(sδγε, φδγε)

]
≤ 0. (3.158)

Moreover, we know that the norm of Tε is less than ε; thus, for any γ > 0,
using (3.155) and taking the lim sup on both sides of (3.150) as δ and ε go to
zero, we obtain

lim sup
ε↓0,δ↓0

α(V1(tδγε, ψδγε) − V2(sδγε, φδγε))

≤ lim sup
ε↓0,δ↓0

{
S(Γ1)(tδγε, ψδγε) − S(Γ2)(sδγε, φδγε)

+ sup
v∈U

[L(tδγε, ψδγε, v) − Tε(f(t, ψδγε, v)1{0}, φδγε)]

− sup
v∈U

[L(sδγε, φδγε, v) + Tε(ψδγε, f(t, φδγε, v)1{0})]
}

≤ lim sup
ε↓0,δ↓0

{
sup
v∈U

∣∣∣∣[L(tδγε, ψδγε, v) − L(sδγε, φδγε, v)]
∣∣∣∣
}

. (3.159)

Using the Lipschitz continuity of L and Lemma 3.6.2, we see that

lim sup
δ↓0,ε↓0

sup
v∈U

|L(tδγε, ψδγε, v) − L(sδγε, φδγε, v)|

≤ lim sup
δ↓0,ε↓0

C
(
|tδγε − sδγε| + ‖ψδγε − φδγε‖2

)
= 0; (3.160)
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moreover, by virtue of (3.160), we get

lim sup
ε↓0,δ↓0

α(V1(tδγε, ψδγε) − V2(sδγε, φδγε)) ≤ 0. (3.161)

Since (tδγε, sδγε, ψδγε, φδγε) is maximum of Φδγ + Tε in [0, T ]× [0, T ]×C×C,
then, for all (t, ψ) ∈ [0, T ] × C, we have

Φδγ(t, t, ψ, ψ)+Tε(ψ,ψ) ≤ Φδγ(tδγε, sδγε, ψδγε, φδγε)+Tε(ψδγε, φδγε). (3.162)

Then we get

V1(t, ψ) − V2(t, ψ) (3.163)
≤ V1(tδγε, ψδγε) − V2(sδγε, φδγε)

−1
δ

[
‖ψδγε − φδγε‖2

2 + ‖ψ0
δγε − φ0

δγε‖2
2 + |tδγε − sδγε|2

]

+2γ exp(1 + ‖ψ‖2
2 + ‖ψ0‖2

2)
−γ(exp(1 + ‖ψδγε‖2

2 + ‖ψ0
δγε‖2

2) + exp(1 + ‖φδγε‖2
2 + ‖φ0

δγε‖2
2))

+Tε(ψδγε, φδγε) − Tε(ψ,ψ)
≤ V1(tδγε, ψδγε) − V2(sδγε, φδγε)

+2γ exp(1 + ‖ψ‖2
2 + ‖ψ0‖2

2) + Tε(ψδγε, φδγε) − Tε(ψ,ψ), (3.164)

where the last inequality comes from the fact that δ > 0 and γ > 0. By virtue
of (3.161), when we take the lim sup on (3.164) as δ,ε and γ go to zero, we
can obtain

V1(t, ψ) − V2(t, ψ) ≤ lim sup
γ↓0,ε↓0,δ↓0

(
V1(tδγε, ψδγε) − V2(sδγε, φδγε)

+2γ exp(1 + ‖ψ‖2
2 + ‖ψ0‖2

2) + Tε(ψδγε, φδγε) − Tε(ψ,ψ)
)

≤ 0. (3.165)

Therefore, we have

V1(t, ψ) ≤ V2(t, ψ), ∀(t, ψ) ∈ [0, T ] × C. (3.166)

This completes the proof of Theorem 3.6.1. �

The uniqueness of the viscosity solution of (3.64) follows directly from this
theorem because any viscosity solution is both the viscosity subsolution and
supersolution.

Theorem 3.6.10 The value function V : [0, T ]×C → � of Problem (OCCP)
defined by (3.7) is the unique viscosity solution of the HJBE (3.64).

Proof. Suppose V1, V2 : [0, T ] × C → � are two viscosity solutions of the
HJBE (3.64). Then they are both the viscosity subsolution and supersolution.
By Theorem 3.6.1, we have
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V2(t, ψ) ≤ V1(t, ψ) ≤ V2(t, ψ), ∀(t, ψ) ∈ [0, T ] × C.

This shows that

V1(t, ψ) = V2(t, ψ), ∀(t, ψ) ∈ [0, T ] × C.

Therefore, the value function V : [0, T ] × C → � of Problem (OCCP) is the
unique viscosity solution of the HJBE (3.64). �

3.7 Verification Theorems

In this section, conjecture on a version of the verification theorem in the
framework of viscosity solutions is presented. The value function V : [0, T ] ×
C → � for Problem (OCCP) has been shown to be the unique viscosity
solution of the HJBE (3.64) as shown in Sections 3.5 and 3.6. The remaining
question for completely solving Problem (OCCP) is the computation of the
optimal state-control pair (x∗(·), u∗(·)).

The classical verification theorem reads as follows.

Theorem 3.7.1 Let Φ ∈ C1,2
lip ([0, T ] × C) ∩ D(S) be the (classical) solution

of the HJBE (3.64). Then the following hold:
(i) Φ(t, ψ) ≥ J(t, ψ;u(·)) for any (t, ψ) ∈ [0, T ] × C and any u(·) ∈ U [t, T ].
(ii) Suppose that a given admissible pair (x∗(·), u∗(·)) for the optimal classical
control problem (OCP )(t, ψ) satisfies

0 = ∂tΦ(s, x∗
s) + Au∗(s)Φ(s, x∗

s) + L(s, x∗
s , u

∗(s)) P − a.s., a.e. s ∈ [t, T ],

then (x∗(·), u∗(·)) is an optimal pair for (OCP )(t, ψ).

Define the Hamiltonian function H : [0, T ] × C × C∗ × C† × U → � as
follows:

H(t, φ, q,Q, u) =
1
2

m∑
j=1

Q̄(g(t, φ, u)1{0}ej , g(t, φ, u)1{0}ej)

+q̄(f(t, φ, u)1{0}) + L(t, φ, u), (3.167)

where q̄ ∈ (C⊕B) is the continuous extension of q from C∗ to (C⊕B)∗ and
Q̄ ∈ (C ⊕ B)† is the continuous extension of Q from C† to (C ⊕ B)†. (see
Lemma 2.2.3 and Lemma 2.2.4 for details.)

We make the following conjecture on verification theorem in the viscosity
framework.

Conjecture. (The Generalized Verification Theorem). Let V̄ ∈ C((0, T ] ×
C,�) be the viscosity supersolution of the HJBE (3.64) satisfying the following
polynomial growth condition

|V̄ (t, ψ)| ≤ C(1 + ‖ψ‖k
2) for some k ≥ 1, (t, ψ) ∈ (0, T ) × C. (3.168)
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and such that V̄ (T, ψ) = Ψ(ψ). Then we have the following.
(i) V̄ (t, ψ) ≥ J(t, ψ;u(·)) for any (t, ψ) ∈ (0, T ] × C and u(·) ∈ U [t, T ].
(ii) Fix any (t, ψ) ∈ (0, T ) × C. Let (x∗(·), u∗(·)) be an admissible pair for
Problem (OCCP). Suppose that there exists

(p∗(·), q∗(·), Q∗(·)) ∈ L2
F(t)(t, T ;�) × L2

F(t)(t, T ;C∗) × L2
F(t)(t, T ;C†)

such that, for a.e. s ∈ [t, T ],

(p∗(s), q∗(s), Q∗(s)) ∈ D1,2
s+,ψV̄ (s, x∗

s)), P − a.s., (3.169)

and

E

[∫ T

t

[p∗(s) + H(s, x∗(s), q∗(s), Q∗(s);u∗(s))]ds

]
≥ 0. (3.170)

Then (x∗(·), u∗(·)) is an optimal pair for Problem (OCCP).

3.8 Finite-Dimensional HJB Equation

It is clear that the HJBE as described in (3.64) is infinite dimensional in
the sense that it is a generalized differential equation that involve a first-
and second-order Fréchet derivatives of a real-valued function defined on the
Banach space C as well as the infinitesimal generator S. The explicit solution
of this equation is not well understood in general. In this section, we investigate
some special cases of the infinite-dimensional HJBE (3.64) in which only the
regular partial derivatives are involved and of which explicit solutions can be
found. Much of the material presented in this section can be found in Larssen
and Risebro [LR03]. However, they can be shown to be a special case of (3.1)
and the general HJBE (3.64) treated in the previous sections.

3.8.1 Special Form of HJB Equation

In (3.1), we consider the one-dimensional case and assume that m = 1 and
n = 1. Let the controlled drift and diffusion f, g : [0, T ] × C × U → � be
defined as follows:

f(t, φ, u) = b

(
t, φ(0),

∫ 0

−r

eλθφ(θ) dθ, φ(−r), u
)

(3.171)

and

g(t, φ, u) = σ

(
t, φ(0),

∫ 0

−r

eλθφ(θ) dθ, φ(−r), u
)

(3.172)

for all (t, φ, u) ∈ [0, T ]×C×U , where b and σ are some real-valued functions
defined on [0, T ] ×�×�× �× U that satisfy the following two conditions.
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Assumption 3.8.1 There exist constants K1 > 0, and K2 > 0 such that for
all (t, x, y, z), (t, x̄, ȳ, z̄, u) ∈ [0, T ] ×�×�×� and u ∈ U ,

|b(t, x, y, z, u)| + |σ(t, x, y, z, u)| ≤ K1(1 + |x| + |y| + |z|)p

and

|b(t, x, y, z, u) − b(t, x̄, ȳ, z̄, u)| + |σ(t, x, y, z, u) − σ(t, x̄, ȳ, z̄, u)|
≤ K2(|x − x̄| + |y − ȳ| + |z − z̄|).

It is easy to see that if Assumption 3.8.1 holds for b and σ, then Assump-
tion 3.1.1 holds for f and g that are related through (3.171) and (3.172).

Consider the following one-dimensional control stochastic delay equation:

dx(s) = b(s, x(s), y(s), z(s), u(s)) ds

+ σ(s, x(s), y(s), z(s), u(s)) dW (s), s ∈ (t, T ], (3.173)

with the initial data (t, ψ) ∈ [0, T ] × C[−r, 0], where

y(s) =
∫ 0

−r

eλθx(s + θ) dθ (λ > 0 is a given constant)

represents a weighted (by the factor eλ·) sliding average of x(·) over the time
interval [s−r, s], and z(s) = x(s−r) represents the discrete delay of the state
process x(·).

The objective of the control problem is to maximize among U [t, T ] the
following expected performance index:

J(t, ψ;u(·)) = E
[ ∫ T

t

l(s, x(s), y(s), u(s)) ds + h(x(T ), y(T ))
]
, (3.174)

where l : [0, T ]×�×�×U → � and h : �×� → � are the instantaneous reward
and the terminal reward functions, respectively, that satisfy the following
assumptions:

Assumption 3.8.2 There exist constants K, K̄ > 0 and k ≥ 1 such that

|l(t, x, y, u)| + |h(x, y)| ≤ K(1 + |x| + |y|)k

and

|l(t, x, y, u) − l(t, x̄, ȳ, u)| + |h(x, y) − h(x̄, ȳ)| ≤ K̄(|x − x̄| + |y − ȳ|),

for all (t, x, y, u), (t, x̄, ȳ, u) ∈ [0, T ] ×�×�× U .

We again define the value function V : [0, T ]×C[−r, 0] → � for the optimal
control problem (3.173) and (3.174) is defined by

V (t, ψ) = sup
u(·)∈U [t,T ]

J(t, ψ;u(·)). (3.175)
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As described in Problem (OCCP), the value function V may depend on
the initial datum (t, ψ) ∈ [0, T ] × C[−r, 0] in a very general and complicated
way. In this section, we will show that for a certain class of systems of the
form (3.173), the value function depends on the initial function only through
the functional of x ≡ ψ(0), y ≡

∫ 0

−r
eλθψ(θ) dθ. Let us therefore assume with

a little abuse of notation that the value function V takes the following form:

V (t, ψ) = Φ

(
t, ψ(0),

∫ 0

−r

eλθψ(θ) dθ

)
= Φ(t, x, y), (3.176)

where Φ : [0, T ]×�×� → �. Then the DPP (Theorem 3.3.9) takes the form

Φ(t, x, y) = sup
u(·)∈U [t,T ]

[ ∫ τ

t

e−α(τ−t)l(s, x(s), y(s), u(s)) ds

+Φ(τ, x(τ), y(τ))
]

(3.177)

for all F-stopping times τ ∈ T T
t and initial datum (t, ψ(0),

∫ 0

−r
eλθψ(θ) dθ) ≡

(t, x, y) ∈ [0, T ] ×�2.

Lemma 3.8.3 (The Itô Formula) If Φ ∈ C1,2,1([0, T ]×�×�), then we have
the following Itô formula:

dΦ(s, x(s), y(s)) = LuΦ(s, x(s), y(s))
+∂xΦ(s, x(s), y(s))σ(s, x(s), y(s)) dW (s), (3.178)

where Lu is the differential operator defined by

LuΦ(t, x, y) = b(t, x, y, z)∂xΦ(t, x, y)

+
1
2
σ2(t, x, y, z)∂2

xΦ(t, x, y)

+(x − e−λrz − λz)∂yΦ(t, x, y). (3.179)

Proof. Note that if φ ∈ C[t − r, T ], then φs ∈ C[−r, 0] for each s ∈ [t, T ].
Since

y(xs) =
∫ 0

−r

eλθx(s + θ) dθ (λ constant),

∂sy(xs) = ∂s

(∫ 0

−r

eλθx(s + θ) dθ

)

= ∂s

(∫ s

s−r

eλ(t−s)x(t) dt

)

= x(s) − e−λrx(s − r) − λ

∫ s

s−r

eλ(t−s)x(t) dt

The result follows from the classical Itô formula (see Theorem 1.2.15). �

We have the following special form of the HJBE (3.64).



3.8 Finite-Dimensional HJB Equation 195

Theorem 3.8.4 If we assume that (3.176) holds and that Φ ∈ C1,2,1([0, T ]×
�×�), then Φ solves the following HJBE:

αΦ(t, x, y) − ∂tΦ(t, x, y) − max
u∈U

[LuΦ(t, x, y) + l(t, x, y, u)] = 0, (3.180)

∀(t, x, y) ∈ [0, T ] ×�×�,

with the terminal condition Φ(T, x, y) = h(x, y), where Lu is the differential
operator defined by (3.179).

Note that (3.180) is also equivalent to the following:

αΦ(t, x, y) − ∂tΦ(t, x, y) + min
u∈U

[−LuΦ(t, x, y) − l(t, x, y, u)] = 0, (3.181)

∀(t, x, y) ∈ [0, T ] ×�×�.

Proof. It is clear that Φ : [0, T ]×�×� defined above is a quasi-tame function.
From Itô’s formula (see Lemma 3.8.3 in Chapter 2), we have

dV (s, x(s), y(s)) = LuV (s, x(s), y(s))ds (3.182)
+σ(s, x(s), y(s), z(s))∂xV (s, x(s), y(s))dW (s),

where the differential operator Lu is as defined in (3.179). We use the DDP
(Theorem 3.3.9) and proceed exactly as in Subsection 3.4.1 to obtain (3.180).
�

3.8.2 Finite Dimensionality of HJB Equation

Theorem 3.8.4 indicates that under the assumption that the value function
takes the form Φ ∈ C1,2,1([0, T ]×�×�), we have a finite-dimensional HJBE
(3.180) in the sense that it only involves regular partial derivatives such as
∂xΦ, ∂yΦ, and ∂2

xΦ instead of the Fréchet derivatives and the S-operator as
required in (3.64). The question that remains to be answered is under what
conditions we can have the finite-dimensional HJBE (3.180). This question
will be answered in this subsection.

We consider the following one-dimensional controlled SHDE:

dx(s) = [µ(x(s), y(s))
+ β(x(s), y(s))z(s) − g(s, x(s), y(s), u(s))] ds

+σ(x(s), y(s)) dW (s), s ∈ (t, T ], (3.183)

with the initial datum (t, ψ) ∈ [0, T ] × C([−r, 0];�), where, again, y(s) =∫ 0

−r
eλθx(s+θ) dθ and z(s) = x(s−r) are described in the previous subsection

and µ, β, σ : � × � → � and g : [0, T ] × � × � × U → � are the given
deterministic functions. Assume that the discount rate α = 0 for simplicity.
It will be shown in this subsection that the HJBE has a solution depending



196 3 Optimal Classical Control

only on (t, x, y) provided that an auxiliary system of four first-order partial
differential equations (PDEs) involving µ, β, g, σ, l, and h has a solution. When
this is the case, the HJBE (3.180) reduces to an ”effective” equation in only
one spatial variable in addition to time.

For this model, the HJBE (3.180) takes the form

−∂tΦ + min
u∈U

F − (x − e−λrz − λy)∂yΦ = 0, ∀z ∈ �, (3.184)

where

F = F (t, x, y, z, u, ∂xΦ, ∂yΦ, ∂2
xΦ)

= −LuΦ(t, x, y) − l(t, x, y, u). (3.185)

Assume that F ∗ = infu∈U F . Then

−∂tΦ + F ∗ − (x − e−λrz − λy)∂yΦ = 0, ∀z ∈ �. (3.186)

Since this holds for all z, we must have

∂z(F ∗ − (x − e−λrz − λy)∂yΦ) = 0.

Now, ∂u∗F ∗ = 0 since u∗ ∈ U is a minimizer of the function F . With ∂z(x −
e−λrz − λy) = −e−λr, this leads to ∂zF

∗ + e−λr∂yΦ = 0 or

∂yΦ = −eλr∂zF
∗,

which we insert into (3.186) to obtain

−∂tΦ + F ∗ + (x − e−λrz − λy)eλr∂zF
∗ = 0. (3.187)

Here, F ∗ +(x−e−λrz−λy)eλr∂zF
∗ should not depend on z. In the following,

let H and G denote generic functions that may depend on t, x, y, u∗, ∂xΦ, ∂yΦ,
and ∂2

xΦ but not on z. (H and G may change from line to line in a calculation.)
Then the following are equivalent:

F ∗ + eλrξ∂zF
∗ = H,

e−λrF ∗ + ξ∂zF
∗ = H,

∂z

(
F ∗

ξ

)
=

ξ∂zF
∗ + e−λrF ∗

ξ2
=

H

ξ2
,

where ξ ≡ x − e−λrz − λy. Integrating this yields

F ∗

ξ
= H

∫
dz

ξ2
= −Heλr

∫
dξ

ξ2
=

−Heλr

ξ
+ G,

so that F ∗ = H + Gξ, which implies that F ∗ is linear in z; that is,
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F ∗ = H + Gz,

where H and G are functions that do not depend on z.
Motivated by the above reasoning, we investigate more closely a modified

version of (3.173) and consider

dx(s) = [µ̄(x(s), y(s), z(s)) − g(s, x(s), y(s), u(s))]ds

+σ̄(x(s), y(s), z(s))dW (s), s ∈ (t, T ], (3.188)

with the initial datum (t, ψ) ∈ [0, T ]×C[−r, 0]. Recall the performance func-
tional (3.174),

J(t, ψ;u(·)) = E
[ ∫ T

t

l(s, x(s), y(s), u(s)) ds + h(x(T ), y(T ))
]
, (3.189)

and the value function Φ : [0, T ] × C[−r, 0] → � defined by (3.176),

Φ(t, ψ) = Φ

(
t, ψ(0),

∫ 0

−r

eλθψ(θ) dθ

)
= Φ(t, x, y). (3.190)

It is known that if Φ = Φ(t, x, y), then Φ satisfies the HJBE

−∂tΦ− µ̄∂xΦ− 1
2
σ̄2∂2

xΦ− (x− e−λrz−λy)∂yΦ+F (∂xΦ, x, y, t) = 0, (3.191)

with the terminal condition

Φ(T, x, y) = h(x, y), (3.192)

where
F (t, x, y, p) = inf{(g(t, x, y, u)p − l(t, x, y, u)}. (3.193)

We wish to obtain conditions on µ̄, σ̄, and F that ensure that (3.191) has a
solution independent of z. Differentiating (3.191) with respect to z, we obtain

∂yΦ − eλr∂zµ̄∂xΦ = eλr∂z γ̄∂2
xΦ, (3.194)

where γ̄ = σ̄2/2. Inserting this into (3.191), this equation now takes the form

− ∂tΦ − [µ̄ − (z − eλr(x − λy))∂zµ̄]∂xΦ

− [γ̄ − (z − eλr(x − λy))∂z γ̄]∂2
xΦ + F (∂xΦ, x, y, t) = 0,

If Φ is to be independent of z, then the coefficients of ∂xΦ and ∂2
xΦ must be

independent of z. By arguments analogous to the previous, we see that

µ̄(x, y, z) = µ(x, y) + β(x, y)z

and
γ̄(x, y, z) = γ(x, y) + ζ(x, y)z
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for some functions µ, β, γ, and ζ depending on x and y only. Now, since γ̄ ≥ 0
for all (x, y, z), we must have ζ = 0, and, consequently, ∂z γ̄ = 0. Also note
that ∂zµ̄ = β and that (3.208) takes the form

∂yΦ − eλrβ(x, y)∂xΦ = 0. (3.195)

Using this in (3.191) we see that this equation now reads

− ∂tΦ − [µ(x, y) + eλr(x − λy)β(x, y)]∂xΦ

− 1
2
σ2(x, y)∂2

xΦ + F (∂xΦ, x, y, t) = 0. (3.196)

Now, we introduce new variables x̃ and ỹ, such that

∂

∂ỹ
=

∂

∂y
− eλrβ(x, y)

∂

∂x
and

∂

∂x̃
=

∂

∂x
. (3.197)

Then (3.195) states that ∂ỹΦ = 0. In order to be compatible with ∂ỹΦ = 0,
the coefficients of (3.196) and the function h must also be constant in ỹ, or

∂yµ̂ − eλrβ∂xµ̂ = 0, (3.198)

∂yσ − eλrβ∂xσ = 0, (3.199)

eλrp∂pF∂xβ + ∂yF − eλrβ∂xF = 0, (3.200)

∂yh − eλrβ∂xh = 0, (3.201)

where
µ̂(x, y) = µ(x, y) + eλr(x − λy)β(x, y).

To see why ∂ỹF = 0 is equivalent to (3.200), note that

∂ỹF = ∂pF∂y(∂xΦ) + ∂yF − eλrβ(∂pF∂xΦx + ∂xF )
= ∂pF (∂2

yxΦ − eλrβ∂2
xΦ) + ∂yF − eλrβ∂xF

= ∂pF [∂x(∂yΦ − eλrβ∂xΦ) + eλr∂xβ∂xΦ] + ∂yF − eλrβ∂xF

= eλrp∂pF∂xβ + ∂yF − eλrβ∂xF by (3.195). (3.202)

Conversely, if µ̄ = µ(x, y)+β(x, y)z and σ̄ = σ(x, y), and (3.198)-(3.200) hold,
then we can find a solution of (3.195) that is independent of z.

We collect this in the following theorem.

Theorem 3.8.5 The HJBE (3.195) with terminal condition Φ(T, x, y) =
h(x, y) has a viscosity solution Φ = Φ(t, x, y) if and only if µ̄ = µ(x, y) +
β(x, y)z and σ̄ = σ(x, y), and (3.198)-(3.201) hold. In this case, in the coor-
dinates given by (3.197), the HJBE (3.195) reads

−∂tΦ − µ̂(x̃)∂2
x̃Φ + F (∂x̃Φ, x̃, t) − 1

2
σ2(x̃)∂2

x̃Φ = 0 (3.203)

with the terminal condition

Φ(T, x̃) = h(x̃). (3.204)
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3.8.3 Examples

In this subsection we present two examples that satisfy the requirements
(3.198)-(3.201), and also indicate why it is difficult to find more general ex-
amples that can be completely solvable.

Example 1 (Harvesting with Exponential Growth) Assume that the size x(·)
of a population obeys the linear SHDE

dx(s) = (ax(s) + by(s) + cz(s) − u(s)) ds

+(σ1x(s) + σ2y(s))dW (s), s ∈ [t, T ], (3.205)

with the initial datum (t, ψ) ∈ [0, T ]×C[−r, 0]. We assume that x(s) > 0. The
population is harvested at a rate u(s) ≥ 0, and we are given the performance
functional

J(t, ψ;u(·)) = Et,ψ,u(·)
[ ∫ T

t

{l1(x(s), y(s)) + l2(u(s))} ds

+h(x(T ), y(T ))
]
, (3.206)

where T is the stopping time defined by

T =
{

T1, inf
s>t

{x(s; t, ψ, u(·) = 0}
}

(3.207)

and T1 > t is some finite deterministic time. If the value function Φ takes the
form Φ(t, x, y), then Φ satisfies the HJBE

− ∂sΦ − (x − e−λrz − λy)∂yΦ − 1
2
(σ1x + σ2)2∂2

xΦ

+ inf
u

{−(ax + by + cz − u)∂xΦ − l1(x, y) − l2(u)} = 0 (3.208)

Using Theorem 3.8.5, from (3.198) and (3.199) we find that the parameters
must satisfy the relations

σ2 = σ1ce
λr, b − λceλr = ceλr(a + ceλr). (3.209)

The function F defined in (3.193) now has the form

F (p, x, y) = inf
u∈U

{pu − l2(u)} − l1(x, y) = pu∗ − l2(u∗) − l1(x, y),

where u∗ is the minimizer in U . Then from (3.200) we see that we must have

∂yl1 − ceλr∂xl1 = 0, (3.210)

or l1 = l1(x+ ceλry). Introducing the variable x̃ = x+ ceλry and the constant
κ = a+ceλr, we find that the “effective” equations (3.203) and (3.204) in this
case will be
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−∂sΦ − (κx̃ − u∗)∂x̃Φ − 1
2
σ2

1 x̃2∂2
x̃Φ − l1(x̃) − l2(u∗) = 0, (3.211)

with the terminal condition

Φ(T, x̃) = h(x̃), (3.212)

assuming h satisfies (3.201). This corresponds to the control problem without
delay with system dynamics

dx̃(s) = (κx̃(s) − u) ds + σ1x̃(s) dW (s), s ∈ (t, T ],

and x̃(t) = x̃ ≥ 0.
To close the discussion of this example, let us be specific and choose

l1(x, y) = −c0|x + ceλry − m|, l2(u) = c1u − c2u
2, h = 0, (3.213)

where c0, c1, c2, and m are positive constants. Then (3.210) and (3.201) hold
and

F (p, x, y) = inf
u∈U

{c2u
2 − (c1 − p)u} + c0|x + ceλry − m|.

We solve for u and find that the optimal harvesting rate is given by

u∗ = max
{

c1 − ∂xΦ

2c2
, 0
}

. (3.214)

Insert (3.213) and (3.214) into the HJBEs (3.211) and (3.212). The resulting
equation is a second-order PDE that may be solved numerically and the op-
timal control can be found provided that the solution of the HJBE really is
the value function.
Example 2 (Resource Allocation). Let x(·) = {x(s), s ∈ [t − r, T ]} denote a
population developing according to (3.205). One can think of x(·) as a wild
population that can be caught and bred in captivity and then harvested.
The population in captivity, x̂(·), develops according to

dx̂(s) = (γx̂(s) + u(s) − v(s)) ds, s ∈ (t, T ], (3.215)

with x̂(t) = x̂ ≥ 0, where v denotes the harvesting rate. The state and control
processes for the control problem are (x(·), x̂(·)) and (u(·), v(·)), respectively.
For this case, we consider the gain functional

J(t, ψ, x̂;u(·), v(·)) = Et,ψ,x̂;u(·),v(·)
[ ∫ T

t

(l(v(s)) − c1x̂(s) − c2u
2(s)) ds

+h(x(T ), y(T ), x̂(T ))
]
, (3.216)

where T is again given by (3.207), l(v) denotes the utility from consumption
or sales of the animals, c1x̂ models the cost of keeping the population, and
c2u

2 models the cost of catch and transfer. Setting



3.9 Conclusions and Remarks 201

V (t, ψ, x̂) = sup
u≥0,v

J(t, ψ, x̂;u(·), v(·)),

we find that if V takes the special form V = Φ(t, x, y, x̂), then

− ∂tΦ − (ax + by + cz)∂xΦ − γx̂∂x̂Φ − 1
2
(σ1x + σ2y + σ3z)2∂2

xΦ

− (x − e−λrz − λy)∂yΦ + c1x̂ + F (∂xΦ, ∂x̂Φ) = 0 (3.217)

and Φ(T, x, y, x̂) = h(x, y, x̂), where

F (p, q) = inf
u≥0,v≤vmax

(c2u
2 − u(q − p) + vq − l(v)).

Since v is independent of z, we must demand that the parameters satisfy
(3.209), and we introduce x̃ as before to find that Φ = Φ(t, x̃, x̂) satisfies

−∂tΦ − κx̃∂x̃Φ − γx̂∂x̂Φ − 1
2
σ2

1 x̃2∂2
x̃Φ + c1x̂ + F (∂x̃Φ, ∂x̂Φ) = 0, for t < T

(3.218)
and Φ(T, x̃, x̂) = h(x̃, x̂). Again, the above PDE with the terminal condition
can be solved numerically.

3.9 Conclusions and Remarks

This chapter develops the infinite-dimensional HJBE for the value function of
the discounted optimal classical control problem over finite time horizon. The
HJBE involves extensions of first- and second-order Fréchet derivatives as well
as the shift operator, which are unique in controlled SHDEs. This distinguishes
them from all other infinite-dimensional stochastic control problems such as
the ones arising from stochastic partial differential equations. The main theme
of this chapter is to show under very reasonable assumptions that the value
function is the unique viscosity solution of the HJBE. Existence of optimal
control as well as special cases that lead to a finite dimensional HJBE are
demonstrated. There is no attempt to treat the ergodic controls and/or the
combined classical-singular control problem. However, a combined classical-
impulse control arising from a hereditary portfolio optimization problem is
treated in Chapter 7 in detail.
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