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The State of the Art
in Cellular Evolutionary Algorithms

A person who never made a mistake never tried
anything new.

Albert Einstein (1879 - 1955) – Physicist

Before starting any new scientific research, it is necessary to know perfectly
well the existing contributions to the considered field in the literature. This
documentation step is basic for the right development of science, as it provides
important knowledge of the working area, allowing us to take advantage of
the contributions of others authors, and thus avoiding the development of low
interest works as, for example, studies tackled before by other researchers.
Hence, in this chapter we present a wide exploration of the state of art in
cellular evolutionary algorithms, including and classifying some of the main
existing publications related to this field.

The chapter structure is detailed next. We start with Sect. 2.1 explaining
the first appeared models of cEAs in the literature. In Sect. 2.2 the main the-
oretical studies developed in cEAs are summed up, whereas Sect. 2.3 compiles
some of the most relevant works where empiric studies of the functioning of
cEAs have been carried out, and also comparisons to other models. A summary
of the most important works contributing with algorithmic improvements to
the cEAs field is shown in Sect. 2.4. Section 2.5 presents some works with high
repercussion in the field of parallel cEAs. Finally, at the end of the chapter
we summarize all this and mention some open research lines.

2.1 Cellular EAs: a New Algorithmic Model

The cellular evolutionary algorithms were initially designed for working in
massive parallel machines, composed of many processors executing simulta-
neously the same instructions on different data (SIMD machines –Single In-
struction Multiple Data) [88]. In the simplest case, the executed cEAs in this
sort of machines used a single large population and assigned an only single
individual to each processor. In order to avoid a high overload in communi-
cations, the mating of the individuals was restricted to the closer individuals
(that is, the ones belonging to their neighborhood).
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In 1976, Bethke [38] made the theoretical study of a GA on a SIMD parallel
machine, analyzing the efficiency of the processing capacity use. He concluded
that the maximum efficiency is obtained when much more expensive fitness
functions than evolution operations are evaluated, a typical case for many
applications.

The first cGA model known is the one proposed by Robertson in 1987 [216],
implemented on a CM1 computer. It was a model where all the steps of the
algorithm (parent selection, replacement, recombination, and mutation) were
executed in parallel. This model obtained good results, with an execution time
independent from the population size.

A year later, Mühlenbein, Gorges Schleuter, and Kramer published a
work [186] where a cGA on massive parallel machines for the TSP problem
was proposed. An important characteristic of this cGA was the incorporation
of a local search step for improving the generated solutions by the recombi-
nation and mutation operators. Therefore, it is considered the first published
hybrid cGA.

After these two first works some cGAs appeared in a few years. They were
named in terms of the pollination plants [105], parallel individual [130], diffu-
sion [33], fine grained [176], massively parallel [129, 232] or local selection [116]
models. The term cellular GA was not used until 1993, when Whitley pro-
posed it for the first time in a work where a cellular automaton model was
applied on a genetic algorithm [259].

All these cGAs were initially designed for working on massively parallel
machines, although, due to the fast loss of popularity suffered by this kind of
machines, the model was adopted later for also functioning on mono-processor
machines, without any relation to parallelism at all. In fact, since the emer-
gence of cEAs, there were implementations in secuencial environments [59], in
transputers nets [115], or in parallel distributed environments [177]. This issue
should be clear, as many researchers still think about the equivalence between
massively parallel EAs and cellular EAs, what represents a wrong connection:
cEAs are simply a different class of EAs, as memetic algorithms [184], esti-
mation of distribution algorithms [158, 187], or particle swarm optimization
algorithms [40] are.

Since the cGAs appeared, there have been many contributions published
in this field. In Table 2.1 we summarize some of the most important ones,
which are commented in Sects. 2.2 to 2.4.

2.2 The Research in the Theory of the Cellular Models
The number of existing works in the area of the cGAs theory is too low.
This is probably due to the difficulty of deducing generic tests in an area
where so many possibilities of implementation exist. Maybe, another reason
for this lack is the generalized belief that cGAs model in a more accurate
way the populations of nature with respect to the islands model or sequential
GAs. Apart from the reason of this lack of theory, more research is necessary
in this area.
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Table 2.1. Brief summary of the main contributions to the cEAs field

Reference Contributions
(Hillis, 1990) [129] cGA with two co-evolutionary populations
(Collins & Jefferson, 1991) [50] Study of the influence of different selection methods
(Gorges-Schleuter, 1992) [116] cGA with a migration mechanism
(Gordon et al., 1992) [112] cGA with a migration mechanism
(White & Pettey, 1993) [258] Study of different ways of applying the selection method
(Rudolph & Sprave, 1995) [219] Use of a self-adaptive acceptation threshold
(Sarma & De Jong, 1996) [220] First theoretical study on the selection pressure in cGAs
(Sarma & De Jong, 1997) [221] Study on the influence of different selection methods
(Sipper, 1997) [230] Co-evolutionary cGA
(Folino et al., 1998) [91] A cGA with a local search step for SAT
(Laumanns et al., 1998) [159] Prey/predator algorithm for the multi-objective domain
(Gordon et al., 1999) [111] Heterogeneous cGA: different parameterization in each cell
(Gorges-Schleuter, 1999) [119] Comparison of panmictic versus cellular ESs
(Kirley et al., 1999) [149] A cGA allowing empty cells (without individuals)
(Ku, Mak & Siu, 1999) [157] A cGA with local search for training recurrentneural networks
(Sprave, 1999) [234] Hypergraphs based model for characterizing cEAs
(Alba & Troya, 2000) [26] Influence of the ratio on the exploration/exploitation
(Kirley & Green, 2000) [148] A cGA applied to the continuous optimization domain
(Lee, Park & Kim, 2000) [160] A cGA with migrations
(Rudolph, 2000) [218] Takeover in cGAs with ring and toroidal population
(Krink et al., 2000) [215] A cGA with disasters
(Thomsen & Kirley, 2000) [244] RBGA: cGA based in religions
(Krink et al., 2001) [155] [215] with a sand bag model for disasters frequency
(Llor & Garrell, 2001) [167] GALE: cGA for data mining. Empty cells are allowed
(Kirley, 2002) [147] CGAD: cGA with disasters
(Alba & Dorronsoro, 2003) [10, 12] Proposal of cGAs with adaptive population
(Li & Sutherland, 2002) [165] Prey/predator algorithm for continuous optimization
(Giacobini et al., 2003) [100] Takeover in asynchronous cGAs with ring population
(Giacobini et al., 2003) [99] Selection pressure study in cGAs with ring population
(Li, 2003) [164] Prey/predator algorithm for the multi-objective domain
(Alba et al., 2004) [9] Comparison between cGAs and other EAs
(Alba & Dorronsoro, 2004) [11] Some hybrid cGAs for VRP
(Dorronsoro et al., 2004) [17, 74] Comparison between synchronous and asynchronous cGAs
(Giacobini et al., 2004) [98] Selection pressure in asynchronous cGAs with toroidal pop.
(Alba et al., 2005) [7] Asynchronous cGAs with adaptive populations
(Alba et al., 2005) [8, 18] cMOGA: first orthodox multi-objective cGA
(Alba et al., 2005) [15] First memetic cGA (cMA); applied on SAT
(Alba & Saucedo, 2005) [24] Comparison between cGA and panmictic GAs
(Dick, 2005) [68] A cGA with ring population as a method for preserving niches
(Dick, 2005) [69] Modelling the genetic evolution in cGAs (ring population)
(Giacobini et al., 2005) [102] Modelling cGAs with square and rectangular populations
(Giacobini et al., 2005) [101] Modelling cGAs with small world topology populations
(Alba & Dorronsoro, 2006) [13] Hybrid cGA which improves the state of art in VRP
(Alba et al., 2006) [23] First EDA with population structured in a cellular way
(Dorronsoro & Alba, 2006) [73] A cGA for the numerical optimization domain
(Grimme & Schmitt, 2006) [125] Prey/predator algorithm for multi-objective domain
(Ishibuchi et al., 2006) [138] A cGA with distinct neighborhoods for selection and crossover
(Luo & Liu, 2006) [171] A cGA designed for GPUs
(Luna et al., 2006) [169, 170] Comparison of cMOGA versus other MO algoritms
(Nebro et al., 2006) [193, 194] MOCell: a new orthodox MO cGA
(Payne & Eppstein, 2006) [203] Study of the emergence matching topology in cGAs
(Janson et al., 2006) [139] HcGAs: cGAs with hierarchical population
(Simoncini et al., 2006) [229] A new anisotropic selection operator for cGAs
(Xhafa, 2006) [268] A cMA for task scheduling in grid computing
(Alba & Dorronsoro, 2007) [14] Wide study of a memetic cGA on VRP
(Xhafa et al., 2007) [269] A cMA versus other GAs for batch task scheduling in grids
(Nebro et al., 2007) [195] Improvement of MOCell [193, 194]
(jMetal, 2007) [80] Multi-objective algorithms library (including MOCell)
(Dorronsoro et al., 2007) [75] Parallel hybrid cGA for large instances of VRP
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In the following subsections, we summarize the main existing contributions
to the theory of cEAs. Thus, Sect. 2.2.1 presents some studies for theoretically
modelling the behavior of cEAs, while Sect. 2.2.2 shows a summary of the main
works attempting to characterize the behavior of the cEAs according to the
neighborhood to population ratio.

2.2.1 Characterizing the Behavior of cEAs

An easy way for characterizing the search performed by a cEA lies in using
the selection pressure, which is a measure of the diffusion speed of the good
solutions through the population. In order to deepen into the knowledge of
the functioning of cEAs, some theoretical works compare the algorithms ac-
cording to the selection pressure showed, and in some cases even intend to
mathematically model its behavior.

Sarma and De Jong made in [220, 221] some theoretical studies about
the selection pressure induced by cGAs with different selection operators and
neighborhood sizes and shapes. For studying the effect on the size of neigh-
borhood in the selection pressure, they proposed in [220] a definition of the
radius of the neighborhood as a measure of its size. Moreover, they observed
the same effect when changing the size of the population, so they proposed
a new measure called ratio, defined as the relationship between the radii of
the neighborhood and the population. Sarma and De Jong discovered that
this ratio is a key issue for controlling the selection pressure of the algorithm.
Therefore, two algorithms with different population sizes and neighborhoods
but with the same ratio value have a similar selection pressure. Finally, they
proposed the use of a logistic function (parameterized with one variable) for
approaching the curve of the selection pressure presented by cGAs. This func-
tion is based on the family of logistic curves which was demonstrated in a
previous work [106] that works in the panmictic case. The model proposed
seemed to be a good approach for cGAs with square populations, but later it
was demonstrated that this model have some deficiencies when using rectan-
gular populations (see Chap. 4 for more information).

Three years later, Sprave proposed in [234] a unified description of any
kind of EA with both structured and non-structured populations based on
the concept of hypergraph. A hypergraph is an extension of a canonical graph,
where the concept of the edges is generalized: instead of the union of a pair
of vertex they become unions of subsets of vertexes. Using the concept of
hypergraph, Sprave developed in [234] a method for estimating the growth
curve of the selection pressure of a GA. This method is based on calculating
the diameter of the structure of the population and the probability of the
distribution induced by the selection operator.

Gorges-Schleuter studied in [119] the growth curves for a diffusion (cel-
lular) model of Evolutionary Strategy (ES) with populations structured in
toroidal or ring shapes. In her studies, she observed that the diffusion model
of ES (both the toroidal and the ring model) has a lower selection pressure
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than the equivalent ES with panmictic population. Moreover, comparing the
two diffusion models, she concluded that, using the same neighborhood size,
structuring the population in a ring shape allows a lower selection pressure
than when using a toroidal population.

In this work, the differences in the behavior of the algorithm with distinct
selection schemes were also analyzed. Particulary, two cases were studied: the
one in which it is forced that the actual individual is one of the parents, or the
case in which the two parents are selected with the same selection method. It
was also studied the effect of allowing one single individual to be chosen as
both parents (self-matching) or not. In fact, if we force the actual individual
to be one of the parents, the error induced by stochastic sampling is reduced,
and also the changes in the individuals are more gradual due to one survived
offspring will replace that parent.

In [100], Giacobini et al. proposed quantitative models for estimating the
takeover time (the time for colonizing the population by copies of the best
individual only under the selection effects) for synchronous and asynchronous
cGAs with structured population in ring shape (one dimension), and using
a neighborhood composed by the two nearest individuals to the considered
one. This work was later extended in [98, 99] in order to find accurate math-
ematical models for fixing the selection pressure curves of synchronous and
asynchronous cGAs. In these works, the population is structured in a bidimen-
sional grid, but it is forced to be square. In [102], the same authors proposed
some probabilistic recurrences for modelling the behavior of the selection pres-
sure of some synchronous and asynchronous cGAs with square, linear (ring),
and toroidal population for two different selection schemes. They also studied
the case of a rectangular population for synchronous and asynchronous cGAs,
but in this case they only validated the experiments on one selection scheme.
In Chap. 4 it is demonstrated that the model is not completely satisfactory
when other selection schemes different from the one studied in [102] are tested.

Giacobini, Tomassini, and Tettamanzi proposed in [101] some mathemati-
cal models for approaching the growth curve of cGAs working on populations
where the topology is defined as a random graph or as small world graphs,
where the distance between any two individuals is, in general, much lower
than in the case of the most commonly regular grids used (they are neither
regular nor completely irregular [197] graphs).

Recently, in [229], Simoncini et al. proposed a new selection operator for
cGAs called anisotropic selection for tuning the selection pressure of the algo-
rithm. This new method lies in allowing the selection of the individuals of the
neighborhood with different probabilities according to their location. In this
way, the authors promote the emergence of niches in the population. In this
work the selection pressure of the algorithm on different shapes of population
was studied, but the comparison between the new algorithm and the canonical
cGA is missed.
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Finally, a new contribution to the field of theory of cGAs was presented
in [72] through the development of a more accurate mathematical equation
than the existing ones for modelling the selection pressure curves of cGAs with
rectangular and square populations. The proposed model was demonstrated
to be valid for different selection methods.

2.2.2 The Influence of the Ratio

In the literature, there exist results (as [189] for the case of large instances of
the TSP problem, or [35, 84, 114] for function optimization) that suggest, but
do not analyze, that the shape of the grid of the population really influences
in the quality of the search performed by the algorithm. However, Sarma and
De Jong defined in [220, 221] the concept of ratio. As it was introduced in
Sect. 2.2.1, this feature is highly interesting because algorithms with similar
ratio values show a similar behavior in the search.

It was not until year 2000 when Alba and Troya [26] published the first
quantitative study of the improvement obtained in the efficiency of a cGA
when using non square grids. In this work, the behavior of some cGAs with
different shapes of grids on some problems was analyzed, concluding that the
use of non square grids promotes a very efficient behavior on the algorithms.
Moreover, Alba and Troya redefined in [26] the concept of radius as the dis-
persion of a set of patterns, since the definition by Sarma and De Jong [220]
can assign the same numeric value to different neighborhoods, which is un-
desirable. Finally, we can find another really important contribution in [26],
consisting in changing the shape of the population in an specific time step of
the execution for modifying the tradeoff between exploration and exploitation
applied by the algorithm on the search space. So, the authors take advantage
of the different behavior showed by the cGAs with distinct population shapes,
and in a very easy way (free of computational load) they change the behavior
of the algorithm, in the middle of the execution, promoting the exploration
of the search space from a local exploiting step or vice versa.

As a contribution to this area, Dorronsoro and Alba developed in [12] a
new adaptive model in which the shape of the population is automatically
changed (and, therefore, the ratio value) for regulating the balance between
exploration and exploitation performed by the algorithm. Different versions
of this new adaptive algorithm were compared to static ratio algorithms, and
it improved all of them in all the cases (see Chap. 6).

2.3 Empirical Studies on the Behavior of cEAs

In this section we present some important works for analyzing the behavior
of cEAs, like the evolution process of the individuals in the population, or the
algorithm complexity according to the operators used.
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Collins and Jefferson characterize in their work [50] the difference between
the panmictic GAs and the cGAs according to some factors, as the diversity of
the genotype and phenotype, the speed of convergence, or the stockiness of the
algorithm, concluding that the local matching performed in the cGAs “... is
more appropriate for the artificial evolution ...” than the GAs with panmic-
tic population. The authors demonstrate in this work that, for a particular
problem with two optima, a panmictic GA rarely finds the two solutions,
meanwhile the cGA generally finds both solutions. The reason is that, thanks
to the slow diffusion of the best solutions produced by the cGA, the diversity
is kept for longer in the population, forming some small niches in it, or groups
of similar individuals, representing different searching areas of the algorithm.
This work inspired some other modern works where cGAs are used as methods
for finding multiple optimal solutions to problems [68].

Davidor developed in [58] a study about a cGA with a bidimensional grid
and a neighborhood with eight individuals. In this study, the proportional se-
lection was used (according to the fitness value) for both parents, creating two
offsprings in the recombination step, and placing both offsprings in the neigh-
borhood with given probability according to their fitness value. Using this
model, he discovered that the cGA showed a fast convergence, although in a
located way, that is why niches of individuals with fitness values close to the
optima were formed in the population. This fast (and located) convergence is
not surprising if we consider that the selection is really effective in very small
populations. Therefore, we can conclude from this work that a characteristic
behavior of cGAs is the forming of diverse niches in the population where the
reproductive cycle tends to promote the specialization of the composing indi-
viduals (the exploitation inside these areas is promoted). From this statement
we conclude that the cGA maintain diverse search paths towards different
solutions, as each of these niches can be seen as an exploitation path of the
search space.

In the same conference where Davidor presented the commented work,
Spiessens and Manderick [232] published a comparative study of the temporal
complexity between their cGA and a secuencial GA. Due to the problem de-
pendance of the evaluation step, they ignored it in their studies, and they were
able to demonstrate that the complexity of cGAs increases linearly according
to the genotype length. On the contrary, the complexity of a secuencial GA
increases polynomially according to the size of the population multiplied by
the genotype length. As an increment in the length of the individual should
theoretically be joined to an increase in the size of the population, an in-
crement in the length of an individual will affect to the execution time of a
sequential GA, but not in the case of the cGA. Moreover, in this article the
authors deduce the expecting number of individuals when using the common
selection methods in cGAs, showing that the proportional selection is the one
with the lower selection pressure.
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Now, we briefly discuss the results of the experiment presented some years
later by Sarma and De Jong in [62]. In this work, they obtained a really
important result for any researcher interested in developing cGAs. In their
experiments, they compared some cGAs using diverse selection schemes, and
they realized that two of the studied selections behaved in a different way even
having equivalent selection pressures. In accordance with the authors, “these
results remark the importance of an analysis on the variation of selection
schemes. Without this analysis, it is possible to fall into the trap of assuming
that the selection algorithms which are expected to have an equivalent selection
pressure produce a similar search behavior.”.

In 1994, Gordon et al. [110] studied seven cGAs with different neighbor-
hoods on continuous and discrete optimization problems. In that paper, they
concluded that larger neighborhoods work better with simple problems but
on the contrary, with more complex problems it is better the use of smaller
neighborhoods.

Capcarrère et al. defined in [44] a set of very useful statistical measures
for understanding the dynamical behavior of cEAs. In that study two kinds
of statistics were used: based on genotype and phenotype. The metrics based
on genotype measure issues related to the chromosomes of the individuals of
the population, whereas the ones based on phenotypes take account of the
adequacy properties of the individual, basically in the fitness.

More recently, Alba et al. performed in [19] a comparative study of the
behavior of cGAs with synchronous and asynchronous update policies of the
population. The results obtained show that the asynchronous cGAs perform a
higher selection pressure than the synchronous ones, so they converge faster,
and generally, find the solution sooner than the synchronous in the less com-
plex studied problems. On the contrary, in the case of the hardest problems,
the synchronous cGAs seem to be the ones offering a better efficiency, as the
asynchronous get stuck in local optima more frequently.

In [84], Eklund performed an empirical study for determining the most
appropriate selection method and the shape and size of the neighborhood
for a cellular GP. The conclusions were that both the ideal size and shape
of the neighborhood depend on the size of the population. Regarding the
selection method, any of the studied ones behave well with elitist populations.
Moreover, it was discovered that the higher the number of dimensions in a
population is, the higher the dispersion speed of the good solutions is and
therefore the size of the population should be larger for obtaining a good
behavior.

Finally, this book contributes to the theory in cEAs with new and severe
theoretical and practical studies of the selection pressure in synchronous and
asynchronous cGAs with different population shapes (Chap. 4) [17, 74], and
comparative studies between cEAs and panmictic EAs (see Chap. 3 for a
deep comparison in the field of GAs, and Chaps. 10 and 13 for the cases of
EDAs [23] and memetic GAs [14], respectively).
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2.4 Algorithmic Improvements to the Canonical Model

In this section we remark some other relevant publications in the field of cGAs
which do not directly belong to any of the previous sections, but they deserve
a mention because they suppose important advances in the field.

Rudolph and Sprave presented in [219] a synchronous cGA with structured
population in a ring topology and with a self-adaptive acceptance threshold,
which is used as a way to add elitism to the algorithm. The algorithm was
compared to a panmictic GA, which resulted to have a considerably worse
efficiency than the cGA.

In [111, 113], the authors presented an heterogeneous algorithm called
Terrain-Based GA (TBGA). The idea of TBGA is that the programmer does
not need to tune any of the parameters. This is achieved by defining a rank
of values for each of the parameters, which disperse along the axis of the
population of the cGA. So, in each position of the population there exists
a different combination of the parameters, being similar the parameters of
neighbor positions. The TBGA algorithm has been also used for finding a
good parametrization for a cGA. The authors present two methods for search-
ing a good configuration, and they lie in the storage of the number of times
that the best individual of the population in every generation was in each
position of the grid. The general idea is that the location with a higher num-
ber of best individuals along the different generations should have a good
parametrization. In [113] Gordon and Thein conclude that the algorithm with
the parameter configuration of that location with a higher registered number
of best individuals has a really better efficiency than TBGA, and also than a
manually tuned cGA.

In the literature, some cGAs hybridized with local search methods have
been published. Some examples are the cGAs for training recurrence artificial
neural networks for solving the long-term dependency problem [157] or the
XOR function [156], and the most recently hybrid cGAs proposed for the SAT
problem by Folino et al. [91, 92], and by Luo and Liu [171], where the muta-
tion operator is replaced by a local search step. This last algorithm has the
particularity of being developed for running in the Graphic Processing Unit
(GPU) of the computer, instead of using the Central Processing Unit (CPU).

Some models have been also proposed where extinction of the individu-
als in particular areas of the population is introduced. For example, Kirley
proposes CGAD [147, 149], a cGA with perturbations characterized by the
possibility of disaster occurrences, which removes all the individuals located in
a particular area of the population. CGAD was successfully tested in numer-
ical, dynamical, and multi-objective [146] optimization problems, becoming
the only multi-objective approach of a cellular model. Another similar pro-
posal is the one presented by Krink et al. [155, 215], in which some disasters
are frequently generated in areas of the population where the individuals are
replaced by new individuals. The frequency of these disasters is controlled by
a sand bag model (see [155] for more details).
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Kirley also proposed, with Thomsen and Rickers, an EA based in religions
(RBEA) in [244], where a set of religions is established in the population. In
this model, individuals can only belong to one single religion, and they are
allowed to mate only with individuals belonging to their same religion. This
way, the creation of niches is promoted. Occasionally, individuals can become
to another different religion. In this work, the authors demonstrated that the
new RBEA improved the results of a panmictic EA and a cEA for a set of
numerical functions.

Although cGAs have an implicit migration given by the overlap of the
neighborhoods, some authors try to emphasize this issue by adding any other
additional kind of explicit migration. Some examples of this class of algorithms
are the ones presented in [112, 116], where the migration is introduced (by
copying an individual anywhere in the population in determined periods of
time) for allowing separate niches to interact. This kind of migration is also
used in [160], where Lee et al. additionally propose another new migration
policy consisting in applying the mutation operator to the migrating indi-
viduals. Another sort of migration is the one in the previously commented
CGAD [147], where the extinguished areas are filled by replicas of the best in-
dividual. Finally, there is also an implicit migration in the model proposed by
Alba and Troya in [26], explained in Sect. 2.2.2, as the change in the shape of
the population implies a redistribution of part of the individuals composing it.

In [167] a new cGA was proposed, called GALE, for the data mining
classification problem. The singularity of GALE with respect to a canonical
cGA is that it allows the existence of empty cells in the grid. Therefore, the
offsprings will be placed in the empty cells of their neighborhoods, and if there
are not empty cells, they replace the worst individual in the neighborhood.
Another singularity of this model is the existence of a survival step, where it
is decided whether the individuals are kept for the next generation or not, in
terms of the fitness values of each individual and its neighbors.

In 2002, Li and Sutherland presented in [165] a variation of cGA called
prey/predator algorithm, where the preys (corresponding to the individuals
representing potential solutions to the problem) move freely around the po-
sitions of the grid, mating with neighbor preys in each generation. Moreover,
there exists a number of predators which are continuously displacing around
the population, and they kill the weakest prey of their neighbor in each genera-
tion. The algorithm showed good results when comparing it to a panmictic GA
and to a distributed heterogeneous GA (both from [127]) for a set of 4 numeric
problems. This algorithm was later extended in [164] to the multi-objective
domain with good results. In fact, there exist two more prey/predator al-
gorithms proposed for multi-objective problems in the literature, published
in [125] and [159].

Another sort of non standard cGA is the one given by the co-evolutionary
approaches. The most well-known example is the Hillis method [129] for sort-
ing minimal sorting networks. The Hillis proposal consisted in a massively
parallel GA with two independent populations, which evolve according to an
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standard cGA. In one population, the hosts represent sorting networks, mean-
while in the other population the parasites represent test cases. The fitness of
the sorting networks is given by measuring how well they sort the test cases
provided by the parasites at the same grid location. Conversely, the parasites
are scored according to how well they find flaws in the corresponding sorting
networks (in the same location of the grid of the hosts). In this way, the algo-
rithm evolves for finding the solution to the problem, as in the population of
the parasites the individuals evolve to more difficult test cases, meanwhile in
the other population the sorting networks evolve to solve these more difficult
study cases each time.

Another interesting co-evolutionary variation of the cGA model is the cel-
lular programming algorithm by Sipper [230]. The cellular programming has
been widely used for evolving cellular automata in order to make computa-
tional tasks, and it is based in the co-evolutionary topology of the cellular
automata neighbor rules.

For ending this section, we briefly present the main existing works where
cGAs have been applied on dynamical optimization problems. Some examples
are the work of Kirley and Green [148], the previously mentioned CGAD [147]
(also from Kirley), or the comparative study between the efficiency of the pan-
mictic GAs (stationary state and generational) and their equivalent cellular
model performed by Alba and Saucedo [24], from which we can conclude that,
generally speaking, it is the best of the three algorithms (and also the station-
ary state panmictic GA in some cases).

Although we can find some proposals in the literature of cEAs applied
to the multi-objective field, there only exist two orthodox models, namely
cMOGA [18] and MOCell [195, 194]. In this book we present these two mod-
els of multi-objective cGA, which are adaptations of the cGA model, and
we apply them for solving both a complex optimization problem from the
telecommunications field, and also a wide set of problems from academical
benchmarks. We also present in this work a new cGA model with hierarchial
population [139], called HcGA, where the exploitation of the best solutions is
promoted, maintaining the diversity in the population simultaneously.

2.5 Parallel Models of cEAs

As it has been previously commented, cEAs were initially developed in mas-
sively parallel machines, although there have also merged some other mod-
els more appropriate for the currently existing distributed architectures. In
Table 2.2 it is shown a summary of the main existing parallel cEAs in the
literature.

Some examples of cGAs developed on SIMD machines are those studied
by Manderick and Spiessens [176] (later improved in [232]), Mühlenbein [185,
186], Gorges-Schleuter [115], Collins [50] and Davidor [58], where some indi-
viduals are located in a grid, restricting the selection and the recombination
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Table 2.2. Brief summary of the main existing parallel cEAs

Algorithm Reference Model
Manderick & Spiessens [176] (1989) Parallel cGA on SIMD machines
ECO-GA [58] (1991) Neighborhood of 8 individuals. Two offsprings per step
HSDGA [256] (1992) Fine and coarse grained hierarchical GA
fgpGA [35] (1993) cGA with two individuals per processor
GAME [235] (1993) Generic library for constructing parallel models
PEGAsuS [214] (1993) Fine and coarse grained for MIMD
LICE [233] (1994) Cellular model of evolutionary strategy
RPL2 [239] (1994) Fine and coarse grained; very flexible
Juille & Pollack [141] (1996) Cellular model of genetic programming
ASPARAGOS [117] (1997) Asynchronous. Local search applied if no improvement
dcGA [53] (1998) Cellular or steady state islands models
Gorges-Schleuter [119] (1999) Cellular model of evolutionary strategy
CAGE [92] (2001) Cellular model of genetic programming
Mallba [81] (2002) Generic library for constructing parallel models in C++
Combined cGA [192] (2003) Population composed by some cellular sub-populations
ParadisEO [42] (2004) Generic library for constructing parallel models in C++
Weiner et al. [257] (2004) Cellular ES with a variable neighborhood structure
Meta-cGA [172] (2005) Parallel cGA for local area networks using Mallba
PEGA [76] (2007) Island distributed cGA (for grid computing)

to small neighborhoods in the grid. ASPARAGOS, the model of Mühlenbein
and Gorges-Schleuter, was implemented on a transputers network, with the
population structured in a cyclic stair. Later it evolved including new struc-
tures and matching mechanisms [117] until it was constituted as an effective
optimization tool [118].

We also would like to remark the works of Talbi and Bessière [242], where
the use of small neighborhoods is studied, and the one by Baluja [35], where
three models of cGAs and a GA distributed in islands are analyzed on a
MasPar MP-1, obtaining as a result the best behavior of the cellular mod-
els. Though, Gordon and Whitley presented in [114] a study comparing a
cGA to a coarse grained GA, being the results of the latter slightly better.
In [152] a comparison between some cGAs and the equivalent sequential GA
is presented, clearly showing the advantages of using the cellular model. We
can find in [27] a more exhaustive comparison than the previous ones be-
tween a cGA, two panmictic GAs (steady state and generational GAs), and a
GA distributed in an island model in terms of the temporal complexity, the
selection pressure, the efficacy, and the efficiency, among others issues. The
authors conclude the existence of an important superiority of the structured
algorithms (cellular and island models) according to the non structured ones
(the two panmictic GAs).

In 1993, Maruyama et al. proposed in [177] a version of a cGA on a sys-
tem of machines in a local area network. In this algorithm, called DPGA, an
individual is located in each processor and, in order to reduce the commu-
nication to the minimum, in each generation each processor sends a copy of
its individual to another randomly chosen processor. In each processor there
exists a list of suspended individuals, where the individuals are located when
they arrive from other processors. When applying the genetic operators in
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Fig. 2.1. CAGE (left) and the combined parallel model of cGA (right)

each processor, this list of suspended individuals behaves as the neighbor-
hood. This model is compared to APGA, an asynchronous cGA proposed by
Maruyama et al. [178], a sequential GA, and an specialized heuristic for the
tackled problem. As a conclusion, the authors remark that DPGA shows a
similar efficiency to the equivalent sequential algorithm.

There also exist more modern parallel cGA models, which work on con-
nected computers in local area networks. These models should be designed
for reducing the communications to the minimum as, due to their own char-
acteristics, the cellular models need a high number of communications.

In this frame, Nakashima et al. propose in [191] a combined cGA where
there exist some sub-populations with evolving cellular structure, and inter-
acting through their borders. A graph of this model can be seen in the right
part of Fig. 2.1. In a later work [192], the authors propose some parameter-
izations with different number of sub-populations, ways of replacement, and
the topology of the sub-population, and they analyze the results. The authors
used this model in a sequential machine, but it is directly extrapolated to a
parallel model, where each processor contains one of the sub-populations.

Folino et al. propose in [93] CAGE, a parallel GP. In CAGE, the population
is structured in a bidimensional toroidal grid, and it is divided in groups
of columns which constitute sub-populations (see the graph on the left in
Fig. 2.1). In this way, the number of messages to send is reduced according
to other models which divide the population in two dimensions (axis x and
y). In CAGE, each processor contains a determined number of columns which
evolve, and at the end of the generation the two columns in the borders are
sent to the neighbor processors, so that they can use these individuals as
neighbors of the individuals located in the limits of its sub-population.

Finally, there exist some generic programming frameworks of parallel
algorithms which offer eases for implementing any kind of parallel algo-
rithm, including the considered cellular models. Some of these frameworks
are GAME [235], ParadisEO [42] or Mallba [81].
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To end this section, we remark the two parallel models of cGAs studied in
this book. In Chap. 8 we present the meta-cGA, which was developed using
the Mallba framework, and PEGA, a new cellular GA distributed in islands
which can be executed in local area network environments or in computational
grids. PEGA was applied to the largest existing instances of the VRP problem,
contributing to the state of the art with some new solutions.

2.6 Conclusions

In this chapter we explored most of the existing works in the field of cellular
evolutionary algorithms. The analyzed issues include both the main publica-
tions in the field and the most recent trends which are currently emerging.
This study allows us to acquire some (necessary) knowledge of the domain of
cEAs to understand open research lines like hybridization with local search,
multi-objective optimization, necessity of theoretical models, etc.


