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FREE DIFFUSION

INTRODUCTION

In this chapter, we consider the simplest of transport processes: the passive diffusion 
of a solute that occurs when its electrochemical potentials on the two sides of a per-
meable barrier are different. Indeed, this process is so simple that it fails to represent 
many aspects of transport in living systems. Nonetheless, it does describe some as-
pects of biological transport quite well, and it also provides a “base case” whose be-
havior can be compared against that of more complex transport mechanisms. 

This chapter is divided into two sections; the first deals with free diffusion of 
nonelectrolytes, and the second with that of ionic species. The principal property vari-
able determining the flux of a nonelectrolyte is its permeability, a quantity that can in 
principle be related to the diffusion coefficient of the solute. Electrolyte diffusion in 
free solution is most rigorously described by classical electrodiffusion theory. The 
flux equations provided by this theory are very complex, and they have not seen 
nearly as much use as have approximations to them. Accordingly, emphasis will be 
placed here on the principles of electrodiffusion, and on the approximate solutions and 
special cases that are most commonly used. 

The equations of free diffusion can describe a wide variety of transport phenom-
ena, including steady and unsteady transport processes; processes that can be de-
scribed in one, two or three dimensions and in a variety of geometries; and processes 
in which chemical reactions and fluid flow take place simultaneously with diffusion. 
In this chapter, we will discuss a small subset of these, focusing on the tools that are 
applied to living systems. Comprehensive discussions of diffusional processes can be 
found in other texts, such as Crank's (1975) classic text, published thirty years ago and 
still being reprinted! A more limited set of solutions, but with more consistent bio-
logical applicability, can be found in Truskey et al. (2004). 

M.H. Friedman, Principles and Models of Biological Transport,  
DOI: 10.1007/978-0-387-79240-8_2, © Springer Science+Business Media, LLC 2008 



30 CH. 2: FREE DIFFUSION

2.1. FREE DIFFUSION OF NONELECTROLYTES 

The first transport process we will consider is the diffusion of a dissolved nonelectro-
lyte across a membrane or a similar barrier. The diffusive process is driven by the sol-
ute's concentration gradient. For now, the nature of the solvent is not particularly im-
portant, and it will usually be understood to be water, which is the most common 
biological solvent. As will be seen in Chapter 7, much of the material developed be-
low is equally applicable to diffusion through a lipid film, such as the hydrophobic 
region of a cell membrane. 

In free diffusion through a membrane, the solute particles move about by random 
Brownian motion, like that in free solution. The solute flux, which is a measurable and 
reproducible quantity, is essentially the resultant of these separate motions. Even 
though the path of a single solute particle cannot be predicted, the consequence of an 
enormous number of these paths is quite reproducible. 

2.1.1.  The Teorell Equation 

The flux in free diffusion can be written very simply, in a form proposed by Teorell 
(1953):

 Flux = Mobility  Concentration  Driving force. (2.1) 

In the most commonly used units, the flux is the number of mols of solute crossing 
one square centimeter of membrane per second; it is proportional to the product of the 
solute mobility, which measures its ease of transport and depends jointly on the bar-
rier/solvent and the solute, as well as the temperature; the solute concentration, which 
measures the amount of material available to participate in the process; and the driv-
ing force for the diffusion of the solute. 

The choice of a proper driving force is dictated by thermodynamic considerations 
that we will not examine until Chapter 6; for now, we will rationalize that choice by 
analogy with electrical phenomena. First, we recall that, when the chemical potential 
of the solute is the same in the two phases bounding the membrane, the solute is in 
equilibrium, and its flux across the membrane is zero. An analogous situation occurs 
in electrical circuits; when there is no electrical potential difference, there is no cur-
rent flow. When the electrical potentials at two points are different, the potential gra-
dient defines a field, and charged particles move in response to it. The force acting on 
the charges is the negative of the electrical potential gradient. The analogous driving 
force for solute flux is the negative of the chemical potential gradient:

 Driving force = – s. (2.2) 

Almost every transport process with which we will be concerned can be described in 
terms of a single spatial coordinate perpendicular to the plane of the barrier. Calling 
that the x-direction, the driving force becomes: 



PRINCIPLES AND MODELS OF BIOLOGICAL TRANSPORT 31 

 Driving force = sd

dx
. (2.3) 

The implicit assumption in this one-dimensional treatment of gradients and fluxes 
is that these vectors are oriented perpendicular to the membrane plane and have negli-
gible components parallel to that plane. This is reasonable if the extent of the mem-
brane is much larger than its thickness, as is usually the case. The Teorell equation can 
now be written: 

s
s s s

d
J U c

dx
, (2.4) 

where Us and cs are the solute mobility and concentration, respectively. The flux Js is 
positive in the direction of increasing x.

An integral driving force can also be defined, by integrating Eq. (2.3) across the 
membrane: 

 Integral driving force 
0

a

sd
dx

dx
I II
s s . (2.5) 

In Eq. (2.5), a is the thickness of the membrane. Phase I bathes the face of the mem-
brane at x = 0, and Phase II the face at x = a. From Chapter 1, the integral driving 
force is zero at equilibrium. 

The integral driving force would appear to be far more convenient than the differ-
ential driving force [given by Eq. (2.3)] for describing transport, because it is based on 
the chemical potentials in the two phases external to the membrane. Chemical poten-
tials inside the membrane, which must be known to find the local differential driving 
force, are generally unmeasurable. Fortunately, with a few reasonable assumptions, 
Eq. (2.4) can be integrated to give an expression that relates the transmembrane flux 
to the conditions in the ambient solutions. This we now do. 

2.1.2. Integration of the Teorell Equation; 
Fick's First Law; Solute Permeability 

In integrating Eq. (2.4), the temperature is assumed to be uniform and the effect 
of ressure on the chemical potential of the solute is neglected; these are quite reason-
able assumptions for the systems with which we will be dealing. If, in addition, the 
solutions are assumed to be ideal, then the chemical potential can be written very sim-
ply as 

μs = constant + RT ln cs. (2.6)

Differentiating with respect to x,

lns sd d c
RT

dx dx

1 s

s

dc
RT

c dx
. (2.7) 
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Substituting Eq. (2.7) into (2.4), 

s
s s

dc
J U RT

dx
. (2.8) 

The solute diffusion coefficient Ds is related to the solute mobility through the Nernst–
Einstein relation, Ds = UsRT. Ds is often referred to as the binary diffusion coefficient 
(denoted Dij), as a reminder that its value depends on the identities of both solute and 
solvent. Introducing the diffusion coefficient into Eq. (2.8), we obtain: 

s
s s

dc
J D

dx
. (2.9) 

Equation (2.9) is known as Fick's first law of diffusion. Note that the flux is positive if 
the concentration gradient is negative. 

In the preceding derivation, it was assumed that Eq. (2.6) holds within the membrane, 
as though transport proceeded through aqueous pores in which the dependence of 
chemical potential on solution properties was identical to that in the aqueous solu-
tions at the membrane faces. This is the first of several derivations in which the ex-
pressions for chemical or electrochemical potential in free solution will be used to 
describe the thermodynamic state of solute or solvent inside a transport barrier. The 
state of solutes and solvent inside a complex, heterogeneous biological barrier is not 
so neatly defined. Accordingly, it is convenient to think of c

s
(x) [and (x) when de-

scribing electrolyte transport] as the concentration (and potential) of a free aqueous 
solution in equilibrium with a thin membrane slice at x. The concentration and poten-
tial of this equilibrium solution can be quite different from that of the true solution 
phase at that point in the membrane; however, since the two phases are defined to be 
in equilibrium, the chemical potentials of the solute and solvent are the same in each. 
 A notable difference between the concentration of such an equilibrium aqueous 
solution and the true intramembrane solute concentration arises when the solubility of 
the solute in the membrane is different from that in the ambient aqueous phases. Such 
is the case for diffusion through the lipid bilayer of the cell membrane. The relation-
ship between the solute concentration in the lipid and in an equilibrium aqueous solu-
tion is expressed in terms of the partition coefficient of the solute between the two 
phases. Diffusion through lipid layers will be described in Chapter 7. 

Fick's first law assumes a somewhat more complicated form when the solutions 
are nonideal. In that case, the solute chemical potential must be written in terms of 
activity. The activity, in turn, is the product of the concentration and the activity coef-
ficient. Thus, Eq. (2.7) is replaced by: 

lns sd d a
RT

dx dx

ln lns sd c d
RT

dx dx
. (2.10) 

For nonelectrolytes, the activity coefficient of the solute can be assumed to depend on 
only cs, which in turn is a function of x. Thus, the following substitution can be made: 

ln ln ln

ln
s s s

s

d d d c

dx d c dx
. (2.11) 
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Substituting Eq. (2.11) into (2.10): 

ln1
1

ln
s s s

s s

d dc d
RT

dx c dx d c
.

The Teorell equation then becomes 

ln
1

ln
s s

s s
s

d dc
J U RT

d c dx
. (2.13) 

Define an augmented diffusion coefficient Ds* by 

ln* 1
ln

s
s s

s

d
D D

d c
. (2.14) 

For an ideal solution, Ds* = Ds. By substituting Eq. (2.14) into (2.13), a flux equation 
is obtained that looks almost identical to Eq. (2.9), and can be regarded as a generali-
zation of Fick's first law to nonideal solutions: 

* s
s s

dc
J D

dx
. (2.15) 

Fick's first law, as generalized above, is now integrated across the membrane to yield 
an expression for flux in terms of the transmembrane concentration difference. To set 
up the integration, Eq. (2.15) is rewritten as 

*
s s sJ dx D dc . (2.16) 

In the steady state, the solute flux is independent of x. Assume that the same is true of 
Ds*; Eq. (2.16) can then be integrated across the membrane and solved for Js:

II I*( )s s s
s

D c c
J

a
. (2.17) 

The flux in Eq. (2.17) is based on a unit area of membrane, so it can be continuous at 
the interfaces x = 0 and x = a only if the entire cross-section of the barrier is available 
for transport. Furthermore, the assumption that the expressions for chemical potential 
as a function of concentration are the same in both barrier and bath implies that the 
solute diffuses through the same solvent as that in the ambient phases. The only bar-
rier for which these assumptions hold would be a thin stagnant water film somehow 
maintained between two well-stirred aqueous baths. The solute permeability of such a 
thin film is defined as the solute flux per unit concentration difference: 

0 0 *
0

I II
s s s

s
ss s

J J D
k

c ac c
, (2.18) 
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where we have used the superscript “0” to indicate that diffusion takes place through a 
thin aqueous film. 

The form of Eq. (2.18) has been adopted to describe solute transport in biological 
systems. For such systems, the barrier is not a thin aqueous film, and the permeability 
is not given by Ds*/a. The solute permeability of a biological barrier is in general an 
experimental property, obtained by dividing the measured flux of a solute by its 
transmembrane concentration difference: 

s
s

s

J
k

c
, (2.19) 

where sJ  is the measured flux. Radiolabeled tracers are often used to measure perme-
ability; the numerator and denominator of the right-hand side of Eq. (2.19) are re-
placed by the tracer flux and the transmembrane difference in tracer activity. Even 
when the solute does not cross the membrane by free diffusion, the experimental per-
meability is descriptive of the transport behavior of the system. Such empirical per-
meabilities, though not always easy to interpret in physical terms, are nonetheless use-
ful for comparing solute transport rates and for predicting fluxes under similar 
conditions.

There are some cases in which permeability can be estimated from a diffusion co-
efficient and membrane thickness. If the barrier is a stabilized thin film of a solvent 
immiscible with water, the permeability of the solute is determined by the partition 
coefficient, the film thickness and the binary diffusion coefficient of the solute in the 
solvent that comprises the membrane [see the second paragraph of the note following 
Eq. (2.9), and Chap. 7]. If the membrane possesses large interstices or pores such that 
diffusion through them is the same as that in free solution, the permeability is given 
by D

s*/a, where  is the void fraction in the membrane. 
Our inability to predict membrane permeability a priori reflects our ignorance of 

many factors that influence the transport of a given solute through a given membrane. 
Some of these factors, particularly applicable to transport through water-filled pas-
sages, are itemized below: 

— The void fraction mentioned above, or the fraction of the presented area 
of a membrane that is occupied by pores, are often unknown. 

— If the pores are not highly connected, their resistance to diffusion will de-
pend on their tortuosity; if the solute must diffuse down a tortuous path, it 
will cross more slowly. 

— Transport depends critically on the diameter of the passage along the 
length of the diffusion path. The walls of pores give rise to a viscous drag 
that retards the diffusional process, and the degree of retardation remains 
significant for pores as large as ten times the solute diameter. This effect, 
which will be discussed in detail in Chapter 7, becomes greater when the 
diameter of the pore is closer to that of the solute. When the pore is only 
slightly larger than the solute, the latter must cross the membrane by sin-
gle-file diffusion, and the augmented diffusion coefficient is no longer the 
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appropriate measure of solute mobility. Of course, if the pore size is less 
than the solute size, then the solute does not cross the membrane at all, ir-
respective its aqueous diffusion coefficient. 

— In small pores, there is considerable opportunity for chemical and physi-
cal interactions between the solute and the walls. Such interactions in-
clude adsorption and binding. Furthermore, if the pore walls are charged, 
Donnan effects can cause the concentration of charged solutes inside the 
pore to be markedly different from the concentrations in the adjacent so-
lutions. There can also be interactions between the solvent and the walls 
of the pore, which can cause the effective solvent viscosity to differ from 
that in free solution, thereby (see §2.1.4), affecting the solute diffusion 
coefficient.

Once the permeability is specified, the transmembrane flux is predicted by 

Js = ks cs. (2.20) 

Equation (2.20) is the expression most commonly used to describe the passive free 
diffusion of a nonelectrolyte across a barrier. It can also describe the transport of an 
ion in the absence of an electrical potential gradient. Some illustrative values of solute 
permeability are given in Table 2.1. 

Table 2.1. Nonelectrolyte Permeabilities of 
Three Cell Membranes 

Ox erythrocyte
a
 cm/s 

Urea 7.8  10–5

Glycol 2.1  10–6

Diethylene glycol 7.5  10–7

Glycerol 1.7  10–8

Ehrlich ascites tumor cell (mouse)
b
 cm/s 

Galactose 2.1  10–6

3-methyl glucose 1.8  10–6

Sorbose 5  10–7

Glucosamine 2.5  10–7

Human erythrocyte
c

 cm/s 
Ethanol 2.1  10–3

Glycerol 1.6  10–7

Thiourea 1.1  10–6

Urea 7.7  10–7

a Davson and Danielli (1952). 
b Crane et al. (1957). 
c From summary in Lieb and Stein (1986). 
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2.1.3. Unstirred Layers 

Assume that cs

I > cs

II; by our conventions, cs > 0, Js > 0, and solute moves from Phase 
I to Phase II. Before a solute molecule can cross the membrane, it must first find its 
way from the bulk of Phase I to the membrane interface at x = 0. Two mechanisms are 
available to accomplish this: diffusion, which is described by equations like those 
given above, and convection, in which fluid motion carries solute from the main body 
of the phase to the proximity of the membrane. 

If one of the phases is the inside of a cell, convection is limited, and exchange be-
tween the bulk of the cytoplasm and the membrane interface is largely by diffusion. 
Similarly, diffusion is usually the dominant transport mechanism in the extracellular 
space on the other side of the cell membrane. In many experimental situations, how-
ever, convection can be introduced by stirring. The influence of stirring does not ex-
tend unattenuated to the membrane–solution interface; a thin, effectively unstirred 
layer adjacent to the membrane remains. Solute crosses this layer only by diffusion, 
and its flux is properly defined by Eq. (2.18); at x = 0, 

I
I I

I
( )s

s sb s

D
J c c , (2.21) 

where Ds

i is the solute diffusion coefficient in the ith phase, i is the thickness of the 
corresponding unstirred layer, and the subscript “sb” denotes the bulk phase concen-
tration of the solute; cs

i is the solute concentration at the interface between the mem-
brane and the ith phase. For nonideal solutions, the augmented diffusion coefficient 
would be used in place of Ds.

Similar considerations apply to the transport of solute from x = a to the bulk of 
Phase II. The solute concentration profile is shown in Figure 2.1. Three resistances in 
series separate the two bulk phases. The solute flux is equal to the overall concentra-
tion difference divided by the sum of these resistances, each of which is inversely 
proportional to a permeability: 

I II

I I II II/ 1/ /
sb sb

s
s s s

c c
J

D k D
. (2.22) 

Here, ks is the true permeability of the membrane. The apparent permeability of the 
membrane, Js / csb, is the reciprocal of the denominator in the preceding equation. 

The characterization of the unstirred layer (or diffusion layer, as it is also known) 
as a sharply defined boundary layer containing all of the diffusional resistance outside 
the membrane is clearly an approximation. When the bounding phase is unstirred, 
there are concentration gradients throughout. In the presence of stirring, convective 
effects are absent at the membrane–solution interface and increase with distance from 
the membrane surface. Notwithstanding the limitations of the unstirred layer concept, 
it does provide a convenient means for including diffusional resistances outside the 
membrane in the equation for solute flux, and for characterizing the magnitude of 
such resistances. The quantity i can be regarded as the thickness of a layer of the ex-
ternal phase whose resistance to diffusion is the same as that actually present outside 
the membrane. 



PRINCIPLES AND MODELS OF BIOLOGICAL TRANSPORT 37 

Figure 2.1. Concentration profile in the presence of unstirred layers, and in the absence of solvent 
flow. The actual transmembrane concentration difference, cs

I
 – cs

II, is less than the overall concen-
tration difference, csb

I
 – csb

II.

It can be seen from Eq. (2.21) that cs approaches csb as the thickness of the un-
stirred layer approaches zero; otherwise, the solute flux would become infinite. When 
these two concentrations are assumed to be identical (an assumption that is often made 
in practice, and will be made liberally in the chapters to follow), the phase is said to be 
well-stirred. Although vigorous stirring can reduce the effective thickness of the un-
stirred layer, it cannot be reduced to zero; the well-stirred assumption is always an 
approximation. The effects of a variety of stirring motions on solute flux are analyzed 
in Pedley (1983). 

In the presence of unstirred layers, the concentration difference driving the trans-
membrane flux is less than the difference between the bulk phase concentrations (see 
Fig. 2.1). Solute permeabilities calculated using the latter driving force can be seri-
ously underestimated if the resistance of the unstirred layers is an important fraction 
of the total interphase resistance. This is more likely to be the case if the membrane 
permeability is high. The neglect of unstirred layer effects can also lead to errors in 
the calculated parameters of carrier-based transport systems (Chap. 4). 

The diffusion coefficients of small solutes in the cytoplasm are not known very 
well, so it is difficult to make good estimates of the errors in cell membrane perme-
ability caused by intracellular diffusional resistance. In such cases, it is common to 
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assume that there is no diffusional resistance on the cytoplasmic side. The true cell 
membrane permeability is underestimated when this approach is used; however, per-
meabilities that are derived in this way can be compared with the permeabilities of 
other solutes derived similarly, or used to predict flux, as long as the bulk cytoplasmic 
concentration of the solute is used in the flux equation. 

We will see in Chapter 6 that, for many solute/membrane combinations, a trans-
membrane concentration difference induces a solvent flow, termed osmosis, in the 
direction of the more concentrated solution. The solute concentration profile in the 
unstirred layer is curved when osmosis (or any transmembrane solvent flow) is pre-
sent. The effect of unstirred layers on transport in the presence of osmosis is discussed 
in Chapter 10. 

Equation (2.22) describes the steady-state transport of solute across a series of re-
sistances, for the case in which two of the resistances are unstirred layers and the third 
is the membrane itself. The /Ds ratios in the equation are simply the reciprocals of the 
permeabilities of the individual unstirred layers. Equation (2.22) can be regarded as a 
transport equivalent of Ohm's Law for the voltage-driven current through a number of 
resistors in series; here, the voltage is replaced by the bulk concentration difference, 
the current by solute flux, and the ohmic resistances by the reciprocals of the perme-
abilities of each barrier. 

This description of the flux through series barriers can be applied to many bio-
logical transport processes, such as transport though a single layer of cells, where sol-
ute enters across one face of the cell, crosses the cytosol, and then exits across the 
other face; transport through a cell supported by a permeable layer of extracellular 
matrix; or transport through a series of cell layers, as in epithelia (Chap. 10). In such 
cases, the general equation for solute flux is 

1

1
s

s m

i si

c
J

k

, (2.23) 

where cs is the overall concentration difference and ksi is the solute permeability of 
the ith of m barriers. As above, the reciprocal of the denominator of Eq. (2.23) is the 
apparent permeability of the composite barrier. 

2.1.4. Applications of Solution Theory 

A considerable body of theory has been developed to describe free diffusion in solu-
tion. Most of this theory cannot be directly applied to biological systems, for reasons 
that have already been presented. One applicable product of solution theory is the 
Stokes–Einstein equation, which identifies the variables that have the greatest influ-
ence on the diffusion coefficient. In general, the diffusion coefficient depends on the 
solute (naturally), the solvent, the concentration of the solute (or composition, for a 
multicomponent solution), and temperature. 

Einstein (1908) used Stokes' Law to derive the following approximate expression 
for the diffusion coefficient of a spherical solute: 
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6

RT
D

sN
, (2.24) 

where  is solvent viscosity, s is solute radius, and N is Avogadro's number. Stokes' 
Law describes the drag on a sphere moving through a homogeneous fluid of infinite 
extent. Implicit in this application of Stokes' Law are the assumptions that solute 
molecules are much larger than those of the solvent, and that the influence of the solu-
tion boundaries (e.g., the walls of a pore) is negligible. Equation (2.24) shows that the 
most important solute property affecting the diffusion coefficient is its size (and 
shape; the equation is more complex for nonspherical solutes), and the most important 
solvent property is its viscosity. 

Equation (2.24) predicts that the diffusion coefficient is inversely proportional to 
the solute radius; that is, the sD product is constant. This condition is met by the data 
in Table 2.2, even though the solute molecules are not much larger than those of the 
solvent. In biological systems, this simple inverse relation applies only to diffusion 
through large passages. When the size of the pore is not much greater than that of the 
solute, the permeability depends on pore radius as well as solute radius. The effect of 
pore size on solute permeability will be discussed in Chapter 7. 

Table 2.2. Test of the Stokes–Einstein Equation 

  Diffusion 
  coefficient in 
 Solute aqueous solution
 radius, s

a
 at 25ºC, D

a
 sD  105

       Solute nm cm2/s nm-cm2/s

  Methanol 0.20 1.3  10–5 0.26 
  Urea 0.24 1.16  10–5 0.28 
  Glucose 0.39 6.8  10–6 0.26 
  Glycerol 0.31 8.3  10–6 0.27 
  Sucrose 0.45 5.5  10–6 0.25 
  Raffinose 0.58 4.2  10–6 0.24 
a Data from Schafer and Barfuss (1980). 

The predicted effect of solvent viscosity on the diffusion coefficient has often 
been used to interpret and extrapolate experimental permeability data. From the 
Stokes–Einstein equation, the diffusion coefficient is expected to vary inversely with 
solvent viscosity. If the temperature dependence of permeability parallels that of the 
reciprocal of the viscosity of water, this is taken as evidence that the solute crosses the 
membrane via water-filled pores. The permeabilities of other diffusional transport 
routes (e.g., across the lipid phase of the cell membrane) are considerably more sensi-
tive to temperature than is the permeability of an aqueous pore. Similarly, if it is 
known that a solute uses an aqueous pore to cross a membrane, then the temperature 
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dependence of the viscosity of water can be used to predict the solute permeability at 
one temperature from the measured permeability at a different temperature. 

2.1.5. Fick's Second Law and Convective Diffusion 

Fick's first law is one of the equations most commonly used to describe biological 
transport by free diffusion. It can readily be generalized to any coordinate system: 

Js = –Ds cs. (2.25) 

where Js is the flux vector in three-space. In the steady state, the law of mass conser-
vation applied to the species s is 

• Js = 0. (2.26)

Substituting Eq. (2.25) into (2.26), 

• (Ds cs) = 0. (2.27) 

Equation (2.27) is the steady-state form of Fick's second law of diffusion, also known 
as the diffusion equation. When the diffusion coefficient is uniform, the equation sim-
plifies further to 

2cs = 0. (2.28) 

The diffusion equation has been solved in numerous geometries, for a wide variety of 
boundary conditions. Table 2.3 summarizes some useful forms of the steady-state dif-
fusion equation. 

Table 2.3. Some Forms of the Steady-State Diffusion Equation 

1. Cartesian coordinates (x,y,z)

 a) 1-dimensional: 
2

2
0s

s

d c
D

dx

 b) 3-dimensional:  
2 2 2

2 2 2
0s s s

s

c c c
D

x y z

 2. Cylindrical coordinates (r =radial coordinate, z =longitudinal coordinate, 
no azimuthal variation) 

 a) r-variation only:  0s sD dcd
r

r dr dr

 b) r- and z-variation, different diffusion coefficients in r- and z-directions:
2

2
0sr s s

sz

D c c
r D

r r r z

3. Spherical coordinates, r-variation only:  2
2

0s sD dcd
r

r dr dr
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An additional contribution to the solute flux arises if the solution itself is moving. 
Let us return to the one-dimensional case described by Eq. (2.9). If the solution is 
flowing in the x-direction at a velocity v, the solute flux is augmented by a convective 
term equal to the product of the solution velocity and the local concentration: 

s
s s s

dc
J D vc

dx
. (2.29) 

The three-dimensional equivalent of Eq. (2.29) is 

Js = –Ds cs + csv, (2.30a)

where v is now a vector. Substituting Eq. (2.30a) into Eq. (2.26), the equation for 
steady-state convective diffusion with a uniform diffusion coefficient becomes 

2 0s s s sD c v c c v .

Biological solutions can be regarded as incompressible, and it can be shown that in-
compressibility implies v = 0, so the steady-state convective diffusion equation be-
comes

2 0s s sD c v c . (2.30b) 

When v is uniform (as it would be, in the one-dimensional case), Eq. (2.29) can be 
integrated to give an expression relating flux, the concentration boundary conditions, 
and velocity. It is easy to add a solute convection term to the more general forms of 
the diffusion equation given in Table 2.3, but it is not easy to solve the equations that 
result. Numerical simulation is usually required. 

The use of Eq. (2.26) to describe mass conservation in the steady state implies that 
the diffusing species is neither produced nor consumed in the region of interest. This 
assumption will generally apply throughout this text. In the Appendix to Chapter 10, 
the one-dimensional convective diffusion equation [Eq. (2.29)] will be extended to 
include changes in species concentration resulting from fluxes across the region 
boundaries. In Chapter 11, Fick's second law, with [Eq. (2.30b)] and without [Eq. 
(2.27)] convection, will be generalized to include chemical reactions within the region 
and time-dependent behavior. 

2.1.6. Justification of the Steady-State Assumption: 
Time Scales in Biological Transport 

Virtually all of the transport processes described in this text are steady-state proc-
esses; that is, the concentrations in the system — both the external boundary condi-
tions and the conditions inside the barrier — are assumed to be independent of time. 
When there is neither production nor consumption of the species of interest inside the 
membrane, mass conservation implies that the steady state flux satisfies Eq. (2.26). In 
the common one-dimensional description of membrane transport, Eq. (2.26) becomes 
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simply dJs /dx = 0; that is, the flux based on a unit membrane surface area is the same 
at every cross-section in the membrane. We used this fact to integrate Fick's first law, 
and we will use it again. 

Another implication of the steady-state assumption is that the flux is constant in 
time. But this creates an apparent contradiction: how can the boundary conditions re-
main constant in the face of a perpetual flux? Clearly, they cannot, and the easy fix is 
to postulate, at least for the purposes of analysis, that the bounding solutions are infi-
nite in extent, so their compositions do not change even when solute is lost or gained. 
Infinite systems are convenient to postulate but rare in the real world. Happily, most 
biological membranes do experience a relatively stable milieu because of homeostasis
— the tendency of living systems to maintain a constant “internal environment,” 
which includes, for instance, the composition of the extracellular fluid that defines the 
boundary conditions for solute transport into and out of cells. The maintenance of rea-
sonably constant boundary conditions for biological transport is thus accomplished by 
other agencies (such as the kidneys) outside the system under study. 

Of course, living systems do experience changes in their environment that cause 
changes in transport rates; these may reflect a failure of homeostatic mechanisms or a 
sudden challenge to the system occasioned externally or by the behavior of the organ-
ism. Some biological processes, such as regulatory events, are inherently dynamic. In 
such cases, the boundary conditions for transport cannot be regarded as constant, and 
steady-state solutions would no longer seem to apply. 

The proper approach to describing transport under these circumstances depends 
on the rate at which the boundary conditions change. If they change slowly compared 
to the rate at which the transport process can adapt to that change, transport can be 
regarded as quasisteady; that is, the transport rate at any time is equal to the steady-
state flux corresponding to the boundary conditions at that time. If the boundary con-
ditions change more rapidly, a full unsteady-state solution of the diffusion equation 
within the membrane is necessary. 

The time for the transport rate to adapt to changing boundary conditions is the 
time needed for the concentration profile in the membrane to change to the profile 
appropriate to the new boundary condition. Using a Fourier series solution in slab ge-
ometry, Weiss (1996a) obtained a time constant, t

d = a2/( 2Ds), for the approach to the 
steady state inside a homogeneous membrane with an arbitrary initial concentration 
profile, exposed at t = 0 to new concentration boundary conditions at each face. As 
might be expected, td is shorter for thinner membranes and for more rapidly diffusing 
solutes.

One transport process for which the boundary conditions depend on time is the 
diffusion of a solute into or out of a closed compartment, such as a cell. The rate at 
which the concentration in the cell changes is related to the solute flux and the surface 
area and volume of the cell. Assume the interior of the cell is well-mixed and is Phase 
II, so flux into the cell is positive. The rate of change of the number of moles of solute 
in the cell, II

sn , is given by 

II
s

s

dn
J S

dt
, (2.31) 



PRINCIPLES AND MODELS OF BIOLOGICAL TRANSPORT 43 

where S is the surface area of the cell. The concentration of solute in the cell is equal 
to the number of mols of solute per unit volume: cs

II = ns

II/V, where V is the cell vol-
ume (we assume for simplicity that all portions of the cell are accessible to the solute). 
Combining these two equations and Eq. (2.17), with Ds instead of Ds*, we obtain 

II I II( )s s s sdc D c c S
V

dt a
. (2.32) 

Eq. (2.32) is readily integrated for a constant ambient concentration, cs

I. The intracel-
lular concentration follows a decaying exponential in time, with a time constant tc = 
aV/(DsS). The time constant is shorter when the solute passes through the membrane 
more readily (low thickness, high diffusion coefficient) and when the surface-to-
volume ratio of the cell is large. 

The quasisteady approximation is appropriate if td << tc , or a << 2V/S. Interest-
ingly, the diffusion coefficient does not appear in the criterion, because it affects the 
time constants of both processes similarly: even as a high membrane diffusion coeffi-
cient allows the concentration profile inside the membrane to adapt more quickly, it 
also causes the intracellular concentration to change more rapidly. 

Generally, the quasisteady approach has proven adequate for describing biological 
transport in the presence of changing boundary conditions. It is an important assump-
tion underlying time-dependent applications of compartmental analysis, a modeling 
technique for complex systems that will be discussed in Chapter 8. Of course, changes 
in the boundary conditions are not the only tool by which living systems elicit changes 
in flux. As we shall see, such changes — particularly, rapid changes — are in most 
cases obtained by altering the transport properties of the membranes themselves. 

2.2. FREE DIFFUSION OF ELECTROLYTES 

The free diffusion of electrolytes is considerably more complex than that of nonelec-
trolytes. The basic flux equation for electrolytes is the electrodiffusion equation. This 
nonlinear equation is soluble, but the general solutions are so complex that they have 
rarely been applied to biological systems. A general solution of the electrodiffusion 
equation, and a number of special cases, are given below. 

2.2.1. Differences between Electrolyte and Nonelectrolyte Diffusion 

There are two principal differences between the diffusion of electrolytes and nonelec-
trolytes:

1. Charged solutes are subject to electrical forces when electrostatic poten-
tial gradients are present. Accordingly, the driving force for electrolyte 
transport is the gradient of the electrochemical potential rather than that 
of the chemical potential. 

2. Since any electrolyte solution must contain at least one anion and one 
cation, there are always at least two solute species. The existence of mul-
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tiple species — and, correspondingly, multiple fluxes — leads to two 
concepts that arise only when electrolyte transport is considered. 

The first of these concepts is electroneutrality: the concentration of positive charges in 
a small sample volume equals the concentration of negative charges. This condition 
can be written as follows: 

 0i i
i

z c . (2.33) 

The second concept is ionic current. Ions moving in solution carry current just as elec-
trons do in metal conductors. The contribution of each species to the current density is 
equal to the product of the species' flux and its charge. The current density is obtained 
by summing these contributions: 

i i i
i i

I I z J . (2.34) 

where Ii = zi Ji is the contribution of the ith ion to the current. Note that the units of I as 
given above are mols of charge per square centimeter of transport area per second. If 
the right-hand side of Eq. (2.34) is multiplied by the Faraday, the units become cou-
lombs per square centimeter per second; that is, amperes per square centimeter. 

2.2.2. The Electrodiffusion Equation 

The flux of the ith ion in free solution, like that of the nonelectrolytes in the preceding 
section, is equal to the product of the mobility of the ion, its concentration, and the 
appropriate driving force, which in this case is – /id dx . The driving force can be 
written in terms of the chemical and electrostatic potential gradients: 

i i
i

d d
z

dx dx

d

dx
� . (2.35) 

The chemical potential gradient is treated as in the previous section, and the flux equa-
tion becomes 

i
i i i i

i

dcRT d
J U c z

c dx dx
� i

i i i i

dc
U RT U c z

dx
�

d

dx
. (2.36) 

Equation (2.36) is the electrodiffusion equation, which is the most common starting 
point for describing free diffusion in electrolyte solutions. It is also known as the 
Nernst–Planck equation. As in the analysis of the Donnan equilibrium, concentrations 
are used rather than activities, to facilitate the use of the electroneutrality condition in 
solving the equation. As a consequence, the solutions of this equation neglect direct 
ion–ion interactions during the transport process, and the analysis to follow strictly 
holds only for solutions more dilute than those found in living systems. 

The electrodiffusion equation defines the dependence of ionic flux on the gradi-
ents in concentration and electrostatic potential in the membrane or barrier across 
which transport takes place. These gradients are not generally measurable. It is there-
fore desirable to integrate the equation, so that the fluxes can be related to the condi-
tions at the membrane surfaces. 
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The results of this integration will reveal a much more complex dependence of 
flux on boundary conditions than was the case when nonelectrolytes were considered. 
In dilute solutions, the flux of an uncharged species depends on only the concentration 
of that solute in the bathing solutions; this is so even when other solutes are present. 
In electrolyte solutions, however, the flux of each ion depends on the concentrations 
of all ions in the bounding solutions, and not in a simple fashion. In addition, for any 
particular pair of bounding compositions, the fluxes, and hence the transmembrane 
current density, depend on the transmembrane potential difference. This is illustrated 
in Figure 2.2a. 

Shown in Figure 2.2b are two common experimental situations. 

1. Short Circuit. Electrodes in the two bathing solutions are connected by 
an external circuit, “shorting out” the membrane and bringing the poten-
tial difference across it to zero. The current density measured under short-
circuit conditions is called the short-circuit current. Passive ion fluxes at 
short circuit are driven by only concentration gradients and can therefore 
be described by the same equations as are used to describe the flux of 
nonelectrolytes. Accordingly, ionic fluxes at short-circuit can be ex-
pressed in terms of the membrane permeabilities of the ions, following 
Eq. (2.20). It is easy to calculate the short-circuit current from the mem-
brane properties and bounding compositions, since at short-circuit the 
fluxes of the ions are independent of one another and the flux of each can 
be calculated from Eq. (2.20). 

2. Open Circuit. At open circuit, there is no net transport of charge across 
the membrane; that is, I = 0. The zero-current condition is more typical of 
unmanipulated biological systems. The external path between the two 
sides of the barrier in Figure 2.2b does not ordinarily exist, and elec-
troneutrality demands that equal amounts of positive and negative charge 
cross the barrier. At open circuit, the quantity of experimental interest is 
the potential difference across the membrane. The term “diffusion poten-
tial” is also used to describe the potential difference that develops across a 
membrane when the current is zero and all flux is passive. Under certain 
assumptions, the electrodiffusion equation can be integrated to compute 
the open-circuit potential and fluxes from the compositions of the solu-
tions on the two sides of the membrane and the ionic mobilities within it; 
the more general solutions are presented first. 

Before proceeding, it should be remarked that many cellular and intracellular 
membranes contain active transport systems that generate a net ionic flux and 
corresponding active ionic current, aI . The zero-current condition in this case is 

0aI I , where I is the passive current described by the electrodiffusion equation. 
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Figure 2.2. (a) A solution of the electrodiffusion equation, for an uncharged membrane at 25ºC. 
The composition of the solution in Phase I is 68 mM NaCl, 15 mM KHCO

3
, and 68 mM RCl, 

where R is a large cation whose mobility is one-tenth that of Na; in Phase II, the RCl has been re-
placed by NaCl. The mobilites of the ions are taken from Table 2.4, and the membrane is modeled 
as an aqueous film 1 cm thick. Dashed lines denote the short-circuited (  = 0) and open circuited 
(I = 0) conditions. After Friedman (1970). (b) Short-circuit and open-circuit conditions. In the for-
mer, the ammeter measures the short-circuit current; in the latter, the voltmeter measures the open-
circuit potential difference. 
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2.2.3. Integration of the Electrodiffusion Equation 

The integration of the electrodiffusion equation is complicated by the nonlinearity of 
the equation. The nonlinearity arises from the second term on the right-hand side, be-
cause the ionic concentration and potential gradient are functions of location in the 
membrane. The second term was absent when nonelectrolytes were considered. In the 
late nineteenth century, a number of investigators, including Planck (1890) and Behn 
(1897), reported solutions of the electrodiffusion equation. We will not reproduce 
these derivations here, limiting ourselves instead to the assumptions and final result. 
Both investigators made the same assumptions: 

1. There are n ions in the system, and Eq. (2.36) holds for each of them; the 
mobility of each ion is independent of position (x) or local composition. 
The phases bounding the two faces of the membrane, whose thickness is 
a, are denoted Phase I and Phase II. The concentration of the ith ion in the 
jth phase is denoted ci

j.

2. All ions are univalent. This restriction can be omitted, but the solution is 
more complicated when the valences of the ions are not all the same. 

3. At every point in the membrane, the local composition is electroneutral. 
This assumption is strictly false whenever the electric field E = –d /dx is 
nonuniform, but the deviation from electroneutrality is almost always triv-
ial.

The relation between the nonuniformity of the electric field and the departure of the 
solution from electroneutrality arises as follows: a volume of solution that is not elec-
trically neutral contains a net charge called the space charge, , whose local concen-
tration is equal to 

i
 z

i
c

i
. Thus, when the electroneutrality condition [Eq. (2.33)] is sat-

isfied,  = 0. 
 The space charge concentration is related to the gradient of the electric field 
through the Poisson equation: dE/dx = ( / )� , where  is the permittivity of the 
barrier. Thus, the electroneutrality assumption is strictly correct (i.e.,  = 0) only 
when the field is uniform (i.e., dE/dx = 0). 
 When electroneutrality is assumed and the electrodiffusion equation is solved 
accordingly, the calculated electrostatic potential  is not generally a linear function 
of x; hence the field is not uniform and the electrolyte solution cannot be electrically 
neutral. For biologically relevant boundary conditions, this inconsistency is unimpor-
tant. Using the electric field gradient obtained by solving the electrodiffusion equa-
tion with the electroneutrality assumption, the space charge density can be computed 
from the Poisson equation. This value of  is inevitably orders of magnitude less than 
the concentration of the electrolyte solution itself.

4. The system is in the steady state, so all ionic fluxes are independent of x.

The Planck solution gives a transcendental expression for the membrane potential 
 = I – II as a function of the bounding compositions. The open-circuit potential is 

obtained by solving 
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for , where  = exp(� /RT),

cations

j j
i iU U c ,

anions

j j
i iV U c ,

and N j is the total concentration of the jth phase, defined as 

1

n
j j

i
i

N c .

The Behn solution provides the fluxes as well as the membrane potential, and 
consists of a set of n + 1 equations that are solved simultaneously: 

II

I
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N
g

RT N

�
, (2.38a) 
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 (i = 1,…,n). (2.38b)

As before, flux from Phase I to Phase II is positive. 
If the compositions {ci

I} and {ci

II} are specified, and the mobilities are known, 
then Eqs. (2.38) constitute n + 1 equations in n + 2 unknowns: an unspecified con-
stant, g; the membrane potential, ; and n fluxes, {Ji}. Since there is one more un-
known than there are equations, one of the unknowns, or a function of them, must be 
specified. Generally, this is either the membrane potential or the transmembrane cur-
rent density. If the potential is specified, Eq. (2.38a) can be solved for g , and Eq. 
(2.38b) gives the fluxes  directly; a more difficult iterative procedure is required if the 
current is given and the membrane potential and fluxes are sought. 

Strictly speaking, the superscripts “I” and “II” denote the potentials and concen-
trations just inside the membrane faces. However, in applying the preceding solutions, 
the concentrations that are generally used are those in the bounding phases, and the 
membrane potential is measured in the external solutions as well. Often, no harm is 
done when this approximation is made, but errors can arise if a bounding phase con-
tains charged species that cannot enter the membrane, or if the membrane contains 
fixed charges that cannot leave (Fig. 2.3). In such cases, the correct (i.e., intramem-
brane) boundary conditions for Eqs. (2.37) and (2.38) are related to the composition 
and potentials in the bathing solutions by the Donnan equilibrium expressions of the 
previous chapter. The solutions given above must be further modified when the mem-
brane structure is charged, because the concentration of the charges on the membrane 
must be included in the electroneutrality condition (see §2.2.6). 
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Figure 2.3. Boundary conditions for solutions of the electrodiffusion equation. In the example 
shown here, there is one mobile cation (C) and one mobile anion (A) in the system. Both bounding 
phases are well stirred. Phase I contains a negatively charged species that cannot enter the mem-
brane, so there is a Donnan equilibrium at x = 0. Inside the uncharged membrane and impermeant-
free Phase II, c

C
= c

A
, by electroneutrality. The correct boundary conditions for the electrodiffusion 

equation are those at the filled circles. The potential difference between Phases I and II equals the 
sum of the calculated membrane potential and the Donnan potential at the Phase I interface. 

Before proceeding to the conditions under which simpler solutions of the electro-
diffusion equation can be obtained, we should observe that the equation is linear in ci;
therefore a partial integration can be carried out using an integrating factor. This pro-
cedure demonstrates that the ion flux is the product of three terms: UiRT,

II Iexp( / )i i ic z RT c� , and the reciprocal of the integral of exp[zi (x)] across the 
membrane. Since (x) is generally not known a priori, this equation cannot give flux 
directly; however, the first term shows that the flux is proportional to the mobility of 
the ion, and the second demonstrates that the flux of an ion at equilibrium is zero (see 
also §2.2.4). 

2.2.4. Some Special Cases 

Equilibrium. By setting Ji = 0 in Eq. (2.38b), we obtain the conditions under 
which the ith ion is in equilibrium across the membrane. The flux is zero when the last 
factor in the numerator is zero: 

- /II Ie 0iz RT
i ic c� . (2.39) 
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Figure 2.4. Potential-driven current, uniform composition. The electron flow in the external circuit 
and the current across the membrane are both directed from Phase I to Phase II because the trans-
membrane current is defined as the flow of positive charge [Eq. (2.34)]. 

It is easy to show that Eq. (2.39) prescribes that the ith ion is in equilibrium when its 
Nernst potential is equal to the membrane potential. This conclusion was also reached 
in Chapter 1. 

Uniform Composition. The solution of the electrodiffusion equation proceeds 
more directly when the compositions of the solutions on the two sides of the mem-
brane are the same, and the composition inside the membrane is consequently uni-
form. When a potential is applied across the membrane, the ions migrate across, 
driven by the electric field, and generate an ionic current; this situation is illustrated in 
Figure 2.4. The concentration gradient of each ion is zero, so Eq. (2.36) becomes: 

i i i i

d
J U c z

dx
� . (2.40) 

Since ci is independent of x, Eq. (2.40) can easily be integrated to give the ionic flux 
as a function of the imposed potential difference: 

i i i
i

U c z
J

a

�
. (2.41) 

Each flux is proportional to the potential difference across the membrane. It follows 
trivially from Eq. (2.34) that the membrane current density is similarly proportional to 
the membrane potential; hence, when the composition is uniform, the membrane 
obeys Ohm's Law. If the fraction of membrane area available for transport is , and 
the transport paths are sufficiently large that the effects of the pore walls on the trans-
port rate can be neglected, the conductance of the membrane is 

g (mols/cm2-sec-V) 2
i i i

i

I
U c z

a

�
.
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In electrical units, conductance is measured in siemens; 1 S = 1 ohm–1 = 1 am-
pere/volt. The membrane conductance in S/cm2 is obtained by multiplying the previ-
ous value of g by �.

If, in Eq. (2.40), the electrostatic potential gradient is regarded as the driving force 
for transport, then, according to the Teorell equation, the product Ui zi� assumes the 
role of a mobility. Indeed, the absolute value of this product is termed the electrical 
(or electrophoretic) mobility of the ion, ui = Ui |zi|�. The electrical mobilities of sev-
eral biologically important ions are presented in Table 2.4. 

Table 2.4. Electrical Mobilities of Several Biologically Important Ions at 25ºC 
(Robinson and Stokes, 1965; Davies, 1968) 

 Electrical mobility, cm2/sec-V, 
          Ion u

i
 x 104

 H 36.25 
 Li 4.01 
 Na 5.19 
 K 7.62 
 NH

4
7.62

 Mg 5.50 
 Ca 6.17 
 Cl 7.92 
 NO

3
7.41

 HCO
3
 4.62 

Diffusion Potential of a Bi-Ionic System. An explicit solution for the diffusion 
potential can be obtained from Eqs. (2.38) if the system contains only one anion and 
one cation, of equal charge. In this case, the anion and cation fluxes are equal, since 
the current is zero, and the membrane potential is 

II

I
ln

c
C A

C A

U URT c

U U�
, (2.42) 

where c is electrolyte concentration and the subscripts on the mobilities denote the 
cation and anion. The diffusion potential is independent of membrane thickness, 
and depends on only the mobility ratio UC /UA (divide numerator and denominator 
by UA to see this) and the concentration ratio cII/cI.

The origin of the diffusion potential is easiest to explain for this case in which 
only two ions are present. If the membrane is permeable to both the anion and cation 
of a salt whose concentration is different on each side of the membrane, both ions will 
cross. The ionic fluxes must be equal when the current is zero, even though the mo-
bilities of the two ions are not generally the same. The diffusion potential develops to 
compensate for this difference in mobility by increasing the electrochemical potential 
driving force for the ion having the lower mobility, and decreasing that for the more 
mobile ion. The potential “pulls” the less mobile ion across the membrane, while re-
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tarding the flux of the more mobile species. Suppose cII > cI and UC >UA. Then the salt 
diffuses from Phase II to Phase I under its concentration gradient, and the potential of 
Phase I becomes positive relative to that of Phase II (i.e.,  > 0), so as to retard C
and increase the driving force for A.

When UC = UA, there is no mobility difference to compensate for, and the diffu-
sion potential is zero. Diffusion potentials can cause artifacts in certain electrophysio-
logical experiments, and it is desirable to avoid them. Much use is made of concen-
trated KCl solutions (salt bridges) in such setups, because the mobilities of potassium 
and chloride are almost identical. 

Consider the other extreme, in which the mobility of one ion is much larger than 
that of the other, say UC >> UA. In this case, the membrane potential given by Eq. 
(2.42) approaches (RT/�) ln cII/cI. Since there is only a single electrolyte in the system, 
the argument of the logarithm is also cC

II/cC

I; thus the membrane potential approaches 
the Nernst potential of the cation. We shall see that the tendency of the membrane po-
tential to approach the Nernst potential of the more (or most) permeable ion is evi-
dent for more complex electrolyte solutions as well. This tendency has been exploited 
experimentally to “clamp” the membrane potential at a selected value by bathing the 
two sides of the membrane with solutions containing different concentrations of an 
ion (often potassium) to which the membrane is particularly permeable. 

Active and Passive Exchange with a Closed Compartment. In the steady state, 
the net rate of entry of any species into a closed compartment equals the rate at which 
it is consumed; otherwise, its concentration in the compartment would change with 
time. Similarly, when a compound is synthesized in a closed compartment, the syn-
thesis rate (less any consumption of the material inside the compartment) equals the 
rate at which the substance leaves the compartment. When the solute is neither con-
sumed nor produced within the compartment, its net entry rate must be zero in the 
steady state. This is the case for most ions. 

As noted earlier, cell membranes are capable of actively transporting (“pumping”) 
ions between the interior of a cell and the extracellular fluid. Suppose that two cati-
onic species with the same valence, z, are exchanged across the cell membrane, such 
that, for each ion of Species 1 that is pumped from Phase II to Phase I, r ions of Spe-
cies 2 are pumped from Phase I to Phase II. In the steady state, the net rate at which 
each ion crosses the cell membrane — the active flux plus the passive flux — must be 
zero. Hence the passive flux of each ion is the negative of its active flux. Thus, for 
each ion of Species I moving passively from Phase I to Phase II, r ions of Species 2 
move passively from Phase II to Phase 1: 

 J2 = –rJ1, (2.43). 

where r is the coupling ratio or coupling coefficient of the pump. Substituting Eq. 
(2.43) into Eq. (2.36), and rearranging, 

2 1
2 2 2 1 1 1

dc dcd d
U RT U c z rU RT rU c z

dx dx dx dx
� � . (2.44) 

Solving for d /dx,
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1 2
1 2

1 1 2 2

dc dc
rU Ud RT dx dx

dx z rU c U c�
. (2.45) 

The function in the parentheses on the right-hand side is equal to 

1 1 2 2

1 1 2 2

1 1 2 2

( )
ln( )

d rU c U c
d rU c U cdx

rU c U c dx
;

hence,

1 1 2 2ln( )
RT

d d rU c U c
z�

. (2.46) 

Integrating across the membrane, and letting z = 1, 

II II
2 2 1 1

I I
2 2 1 1

ln
U c rU cRT

U c rU c�
. (2.47) 

This equation, which is obtained directly from the electrodiffusion equation, was used 
by Mullins and Noda (1963) to relate the membrane potential of skeletal muscle to the 
stoichiometry of active Na–K exchange across the muscle fiber membrane. 

Equal Total Concentrations on the Two Sides of the Membrane: The Con-
stant-Field Equation. Even though the concentrations of individual ions vary widely 
in the body, the total ionic concentration, N, is quite uniform throughout (Table 2.5). 
The intracellular ionic content is only 10% less than the extracellular value, so the 
solution of the electrodiffusion equation for N I = N II is of some interest. This solution 
is also simpler — and much more frequently used — than the more general solutions 
given earlier. 

Table 2.5. Typical Ionic Content of Intracellular and Interstitial Fluids, and Blood Plasmaa

         Ion                                             Plasma                       Interstitial fluid                 Intracellular fluid 

 Na 142 139  14 
 K  4  4 140 
 Ca  1  1 <<1 
 Mg  1  1  20 
 Cl 108 108  4 
 HCO

3
  24  28  10 

 Phosphates   2  2  65b

 SO
4

<1 <1  1 
 Lactate  1  1  2 
    Total 283 284 256 
a Concentrations are in mM. Adapted from Guyton and Hall (2000). 
b Includes larger molecules to which phosphate groups are attached. 
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The solution for this special case cannot be obtained directly from Eqs. (2.38), 
which become indeterminate. We begin the derivation by using Eq. (2.36) to construct 
two sums: 

1 1 1

n n n
i i

i i
i i ii

J dc d
RT c z

U dx dx
� , (2.48) 

1 1 1

n n n
i i i

i i
i i ii

J z dc d
RT z c

U dx dx
� . (2.49) 

In Eq. (2.49), use has been made of the assumption, as was made in the Planck and 
Behn solutions, that the ions are monovalent, so zi

2 = 1. The predominance of monova-
lent ions is evident from Table 2.5. 

Consider each of the four sums on the right-hand sides of the two equations just 
written. The first sum on the right-hand side of Eq. (2.48) is simplified by interchang-
ing the order of summation and differentiation: 

i
i

dc d dN
c

dx dx dx
. (2.50) 

The second sum on the right-hand side of Eq. (2.48) is zero, by the electroneutrality 
condition, Eq. (2.33). The first sum on the right-hand side of Eq. (2.49) is also zero, 
because it is the derivative of a quantity that is uniformly zero: 

0
0i

i i i

dc d d
z z c

dx dx dx
. (2.51) 

The second sum on the right-hand side of Eq. (2.49) is N, by definition. Thus, Eqs. 
(2.48) and (2.49) can be rewritten: 

i

i

J dN
RT

U dx
, (2.52) 

i i

i

J z d
N

U dx
� . (2.53) 

These equations are not easy to solve in the general case, because the latter is nonlin-
ear. However, the solution proceeds easily when N is the same on both sides of the 
membrane. First we recall that the steady-state flux is independent of x; if we assume 
that the ionic mobilities are also uniform, then the left-hand sides of Eqs. (2.52) and 
(2.53) are constants. Thus the right-hand sides must also be constants, independent of 
position in the membrane. From Eq. (2.52), dN/dx is constant, so N is a linear function 
of x. For the special case of interest here, N is the same at both sides of the membrane; 
therefore, it must be the same throughout. Since N is uniform and the right-hand side 
of Eq. (2.53) is constant, the electric field, –d /dx, is also uniform. If the potential 
gradient d /dx is the same everywhere in the membrane, it must be equal to 
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II I( ) / a – /a. The electrodiffusion equation can then be written in the fol-
lowing form: 

i
i i i i i

dc
J U RT U z c

dx a
� . (2.54) 

The coefficient of ci in Eq. (2.54) is independent of x, so the equation can readily be 
solved for the flux as a function of the conditions on the two sides of the membrane. 
The result is one form of the Goldman–Hodgkin–Katz constant-field equation:

/I II

/

e

1 e

i

i

-z RT
i i

i i i -z RT

c c
J z U

a

�

�
� . (2.55) 

The constant-field equation is the equation most commonly used to predict the ion 
fluxes across a membrane, and hence the membrane current, when the membrane po-
tential and bounding compositions are specified. It clearly satisfies the equilibrium 
condition: the flux of an ion is zero if its Nernst potential equals the membrane poten-
tial. The equation can also be used to find the membrane potential when the current 
and bounding compositions are specified, but this generally requires a numerical solu-
tion. An exception is when the current is zero; in this case, the constant-field equation 
can be manipulated to predict the diffusion potential: 

II I

cations anions
I II

cations anions

ln
i i i i

i i i i

U c U cRT

U c U c
. (2.56) 

As indicated, the sums in Eq. (2.56) include either all cations or all anions. 
Equation (2.55) can be written in nondimensional form, in which the nondimen-

sional flux i
I

i i

J a

U RTc
 is a function of two nondimensional groups: a nondimen-

sional potential /iz RT�  whose sign depends on the ionic charge, and the 

transmembrane concentration ratio C = ci

II/ci

I:

1

1

Ce

e
. (2.57) 

Plots of  vs. , parameterized by C, are shown in Figure 2.5. The ion flux is zero 
when the membrane potential equals the Nernst potential (in nondimensional units, 
= ln C). As Eq. (2.55) indicates and Figure 2.5 demonstrates, plots of flux vs. potential 
are curved, so the membrane behaves as a rectifier: equal and opposite deviations 
from the Nernst potential do not in general induce equal and opposite ion fluxes. 

Although the electric field given by the electrodiffusion equation is independent 
of x only when N I = N II, the explicit solutions for flux and potential given above have 
seen considerably more use than the more unwieldy Behn or Planck solutions. As 
noted earlier, the use of the constant-field equation in many biological applications 
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can be justified by the fortunate fact that N does not vary very much in living systems. 
What makes the constant-field equation more remarkable is its utility in spite of im-
portant differences between ion transport in real biological membranes and the con-
tinuum model implied by the electrodiffusion equation. These differences, which will 
become apparent in the chapters that follow, are more dramatic than a modest nonuni-
formity in N. An illustration of the use of the constant-field equation to interpret 
physiologic data is presented in the next subsection. 

Figure 2.5. Nondimensional representation of transmembrane flux given by the Goldman–
Hodgkin–Katz constant-field equation [Eq. (2.55)]. The variables are defined immediately preced-
ing Eq. (2.57). 

As was the case for nonelectrolyte transport, the ease with which an ion crosses a 
biological barrier is generally expressed in terms of its permeability, ki. The flux equa-
tions derived in §§2.2.3 and 2.2.4 — Eqs. (2.38), (2.41), and (2.55) — are based on 
free solution thermodynamics and are strictly applicable only to transport across a 
stagnant water film. For such transport, and neglecting nonideal effects, the perme-
ability of the ith ion is related to its diffusion coefficient and mobility in free solution 
by ki

0 = Di /a = UiRT/a, analogous to the relationship for nonelectrolytes. And, as was 
the case for uncharged solutes, ion permeabilities in biological systems are experimen-
tal quantities, obtained by measuring the ion flux under known conditions and apply-
ing the flux equations presented above, with Ui replaced by kia/RT. With this substitu-
tion, the first two terms in Eq. (2.55) become ( / )i iz RT k� .

An important application of the electrodiffusion equation is prediction of the rela-
tionship between ionic permeabilities and the membrane potential. In all such equa-
tions derived above — Eqs. (2.37), (2.42), (2.47), and (2.56) — the potential depends 
on the ratio of linear combinations of mobilities. In free solution, the mobility and 
permeability are proportional, with the proportionality constant RT/a. If there is a 
similar proportionality in biological membranes, it is easy to show that the mobilities 
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in these equations can be replaced by permeabilities. This will be demonstrated in the 
following section. 

2.2.5. Ionic Permeability and the Resting Potential of the Cell 

An electrostatic potential difference exists between the interior of biological cells and 
the extracellular fluid. Generally, the absolute value of this potential is below 100 mV, 
with the cell interior negative. Comparisons of the Nernst potentials of the primary 
biological ions — K, Na, and Cl — with the membrane potential show that Cl is gen-
erally close to equilibrium across the cell membrane, but the cations are not. The non-
equilibrium state of the cations is maintained by active transport systems in the cell 
membrane that pump potassium ions into the cell in exchange for sodium ions, which 
are pumped out. The pump stoichiometry is such that the number of sodium ions 
pumped out exceeds the number of potassium ions pumped in; as a consequence, the 
pump generates an ionic current across the membrane. 

Equation (2.56) has been used to estimate the relative cation permeabilities of the 
cell membrane. As noted earlier, the total current across the cell membrane equals the 
active current due to the Na–K pump plus the passive current, which in this case is 
described by the constant-field equation. The total current across the membrane must 
be zero, or else charge accumulates in the cell. Thus, if there is an active current, the 
passive current cannot be zero. 

Equation (2.56) was derived under the assumption that the passive current is zero. 
Even though this is not generally the case for biological cells, the equation has been 
used to describe the dependence of the cell potential on ionic permeabilities, under the 
implicit assumption that the passive current is close enough to zero that its effect on 
the cell potential can be neglected. Considering only the three primary ions given 
above, and letting Phase I be the inside of the cell and Phase II the outside, Equation 
(2.56) becomes 

II II I
Na Na K K Cl Cl

I I II
Na Na K K Cl Cl

lnr

U c U c U cRT

U c U c U c�
, (2.58) 

where r is the cell potential. Since Cl is in equilibrium across the cell membrane, 

r = ECl:

II I
Cl Cl
I II
Cl Cl

ln lnr

c cRT RT

c c� �
. (2.59) 

Equating the arguments of the logarithms in the preceding two equations, and rear-
ranging,

I II II
Cl Na Na K K
II I I
Cl Na Na K K

c U c U c

c U c U c
. (2.60) 

Substituting Eq. (2.60) into (2.59), 



58 CH. 2: FREE DIFFUSION

II II
Na Na K K

I I
Na Na K K

lnr

U c U cRT

U c U c�
. (2.61) 

If the permeability and mobility of each cation are related by Ui = ki, the argument of 
the logarithm becomes 

II II
Na Na K K

I I
Na Na K K

k c k c

k c k c
.

The proportionality constant cancels out, effectively replacing mobility by permeabil-
ity. Dividing the numerator and denominator of the argument of the logarithm by kK,

II IINa
Na K

K

I INa
Na K

K

lnr

k
c c

kRT

k
c c

k

�
. (2.62) 

Equation (2.62) has been used to estimate the Na/K permeability ratio from measure-
ments of the resting potential and intracellular concentrations in solutions of known 
composition. Values for nerve and muscle at rest range from 0.01 to 0.2; the perme-
abilities of the two ions in the red cell membrane are closer to one another. The varia-
tion of resting potential with the permeability ratio is illustrated in Figure 2.6 for con-
centrations typical of a nerve fiber. 

Equation (2.62) is derived here as a special case of Eq. (2.56), which relies on the 
constant-field assumption. However, it can also be derived by setting r = 1 in Eq. 
(2.47), which does not assume a constant field. When the coupling coefficient is 
unity, there is no active current, so the passive current at open circuit is zero. Indeed, 
for this particular case, the constant-field assumption is unnecessary.

In this application of equations based on solution theory to transport in real bio-
logical systems, an important caveat must be stated. As we have already implied, ions 
and most other solutes do not cross biological membranes by diffusing down fluid-
filled paths that can be regarded as simple extensions of the bounding solution into 
and through the membrane. Although the constant-field equation and others derived 
here from solution thermodynamics can describe with some success the effects of 
boundary conditions and membrane properties on fluxes and potentials, the parame-
ters (such as permeability) that we derive to summarize the experimental results may 
have a very different physical origin than the same parameters when used to describe 
transport in simple solutions. The permeability ratio of a cell membrane tells us some-
thing about how readily various ions cross, but it tells us very little about the physical 
processes that accompany permeation. 
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Figure 2.6. Effect of the sodium/potassium permeability ratio  on cell potential. The internal 
composition of the cell is 14 mM Na and 140 mM K, and the ambient solution is 142 mM Na and 4 
mM K. T = 37ºC. 

2.2.6. Charged Membranes 

The membrane matrix can contain dissociated polar groups and consequently possess 
a net charge. Other membranes, such as the membranes of biological cells, exhibit a 
surface charge that is due to exposed ionizable groups. We will discuss the first in-
stance here, and the influence of surface charge in the following chapter. 

When extending electrodiffusion theory to membranes that contain free charges, 
the ionizable groups are assumed to be distributed uniformly within the barrier. This 
assumption is a good one for some systems, such as artificial membranes made from 
ion exchange resin, or gel-like extracellular structures, including certain connective 
tissues. It is less applicable to the charged cell membrane pores that we will be dis-
cussing in Chapter 4. 

The transport process in uniformly charged membranes is described by the model 
developed by Teorell (1935) and Meyer and Sievers (1936), and which is illustrated in 
Figure 2.7. When the membrane charge is known, the Donnan equilibrium condition 
can be used to compute the composition of the solutions just inside each membrane 
face; these compositions are the boundary conditions for the integration of the elec-
trodiffusion equation across the membrane. The potential difference between the solu-
tions at the two sides of the membrane is equal to the algebraic sum of the Donnan 
potentials at each face and the transmembrane potential difference obtained from the 
electrodiffusion equation. 
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Figure 2.7. The Teorell–Meyer–Sievers (TMS) model. In the example shown here, a negatively 
charged membrane is bounded by two well-stirred solutions of the same electrolyte, CA. The con-
centrations c

A

I, c
C

I, c
A

II, and c
C

II—the boundary conditions for the electrodiffusion equation—are in 
Donnan equilibrium with the ambient phases. A typical potential profile is also shown, assuming C
is more mobile than A, and I = 0. The difference I – II is obtained from the electrodiffusion equa-
tion.

The solution of the electrodiffusion equation is more complicated than before be-
cause the electroneutrality condition includes the fixed charge: 

0i i X
i

z c z X , (2.63) 

where X is charge concentration and zX = ±1. The electrodiffusion equation was inte-
grated by Behn (1897) for a uniformly charged membrane bathed by solutions all of 
whose ions have the same valence [Eqs. (2.38) were in fact obtained from Behn's 
original solution by setting X = 0]. The solution is given in Harris (1972); its complex-
ity, coupled with uncertainties regarding both the fixed charge concentration in bio-
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logical membranes and the appropriateness of the electrodiffusion equation, have 
strongly inhibited its application to living systems. 

From a biological transport perspective, membrane charge is most relevant to the 
movement of ions through membrane channels. As already noted, the charge distribu-
tion in the membrane cannot be regarded as homogeneous for this transport mecha-
nism, which will be discussed in Chapter 4. 

2.2.7. Limitations of the Electrodiffusion Equation and Its Solutions 

The electrodiffusion equation and the equations derived from it have seen much use in 
the description of ion transport across biological membranes. It is important, when 
using these equations, to recognize their limitations and the limitations of conclusions 
and parameters obtained by applying them to biological data. These limitations de-
pend on the particulars of the application of the electrodiffusion equation, and can be 
summarized as follows. 

The electrodiffusion equation as initially presented in Eq. (2.36) is already a sim-
plification, since it is written in terms of concentration instead of activity; however, 
the fact that the activity coefficients of the major ions are far from unity has not lim-
ited its use as much as has its complexity. Used without further simplification, it can 
describe free diffusion in solution or through barriers in which the transport process 
can plausibly be described as free diffusion (i.e., a continuum process through large 
aqueous pores). In the case of transport through pores, those limitations noted in 
§2.1.2 that prohibit a priori predictions of nonelectrolyte permeability apply to elec-
trolytes as well. 

For the special case of uniform total concentration, the electric field in uncharged 
barriers is uniform, and the constant-field equation applies. Small deviations in total 
concentration uniformity, of the order of those seen in biological systems, do not dis-
qualify the constant-field equation. Since the constant-field equation derives from the 
electrodiffusion equation, the dilute-solution and large-pore restrictions continue to 
apply. Notwithstanding the former restriction, the constant-field equation is generally 
used to describe the transport of ions whose activity coefficients can be far from unity. 

Many biological transport pathways, such as the channels that ions traverse, are 
not crossed by free diffusion. The total concentration is neither uniform nor continu-
ous at the membrane boundaries. The continuum assumption can fail too, so even the 
notion of concentration becomes a statistical concept. There are often multiple path-
ways in parallel, each selective for a different ion or class of ions. The kinetics of 
transport through such pathways will be discussed in the chapters to come. 

Notwithstanding their limited applicability to many biological transport processes, 
the equations of free diffusion have seen considerable use in describing such proc-
esses. They replicate many empirical features of biological transport, such as rectifica-
tion and the dependence of membrane potential on permeabilities and ambient con-
centrations. Thus, they still provide a useful tool for correlating experimental data and 
predicting behavior under conditions not too dissimilar from those under which the 
experiments were carried out. 
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PROBLEMS: CHAPTER 2 

1. The permeability of urea in the ox erythrocyte membrane is 7.5  10–5 cm/s at 
37ºC. The diffusion coefficient of urea in water is 1  10–5 cm2/s at 20ºC. How 
thin would an unstirred layer have to be, at the temperature at which the ox eryth-
rocyte data were obtained, for its resistance to be one-tenth that of the erythrocyte 
membrane? 

2. The erythrocyte membrane in the previous problem is isolated and put in a 
chamber to measure its urea permeability, as in Figure 2.1. The solutions on both 
sides of the membrane are stirred but a layer of thickness  remains at each face. 
Sketch the variation of the apparent membrane permeability as the unstirred layer 
thickness varies from 0 to 500 m. What are the values of apparent permeability 
at the two extremes of this range of thicknesses? 

3. The passive pathways for ions across cell membranes can sometimes be modeled 
as water-filled channels. The permeability of chloride across the red cell mem-
brane has been estimated to be 2.5  10–4 cm/sec at 24ºC. If the effect of tem-
perature on permeability were strictly a viscosity effect, what would the chloride 
flux be across short-circuited (  = 0) red cell membrane at 37ºC when cCl = 10 
mM?

4. A red blood cell can be modeled as a disc 8 m in diameter and 2 m thick. The 
lipid bilayer (Chap. 3) of the red cell membrane is about 5 nm thick. For diffu-
sion through the bilayer, what is the ratio of the time constants td and tc? Can the 
quasisteady approximation be used to describe the fluxes across the bilayer that 
arise when the composition outside the cell is changed? 

5. Assuming a constant ambient concentration cs

I, integrate Eq. (2.32) from an ini-
tial value of cs

II(0) = (cs

II)0 to obtain cs

II(t), and confirm that the time constant for 
the change in intracellular concentration is that given in the text. 

6.  Assume that the permeability of a particular solute in a membrane, ks , is high 
enough that the quasisteady approximation applies. The membrane area is A, and 
the membrane is bounded by two finite-sized compartments, one of volume V I in 
which the initial solute concentration is (cs

I)0, and one of volume V II in which the 
initial solute concentration is (cs

II)0. Derive an expression for the time constant of 
the decay of the concentration difference between the two compartments. 

7.  Urea is diffusing out of a spherical cell that is 10 μm in diameter, through large 
aqueous pores that occupy 5% of the cell surface. T = 37ºC. The diffusion coeffi-
cient of urea in water is about 1.4  10–5 cm2/s at 25ºC. The cell membrane is 5 
nm thick. 

 (a) Estimate the diffusion constant of urea at 37ºC. 
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 (b) Compute the time constant for the decay of the intracellular urea con-
centration at 37ºC. 

 (c) How thick can the cell membrane be before the quasisteady assumption 
for urea diffusion fails (set td = 0.1tc)?

8.  Consider a water-filled membrane 100 μm thick. The electrostatic potential in the 
membrane rises quadratically from zero at one side of the membrane to 90 mV at 
the other side. Show that the space charge in the membrane is uniform through-
out its thickness, and calculate its magnitude. The permittivity of water is about 7 

 10–10 coul2/N-m2.

9. Show using the Behn and constant-field solutions that when an ion is in equilib-
rium across a membrane, the flux of that ion across the membrane is zero. 

10. The electrical mobility of the sodium ion in water is 5.19  10–4 cm2/sec-V at 
25ºC; what is its diffusion coefficient in cm2/sec? 

11. Explain in physical terms the dependence of membrane conductance on each 
variable (except the Faraday, which is just a conversion constant) in the expres-
sion for g that follows Eq. (2.41). Why does conductance depend on the square
of each ion's charge? 

12. A membrane 1 mm thick separates two 155 mM solutions of NaCl at 25ºC. It 
contains a square array of 100-μm diameter pores on 400-μm centers. What is the 
conductance of 1 cm2 of this membrane? 

13. (a) Derive Eq. (2.42) from the Planck and Behn solutions. 
 (b) Use Eq. (2.42) to compute the diffusion potential across a membrane at 

25ºC if Side I of the membrane is bathed by a 100-mM solution of NaX 
and Side II is bathed by 10 mM NaX. Perform this calculation for two 
values of the mobility of X: 

   (i) uX = 7.9  10–4 cm2/s-V (chloride) 
   (ii) uX = 5.2  10–4 cm2/s-V (same as sodium) 
 (c) Compare the preceding results with the diffusion potential given by the 

constant-field equation [Eq. (2.56)]. 
 (d) Repeat (b) and (c), assuming that all ionic mobilities are half of the val-

ues given above. Explain the result in physical terms. 
 (e) Assuming ideal solutions, show that the diffusion potential becomes 

equal to the Nernst potential of the cation when the mobility of the an-
ion is zero. Why is this so? 

14. Derive Eq. (2.56) from Eq. (2.55). 

15. Side I of a membrane is bathed by a 10-mM solution of AX and Side II is bathed 
by 100 mM AX; T = 37ºC, the solutions are ideal, and the ions are monovalent. 
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Using either the Behn or constant-field solution, sketch the variation of diffusion 
potential as UA/UX varies from zero to infinity. What are the asymptotic values of 
the diffusion potential, and why? 

16. The electrical mobility of the sodium ion in water is 5.19  10–4 cm2/sec-V at 
25ºC; the corresponding values for K and Cl are 7.62  10–4 and 7.92  10–4.

 (a) Using the Goldman equation, find the open-circuit potential across a 
water film separating a 100-mM KCl solution from a 100-mM NaCl 
solution.

 (b) Use the Goldman and Planck equations to predict the open-circuit po-
tential across the water film when the concentration of the KCl solution 
is 90 mM. 

17. A membrane is bounded by two solutions of NaCl, 100 mM on Side I and 10 
mM on Side II. At open circuit, the absolute potential difference across the mem-
brane is 13 mV and the sodium flux is 1.6  10–5 mols/cm2-sec. 

 (a) Is the potential at Side I greater or less than that at Side II? Why? Ex-
plain in physical terms. 

 (b) Using the constant-field equation, calculate the sodium permeability of 
the membrane. 

18. The intracellular concentrations of the major ions in human erythrocytes are: 135 
mM K, 17 mM Na, and 77 mM Cl; the concentrations in plasma are: 4 mM K, 
138 mM Na, and 116 mM Cl. Chloride is in equilibrium across the cell mem-
brane.

 (a) What is the cell membrane potential? 
 (b) What is the Na/K permeability ratio? 
 (c) The composition of the plasma in the reference on which this problem 

is based differs from that in Table 2.5. Repeat (a) and (b), using the Ta-
ble 2.5 values, to see how sensitive your results are to plasma composi-
tion.

19. Confirm that Eq. (2.47) reduces to Eq. (2.61) when the coupling ratio is unity. 
Why is this the case? 

20. Consider the system described in the caption to Figure 2.6. Assume UNa/UK = 
0.05. Now assume that increasing amounts of potassium replace the sodium in 
the external solution, while maintaining the total concentration of the two ions. 

 (a) Plot the membrane potential as a function of external potassium con-
centration, from cK

II = 4 mM (cNa

II = 142 mM, the condition in Fig. 2.6) 
to cK

II = 140 mM (cNa

II = 6 mM). 
 (b) Can further manipulation of the bathing solution, subject to the same 

constraint on the total external cation concentration, cause the cell po-
tential to become positive? 
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21. Some membranes have the ability to exclude virtually all ions bearing a particu-
lar charge, so the membrane becomes selective for only anions or only cations. 
Consider a cation-selective membrane of thickness a bounded on Side I by a so-
lution of the 1–1 salt AX at a concentration, cI, and on Side II by a solution of the 
1-1 salt BX at a concentration, cII.

 (a) Write an expression for the short-circuit current in terms of mobilities, 
membrane thickness and bounding concentrations. 

 (b) Using the constant-field equation, write an expression for the open-
circuit potential of the membrane, in terms of the same variables. 


