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Introduction to Fluid Dynamics 

2.1 Basic Concepts 

The behaviour of metals during filling and solidification can be described by 
applying the laws of fluid dynamics. In the liquid state, metals behave largely like 
common liquids such as water or liquefied natural gas. Molecules in liquids do not 
form a rigid crystalloid structure and, therefore, can move easily relative to each 
other. This behaviour distinguishes fluids in general from solid materials. At the 
same time, these molecules are packed sufficiently close to each other to 
experience strong forces of mutual attraction that make it hard to pull a piece of 
liquid apart. For the same reason, it is also hard to compress a liquid to a smaller 
volume. Therefore, liquids, unlike gases, can be treated as essentially 
incompressible materials, a property that greatly simplifies the governing 
equations.2 

Fluid flow behaviour is characterized by density, pressure, temperature and 
velocity. Density, ρ, is the amount of mass, represented by molecules, in a unit 
volume of fluid. The incompressibility property implies that density stays constant 
during flow. In other words, no matter how a fluid is stretched, sheared or pressed, 
the number of molecules in a fixed volume stays more or less constant, even 
though some molecules may have moved out of it and others have entered it in 
their place. 

2.1.1 Pressure 

The resistance of fluid to compression is characterized by pressure. Huge pressures 
must be applied to compress a fluid by as little as 1% of its original volume. In 

                                                 
2 In this chapter, when referring to metals we will use the terms liquid and fluid. Although 
the term fluid generally includes both incompressible liquids and compressible gases, we 
will primarily mean the former unless specifically clarified otherwise. 
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most situations, even in high-pressure die casting, the pressures are not sufficient to 
change the fluid volume noticeably. 

Pressure is one of the main parameters that control the flow of fluid. It is 
related to the rate at which molecules transfer the momentum of their random 
microscopic motion to their neighbours through collisions. Since this random 
motion occurs in all directions, pressure at a point in the fluid also acts in all 
directions. But when molecules in one part of the fluid transfer more momentum to 
the molecules in an adjacent region than they receive in return, a macroscopic force 
arises between these fluid regions. This force can be described as the pressure 
gradient, which is the difference in pressures at two locations in the fluid, divided 
by the distance between those points. When pressure P is a function of the three-
dimensional coordinates x, y and z, then at every point in the fluid, the pressure 
gradient is a vector, defined as 
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In the absence of other forces, flow is initiated in the direction of the pressure 
variation from high values to low, that is, in the direction opposite to the direction 
of the pressure gradient, as shown in Figure 2.1.  

 
 

 
Figure 2.1. Iso-lines of pressure (isobars) showing the distribution of pressure and the 
direction of the pressure gradient 

2.1.2 Viscosity 

As with any moving objects, the motion of most fluids experiences additional 
forces due to friction. Frictional forces also arise from the collisions of molecules 
in a moving fluid with molecules in the slower adjacent fluid regions. These 
collisions result in a net transfer of momentum from the faster flow regions to the 
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slower ones, giving rise to frictional force. This force acts in the direction opposite 
the faster flow, dissipating its energy and generating heat, similar to the effect of 
taxes on the flow of capital. For example, if two streams of fluid are moving at 
different speeds parallel and next to each another, the faster moving stream will 
gradually slow down and the slower one will accelerate. As a result, the boundary 
between the two layers will widen with time leading to the development of the 
viscous boundary layer, the region where flow transitions from the velocity in one 
fluid layer to the velocity in the other. It is noteworthy that, as the two fluid layers 
exchange momentum, the overall kinetic energy in the flow decreases.  

 
 

 
Figure 2.2. Viscous frictional force acting between two streams of fluid 

The frictional properties of a fluid are conveniently described with a single 
variable called the dynamic viscosity coefficient μ, and these forces are called 
viscous forces or stresses. Fluids with larger dynamic viscosity coefficients 
generate higher viscous forces than less viscous fluids in the same flow conditions. 
Additionally, larger differences in velocities result in a higher rate of transfer of the 
momentum from the faster moving fluid to the slower and hence in more viscous 
friction. Finally, the distance between two fluid regions also plays a role: the closer 
they are, the faster the transfer of momentum occurs. According to these 
observations, the viscous frictional force Ffr acting between the two streams of 
fluid in Figure 2.2 can be estimated as 
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where A is the contact area between the streams, U1 and U2 the average velocities 
in the two streams and d the distance between them. In this form, Ffr is the force 
acting on the fluid moving with the velocity U2. For the fluid stream with the 
velocity U1 the sign of the force is the opposite. In a differential form, the right-
hand side of Equation 2.2 can be expressed for a unit contact area as 
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where z is the coordinate axis normal to the direction of flow. The expression on 
the right-hand side of Equation 2.3 is called shear stress.  

Note that viscous stresses are reduced to zero in a uniform flow since the right-
hand side of Equation 2.3 vanishes when there is no velocity variation. However, it 
is hard to achieve uniform flow in practical situations where a fluid is typically 
confined by the walls of the channel or the container. Fluid molecules collide with 
these walls and bounce back. The surface of a typical material has roughness that 
far exceeds the size of a fluid molecule. Even a super finished metal surface at best 
has a roughness in excess of tens of nanometres. This is still more than a hundred 
times bigger than a fluid molecule. Other cutting and finishing techniques produce 
roughness in the range from 100 to 50,000 nm (0.1 to 50 μm). So for a fluid 
molecule hitting a wall, its surface looks like the Black Forest to a football. After 
several collisions, it is very likely to lose all information about where it was 
coming from before it hit the surface. The usually irregular shape of the molecules 
and atoms only accelerates the “loss of memory.” When a fluid molecule returns 
into the flow after interacting with the wall, its original momentum component 
normal to the wall may be retained, but the direction of the tangential component is 
completely random. In macroscopic terms this behaviour is expressed in the form 
of the no-slip boundary condition. It means that the fluid velocity component 
tangential to the surface of a wall boundary is equal to zero. 

The no-slip boundary condition means that friction, or viscous shear stress, is 
always present in a flow near walls. In addition to the pressure gradient, it is one of 
the main factors controlling flow. It leads to the development of viscous boundary 
layers, in which flow transitions from zero velocity at the surface to the flow in the 
bulk. Moreover, the relatively large size of the surface roughness may produce 
more flow loss than can be suggested just by its interaction with the individual 
fluid molecules. Large clusters of these molecules can be deflected, redirected and 
trapped by the small bumps and pits on the surface that make up the surface 
roughness. This may contribute to the development of turbulence in the flow. 
Turbulence can be described as a form of flow instability, when random oscillatory 
motion develops in the otherwise ordered mean fluid flow. This random motion 
occurs on much larger time and length scales than the molecular motion, but its 
effect is similar. It accelerates the transfer of momentum between different parts of 
the fluid and, therefore, results in more friction. 

2.1.3 Temperature and Enthalpy 

The thermal state of a fluid is usually represented by temperature, T, which is a 
measure of and proportional to the kinetic energy of the chaotic motion of its 
molecules. Fluid specific thermal energy¸ I, is proportional to the temperature 

 TCI V= ,  (2.4) 
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with the coefficient of proportionality CV, called the specific heat at constant 
volume. It is equal to the amount of heat that is needed to raise the temperature of a 
unit mass of fluid by 1o. The subscript ‘V’ means that the volume of fluid would be 
kept constant during such a procedure. This clarification is necessary for a 
compressible gas, which, if allowed to expand upon heating, would require more 
energy to raise its temperature. For incompressible fluids, this distinction is not 
very important. As a result, the value of the specific heat at constant volume is very 
close to that of the specific heat at constant pressure, Cp. For obvious reasons, it is 
easier the measure Cp for metals by simply keeping the specimen at atmospheric 
pressure during measurement, whereas for a gas placed in a fixed container, it is 
easier to measure CV.  

CP is used to calculate another useful quantity called enthalpy, E, 

 )1( SP fLTCE −+= . (2.5) 

The second term on the right-hand side accounts for the release of thermal energy 
during solidification. Fluid molecules in the liquid phase have more freedom to 
move than in the solid state where they are locked in a crystalloid structure. As the 
metal cools and passes from the liquid state to the solid, the excess energy is 
released in the form of latent heat. The solid fraction, fS, is the mass fraction of the 
solidified phase in a given amount of metal. Upon cooling, its value changes from 
0.0 in the pure liquid to 1.0 in the pure solid phase allowing for the latent heat 
release in Equation 2.5. 

One of the mechanisms for the exchange of thermal energy within fluids is 
thermal conduction. As molecules collide with each other, they transfer 
momentum, which is responsible for pressure and viscous forces, and also the 
kinetic energy of their chaotic motion. Consequently, any temperature variations in 
a thermally insulated volume of fluid would disappear over time, resulting in a 
uniform temperature distribution. The rate of heat exchange by conduction is 
described by the thermal conduction coefficient, k. The heat flux q between two 
regions of fluid at temperatures T1 and T2 separated by the distance d is then 
calculated as 
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or in differential form, 
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Equation 2.7 is the Fourier law stating that the heat flux by thermal conduction is 
linearly proportional to the temperature gradient [Holman, 1976]. Note that the 
form of Equation 2.7 is similar to that of Equation 2.3 for the viscous dissipation of 
momentum. 
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2.2 Equations of Motion 

Pressure gradients and viscous stresses are the main internal forces present in 
fluids. External forces can include gravity and electro-magnetic forces. According 
to Newton’s second law, the sum of all these forces results in a net acceleration of 
the fluid, which is inversely proportional to its mass, or density. This can be 
expressed in the form of the Navier-Stokes equations, which for an incompressible 
viscous fluid can be written in the following form [Batchelor, 1967] 
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Here u, v and w are the three components of the fluid velocity vector U at any point 
in the flow, and G = (Gx, Gy, Gz) is the external force, which we will assume here 
consists only of gravity. 

The left-hand side of Equation 2.8 represents the components of fluid 
acceleration, the components of the pressure gradient, viscous stresses and gravity 
are summed up on the right-hand side. These forces are divided by fluid density ρ, 
therefore, the same forces would produce a higher acceleration for a lighter fluid. 
The ratio of the dynamic viscosity coefficient and density is often called the 
kinematic viscosity coefficient ν = μ/ρ. 

Mass conservation is another important law governing the motion of fluids. It 
states that mass cannot be created or lost and is expressed through the continuity 
equation. For incompressible fluids, this equation reduces to the condition of zero 
divergence of the velocity vector 
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and simply means that for any amount of fluid entering a given volume from one 
side, exactly the same amount must leave on the other side. 

When heat transfer and solidification are of interest, then additional equations 
are needed to track the evolution of temperature and the solid fraction. This is done 
in the energy conservation equation, which, similar to the mass conservation one, 
says that energy is not lost or created. As for the equation of motion, the energy 
transport equation is simplified by the assumption of incompressibility. Written in 
terms of enthalpy, defined in Equation 2.5, it has the following form: 
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The left-hand side of Equation 2.10 constitutes the rate of change of enthalpy, and 
the right-hand side describes thermal conduction. An appropriate relationship 
between solid fraction and temperature must also be devised to complete the 
model. 

Equations 2.8 – 2.10 constitute the basic set of equations describing the 
evolution of an incompressible fluid such as metal. It can be applied to a wide 
range of flow problems, from ocean currents to MEMS, from external to internal 
flows, steady-state or transient. Metal casting, of course, is one of the areas where 
the rules of fluid dynamics can be used. When turbulence is present, conventional 
turbulence models seek to enhance viscous mixing and dissipation in the flow by 
evaluating the turbulent dynamic viscosity coefficient and using it in Equation 2.8 
in place of the molecular value [Batchelor, 1967]. 

The left-hand sides of Equations 2.8 and 2.10 have similar forms and describe 
the transport of the quantities shown in the partial derivatives (u, v, w in Equation 
2.8, and E in Equation 2.10). The leading term is called the temporal derivative. It 
is the rate of change of a quantity at a given point in the flow. For instance, tE ∂∂ /  
could be evaluated by inserting a thermocouple into the flow and then using its 
readings and Equation 2.5. 

The rest of the terms on the left-hand sides of these equations are convective 
terms. They are responsible for carrying fluid quantities with the flow and are 
characteristic of continuum mechanics when a particle of fluid moves, another 
particle comes in its place bringing with it its unique properties such as 
temperature and velocity. 

Diffusion is another means of transport in fluids. The diffusion of thermal 
energy is described by the thermal conduction terms on the right-hand side of 
Equation 2.10. The diffusion of momentum is represented by the terms in 
parentheses on the right-hand side of Equation 2.8. 

In incompressible fluids, as well as in solids, pressure can actually be negative 
because the intermolecular forces in these materials include the forces of attraction 
that are responsible for keeping the molecules close together. 

Pressure in Equation 2.8 can be relative, or gauge pressure. For example, it can 
be set relative to one atmosphere, in which case the normal pressure will be equal 
to zero. This is possible for incompressible materials because pressure in the 
equations of motion is present only in the gradient operand, therefore, adding or 
subtracting a constant does not change the flow dynamics. 

2.3 Boundary Conditions 

Equations 2.8 – 2.10 are usually solved in a finite domain that has external and 
internal boundaries. Therefore, proper descriptions of these boundaries, or 
boundary conditions, are needed to find the flow solution. In addition to material 
properties, boundary conditions distinguish low-pressure from high-pressure die 
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casting or lost foam casting from gravity pour. Boundary conditions, therefore, 
play an important role in determining the solution, and it is worth saying a few 
words about them here. 

2.3.1 Velocity Boundary Conditions at Walls 

There are two flow boundary conditions at the walls bounding the flow. Since fluid 
cannot penetrate solid obstacles, the component of the velocity normal to the wall 
must be equal to zero: 

 0zyx =⋅+⋅+⋅=⋅ nwnvnunU , (2.11) 

where n(nx,ny,nz) is the unit length vector normal to the wall surface. 
The second boundary condition enforces the no-slip condition, that is, the 

velocity component tangential to the wall must also be equal to zero: 

 0τ =U . (2.12) 

Combined together, Equations 2.11 and 2.12 simply state that flow velocity at the 
wall is equal to zero. It is useful, however, to define the two conditions separately 
since Equation 2.12 is not necessary when an inviscid flow approximation is used 
(i.e., when viscous stresses are small and can be neglected in Equation 2.8). 

2.3.2 Thermal Boundary Conditions at Walls 

A boundary condition at walls is also needed for Equation 2.10 for enthalpy. This 
is typically done by defining a heat flux, q, at the interface between fluid (metal) 
and wall (mould) as follows: 

 )( wallfluid TThq −⋅=  (2.13) 

with the heat transfer coefficient, h, representing the thermal properties of the 
interface itself. Factors like surface roughness, coating or lubrication affect the 
value of h. 

The wall boundary condition given by Equation 2.13 can be replaced by the 
one that directly specifies the heat flux, possibly as a function of time, 

 )(0 tqq = . (2.14) 

Equation 2.14 is useful when modeling exothermic sleeves or water-cooled mould 
surfaces. 
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2.3.3 Free Surface Boundary Conditions 

Free surface is a special type of boundary; it moves with the liquid. The influence 
of air on flow can usually be ignored because air is much lighter than most liquids, 
especially metals. The fact that free surface is a boundary between a liquid and the 
ambient air is expressed in the so-called kinematic boundary condition, stating that 
the velocity of the free surface, Ub, is equal to the velocity of the liquid: 

 ),,,( zyxtb UU = . (2.15) 

This obvious condition is nevertheless necessary to include free surface properly in 
the flow model. Equation 2.15 ensures that liquid and free surface do not get 
separated. 

The lightness of the ambient air in comparison with liquid gives rise to the 
dynamic boundary conditions at a free surface. The first one states that fluid 
pressure at a free surface, P0, is equal to the air pressure, Pa.  

 aPP =0 . (2.16) 

Moreover, if we ignore the variation of pressure in the air due to gravity, then Pa is 
constant along a contiguous section of the free surface. This does not necessarily 
mean that it is constant in time, however. For example, during filling, the air may 
not be able to escape quickly enough, causing the air pressure in the cavity to 
increase, thus making Pa a function of time. Moreover, multiple air pockets will 
generally have as many different pressures, each serving as the boundary condition 
for the segment of metal surface bounding the respective air pocket. 

Surface tension forces at a free surface can also be taken into account. A liquid 
molecule located at the free surface interacts with the liquid molecules on one side 
of the interface and with the adjacent air molecules on the other side. The 
asymmetry of the inter molecular forces gives rise to a macroscopic force, which is 
proportional to the curvature of the interface. This force is typically expressed in 
terms of the surface tension pressure, Ps, which is a product of the surface tension 
coefficient, σ, and the interface curvature, κ,3 

 )(s n∇== σσκP , (2.17) 

where znynxn zyx ∂∂+∂∂+∂∂=⋅∇ n  is the divergence of the unit outward 
normal vector of the surface ( Figure 2.3). Liquid metals have the highest surface 
tension coefficients among liquids, with mercury leading the pack. Additionally, 
the buildup of a surface film due to the oxidation of metal in contact with air adds 
to the molecular forces at a free surface [Campbell, 1991]. 
 
                                                 
3 The surface tension coefficient is not so much a property of the fluid as of the interface 
between two media, such as aluminium and air. 
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Figure 2.3. Surface tension pressure acting on an element of free surface 

Surface tension is an important force when the free surface curvature is large 
as, for example, in small droplets in an atomized flow common in high-pressure die 
casting. Equation 2.16 then needs to be modified to include the surface tension 
force. 

 sa0 PPP += . (2.18) 

The second dynamic boundary condition at a free surface is derived from the 
assertion that viscous friction between fluid and air is negligibly small or, using 
Equation 2.3, 

 0=
∂
∂

n
U . (2.19) 

where the derivative of the fluid velocity near a free surface is taken in the 
direction normal to the surface. 

Thermal boundary conditions at the free surface during casting are often 
assumed to be adiabatic, i.e., for simplicity heat losses to the air are neglected in 
comparison with the heat fluxes inside metal and at mould walls. However, more 
realistic relationships, similar to that given by Equation 2.13, can also be used. For 
example, radiative heat losses, qR, which maybe important for high temperature 
alloys, can be computed as 

 )( 4
air

4
fluidR TTq −⋅⋅= ζε , (2.20) 

where ε is the emissivity of the surface (ε < 1), ζ=5.5604⋅10-8 kg s-3 K-4 the Stefan-
Boltzmann constant, and temperature is expressed in the absolute units of degrees 
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Kelvin, K. Due to the power of four on the right-hand side of Equation 2.20, the 
radiative heat flux grows quickly with an increase in surface temperature. For 
example, the pouring temperature of steels, 1700 – 1800 K, is around twice that of 
a die-cast aluminium alloy and, therefore, with similar emissivity coefficients, the 
radiative heat loss from the surface of the steel is about sixteen times larger. 

2.4 Useful Dimensionless Numbers 

Equations 2.8 – 2.10, together with the appropriate boundary conditions, describe a 
very wide range of flows. It is often useful to estimate the relative importance of 
various terms in these equations and thus determine the most significant aspects of 
the physical behaviour of the fluid in a given situation. This, in turn, may enable 
simplification of the equations before one proceeds with the solution. As a 
minimum, it would be useful to understand what type of flow to expect. 

A set of dimensionless numbers, each representing an estimate of the ratio of a 
pair of forces, can be conveniently employed for that purpose. These numbers are 
derived from the dimensionless form of the equations of motion. This form, in turn, 
is obtained by scaling the equations by the characteristic values of length and 
velocity. As their name suggests, for a given flow each dimensionless number has 
the same value, irrespective of the units system employed to evaluate it. 

2.4.1 Definitions 

The commonly used dimensionless numbers are 

Reynolds number:   
forcesviscous

inertiafluid
==

μ
ρUdRe . (2.21) 

Weber number:        
tenstionsurface

inertiafluid2

==
σ

ρ lUWe . (2.22) 

Bond number:          
tensionsurface

gravity2

==
σ

ρGlBo . (2.23) 

Froude number:       
gravity

inertiafluid
==

Gh
UFr . (2.24) 
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Here U is the characteristic velocity, d, l and h denote the appropriate characteristic 
lengths and G is gravity. 

2.4.2 The Reynolds Number 

For the Reynolds number U is the average variation of the velocity in the flow 
between its minimum and maximum values, and d is the distance over which this 
variation occurs. According to Equation 2.12, in a typical filling, U can be defined 
as the difference between the velocity at the walls, which is zero, and in the bulk of 
the flow, or as the average metal velocity. Then d becomes half of the minimum 
wall thickness or half of the channel width. 

The Reynolds number is one of the most important parameters characterizing 
fluid flow. When its value is small, Re < 1, then flow is dominated by viscous 
forces. For very small values of Re, the convective terms in Equation 2.8 can be 
neglected in comparison with viscous dissipation of the momentum, reducing it to 
the so-called creeping, or Stokes, flow approximation. 

As is shown in the next section, the Reynolds number in metal flow in most 
castings is much greater than one, indicating that, at least during filling, viscosity 
plays a secondary role to fluid inertia. With the increase in the speed of the flow, it 
transitions from laminar to turbulent due to the development of flow instabilities 
initiated by spatial variations in fluid velocity. The transition begins at Re ≈ 2000 
and turns into a fully turbulent flow when Re exceeds 10,000. Only in extremely 
carefully controlled flow experiments can the laminar regime be extended to Re up 
to 20,000. Fully developed turbulence enhances the dissipation of fluid 
momentum, in addition and significantly beyond the dissipation due to the 
molecular viscosity, even though a large value of the Reynolds number may 
suggest that viscous forces are not important in the flow. 

2.4.3 The Weber Number 

In Equation 2.22 for the Weber number, U characterizes the average variation in 
fluid velocity near a free surface. To be more precise, it is the velocity component 
normal to the free surface that is of the interest here. Due to the no-slip boundary 
condition at walls and Equation 2.15, we can say the U is the average velocity of 
the free surface. As with the Reynolds number, the distance l then becomes the 
minimum width of the flow channel. 

During filling, internal fluid forces can cause distortion of the metal surface, 
sometimes called surface turbulence [Campbell, 1991], that would lead to folding 
of the surface, additional oxidation and other undesirable effects. The process can 
be visualized by imagining a submerged jet of metal directed at an area of the free 
surface. Its energy will create a bulge on the initially undisturbed surface. The 
Weber number can be used to determine if the surface tension forces can prevent 
the rupture of the surface film and restore its shape. The velocity U and distance l 
in Equation 2.22 in this case relate to the jet velocity and size of the bulge, 
respectively. If We < 1, then we can hope that the energy of the flow will be 
contained within the confines of the existing free surface. If We > 1, as is the case 
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in most filling scenarios, then the folding and entrainment of the surface oxide film 
and possibly air cannot be avoided. 

It has also been observed experimentally that a free surface breaks up into small 
droplets when the Weber number exceeds the critical value of around 60 
[Manzello and Yang 2003]. 

2.4.4 The Bond Number 

The Bond number is another measure of the relative importance of surface tension. 
This time it is compared to gravity, which is useful to determine if a free surface 
will stay flat or bulge. The natural tendency of the surface tension forces is to bend 
the initially horizontal free surface to reach a constant curvature at its every point, 
and in the absence of other forces it will do just that. Gravity in this case acts in the 
opposite direction trying to flatten it. When gravity is strong and the surface’s 
horizontal extent l is large, that is Bo > 1, a free surface is likely to stay flat and 
undisturbed by the surface tension forces as in a glass of water or a metal pouring 
cup. 

If the size of the container is gradually reduced, then at some point the value of 
the Bond number will drop below unity and the shape of the free surface will be 
determined more by the surface tension than by gravity. This can be observed 
inside a half-filled (transparent) drinking straw or when placing a small droplet of 
water on a dry surface. 

2.4.5 The Froude Number 

The Froude number is often employed to estimate the importance of such as 
surface waves in open-channel flows, like rivers and canals. It is also useful to look 
at the waves in the horizontal runners in gravity pour castings and shot sleeves in 
high-pressure die casting. In all these cases, the waves are driven by gravity. 

The variable h in Equation 2.24 is the average depth of the fluid. When Fr is 
much smaller than one, Fr << 1, surface waves are much faster than the main 
flow, U. Such flow is called sub-critical. In the time it takes for the fluid to move 
the length of the container, the waves will pass in both directions multiple times, 
dissipate their energy and, therefore, can be deemed unimportant for the overall 
configuration of the flow. 

In the case of large values of the Froude number, Fr > 1, the flow is faster than 
the surface waves, or super critical. Any such waves are quickly swept away by 
the flow toward the boundaries of the flow domain. The fact that these waves can 
move in only one direction may result in their accumulation at the downstream 
walls. This, in turn, produces a buildup of fluid near the walls and eventually 
develops into a hydraulic jump, a narrow area in the flow in which the fluid 
transitions from the high velocity upstream to the low velocity downstream of the 
jump. The transition of the flow from one side of a hydraulic jump to the other is 
also characterized by an abrupt change in pressure, fluid depth and, of course, 
turbulence. The latter often results in excessive entrainment of air into the bulk of 
the fluid at the transition point, which is highly undesirable during mould filling. 
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2.5 The Bernoulli Equation 

Once of the most commonly used solutions of the general fluid motion equations is 
the Bernoulli equation. It can be derived from Equations 2.8 and 2.9 when the flow 
is steady and inviscid, and can be expressed in the following form 

 CghUP =++ ρρ 2

2
1 , (2.25) 

where g is the magnitude of the gravity vector and h is the height above a reference 
point. C is an abitrary parameter that is constant along any streamline. It can be 
evaluated by using pressure and velocity at a single point along the streamline 
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1 ghUPghUP ρρρρ ++=++ . (2.26) 

Stagnation, Dynamic and Total Pressure 
If the variation in fluid elevation h is small or gravity forces are negligible 
compared to pressure and inertia, like in high pressure die casting or in air, then 
Equation 2.26 can be reduced to 
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2
1 UPUP ρρ +=+ . (2.27) 

As fluid accelerates along a streamline, pressure drops so that the sum on the left-
hand side of Equation 2.27 stays constant. The maximum value of pressure occurs 
at the point where velocity is zero, or at the stagnation point. This pressure is 
called stagnation pressure. The term 1/2ρU2 is the dynamic pressure, as opposed to 
the static pressure represented by P. The sum of static and dynamic pressures in 
Equation 2.27 is termed the total pressure. 

The Bernoulli equation in the form of Equation 2.27 led to the development of 
the theory of the airfoil [Abbott, 1959]. The difference between the static pressures 
on the lower and upper surfaces of an airplane wing creates the lift necessary to 
keep the plane in the air. 

2.6 Compressible Flow 

Strictly speaking, all fluids are somewhat compressible. In other words, if external 
pressure is applied to a fluid volume, the latter will decrease in size. Among other 
things, compressibility of materials enables the propagation of acoustic waves. For 
most liquids, however, this change is negligible, even if the pressure is large. 

Fluids for which the compressibility effect is significant are called gases. The 
average distance between molecules in a gas is large, much larger than the size of 
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the molecules themselves. This allows them to move freely in space, interacting 
with other molecules mostly through collisions. Unlike liquids, gases occupy all 
available space bound by solid or liquid surfaces as, for example, propane in a steel 
tank or an air bubble inside liquid metal. 

2.6.1 Equation of State 

If a gas is not too dense and sufficiently hot, then two things can be said about its 
molecules. First, they interact with each other mostly through collisions, with only 
two molecules participating in any collision. Second, the kinetic energy of the 
molecules comes primarily from their translational motion. That is, molecules of a 
gas can be closely approximated by small, elastic, identical spherical balls moving 
around and colliding with each other in a chaotic manner. Such a fluid is called an 
ideal or perfect gas [Sedov, 1972]. 

The variables that define a thermodynamic state of a gas are pressure, density 
and temperature. For an ideal gas, they are related to each other through the 
equation of state: 

 TRP ρ= , (2.28) 

where R=8.3144 J mol– 1  K–-1 is the universal gas constant. One important result of 
this equation is that the thermodynamic state of an ideal gas is defined by just two 
parameters: density and temperature, pressure and temperature or pressure and 
density. 

Equation 2.28 is a very common equation of state that has been successfully 
applied to many real gases. In general, molecules in a real gas are far from 
spherical, or elastic, or even of the same size. Therefore, their rotational and 
oscillatory motions contribute to the total kinetic energy and are also exchanged 
during collisions. Moreover, if the gas is dense and cold, interactions between a 
pair of molecules cannot be described as simple collisions. In this case, the 
exchange of energy and momentum between molecules occurs over longer 
distances and times and with multiple molecules interacting at the same time. All 
these factors result in the behaviour that deviates from Equation 2.28. However, it 
is only significant at near cryogenic temperatures or very high pressures. For most 
gases, they are negligible in a wide range of temperatures and pressures. Air is an 
example of a compressible multi component real gas that can be described by 
Equation 2.28 with good accuracy. 

When modelling gas flow, the absolute values of pressure and temperature 
must be used. Degrees Kelvin or Rankine should be used for temperature. Unlike 
incompressible fluids, gauge pressure is not used for gases because pressure is 
present in the equation of state. The use of the absolute scale for these parameters 
is important for Equation 2.28 to be valid. A pressure of one atmosphere is 1.013 
106 dyne/cm2 in CGS units or 1.013 105 N/m2 in SI units. Pressure, temperature 
and density for gases are always positive. 
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2.6.2 Equations of Motion 

In general, the density of a gas can vary in time and space. The continuity equation 
that we wrote for incompressible fluids, Equation 2.9, is not valid in this case. It 
must be replaced by the full transport equation for density 
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The full form of the specific thermal energy transport equation for gases. 
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The last term on the right-hand side is the work term associated with the 
compression and expansion of the gas. It is equal to zero for incompressible fluids. 

Equation 2.30 manifests the first law of thermodynamics described in Section 
2.6.3 below. 

Solution of the flow equations for liquids, Equations 2.8 and 2.9, is not coupled 
to the energy equation since neither density nor pressure depend directly on 
temperature, so that, generally, the solution of the energy transport equation, 
Equation 2.10, for liquids is optional. 

This is no longer true for gases. Both pressure and density depend on 
temperature through the equation of state. Therefore, the thermal energy transport 
equation above must always be included in the solution for gas flow. 

Compared to the momentum equations for incompressible fluids, Equation 2.8, 
the viscous terms in the momentum equations for gases include extra terms 
associated with compression: 
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The second term in parentheses on the right-hand side contains velocity divergence 
and represents the viscous force associated with the compression and expansion of 
the gas. According to Equation 2.8, it is equal to zero for incompressible fluids. 

2.6.3 Specific Heats 

As mentioned in Section 2.1.3, specific heats at constant volume, CV, and at 
constant pressure, CP, differ significantly from each other for a gas. Because, when 
held at constant pressure, the gas expands upon heating. A part of the thermal 
energy goes into the work against the external pressure, leaving less energy for the 
actual heating of the gas. Consequently, more thermal energy is required to raise 
the gas temperature by 1o than when the gas volume is kept constant, and, 
therefore, CP is larger than CV. 

The difference between CP and CV is constant and identical for all ideal gases. 
It can be calculated from Equation 2.28 and the first law of thermodynamics. The 
latter states that the change in the total thermal energy of a gas, MdI, is equal to the 
amount of heat added to it, q, minus the amount of work done by the gas, W, 

 WqMdI −= , (2.32) 

where M is the total mass of the gas (see Figure 2.4). 
The work done by an expanding or contracting gas is the product of the gas 

pressure and the change in its volume 

 PdVW = . (2.33) 
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Figure 2.4. Heating of a gas volume at constant pressure P, during which its temperature 
and density change and the gas expands by volume dV, producing work PdV 

Since 

 
ρ
MV = , (2.34) 

then for the change in volume, 

 
ρ
ρd

V
dV

−= . (2.35) 

From Equation 2.28, it follows that when a gas is heated at a constant pressure, the 
corresponding changes in its density and temperature are related to each other: 

 0=+ dTTd ρρ , (2.36) 

and the heat flux in Equation 2.32 is by definition, 

 dTMCq P= . (2.37) 

while from Equation 2.4, 

 dTCdI v= . (2.38) 

Now combining Equations 2.32 – 2.38 yields 
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 RCC =− VP  (2.39) 

Equation 2.39 states that the difference between the specific heats is the same for 
all gases that fit the ideal gas model. 

2.6.4 Adiabatic Processes 

An adiabatic process is a process during which no heat is added or subtracted from 
the system, i.e., q = 0 in Equation 2.32. Using Equations 2.32, 2.35 – 2.39, it can 
be derived that in such a process the change in pressure is related to the change in 
density according to 
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After combining Equations 2.35 and 2.40, the equation of state, exrepssed in terms 
of volume and pressure, can be written in the following form 
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with pressure P0 and volume V0 expressing the state of the gas at a certain point in 
time. Note that, according to Equation 2.39, γ  > 1 for ideal gases. 

According to Equation 2.41, the thermodynamic state of gas during an adiabatic 
process is defined by only one parameter. This parameter can be either volume (or 
density), or pressure, or temperature. Given the simplicity of the equation of state, 
the adiabatic gas model is a useful approximation to gas flows where heat fluxes 
are small compared to other factors affecting the energy. This is often true when 
the process takes a relatively short time, for example, in supersonic flows. A 
Bernoulli-type solution can also be derived for processes governed by Equation 
2.41 (see Section 2.6.7 below). 

2.6.5 Speed of Sound 

In an acoustic, or sound wave, the material undergoes small, localized 
compressions and expansions. These changes in density result in corresponding 
changes in pressure and temperature. In turn, the variations in pressure create a 
force that causes these perturbations to propagate through the medium, that is, to 
actually behave like a wave. The rate at which acoustic waves propagate is called 
the speed of sound and is a property of the material. 

Note that, even though the sound speed in most solid and fluid materials is 
relatively large (of the order of several hundred metres per second), the actual 
displacement of the medium in an acoustic wave is small because of the small 
amplitude of the fluctuations in it. In other words, there is no transport of mass, 
energy and momentum associated with acoustic waves. 
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Heat transfer due to conduction in a sound wave is also negligible because 
temperature gradients are small and also because the rate of heat transfer due to 
conduction is usually small compared to the speed of sound. This means that the 
propagation of sound waves is an adiabatic process. 

For small velocities in a sound wave, the viscous effects on its propagation are 
also negligible. 

The speed of sound, a, can be easily derived from Equations of motion 2.29 and 
2.31 in the following way. Let’s assume for simplicity that the gas is initially at 
rest, in with a uniform pressure, temperature and density and that a single acoustic 
wave propagates in the x direction. As the wave moves, it introduces perturbations 
in the gas. Since all flow perturbations in such a wave are small, we will ignore all 
terms in these equations that are second order and higher with respect to these 
parameters. 

A change of density dρ produced by the passing wave results in a 
corresponding change in pressure dP, which in turn causes a change in the velocity 
du. The latter two are related to each other through the momentum Equation 2.31 

 
dx
dPdtdu

ρ
−= , (2.42) 

where dx is the distance travelled by the wave in the time dt, that is, 

 
dt
dxa = . (2.43) 

According to the mass conservation Equation 2.29, du and dρ are also 
interrelated 

 
dx
dudtd ρρ −= . (2.44) 

Now substituting Equation 2.44 in Equation 2.42 yields 

 
ρd

dP
a =2 , (2.45) 

where the derivative on the right-hand side is taken with the condition of 
adiabaticity. With the help of Equations 2.28, 2.34 and 2.41, this derivative can be 
evaluated as 

 RTPa γ
ρ
γ

== . (2.46) 
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Equation 2.46 shows that in an ideal gas the speed of sound is a function solely of 
temperature. At higher temperatures, the molecules are more energetic and, 
therefore, are more capable of transmitting local changes in pressure and density to 
the adjacent gas volume in the end, resulting in an increase in the speed of sound. 

2.6.6 Mach Number 

Sound waves provide the means of transmitting information about flow conditions 
in different parts of the gas. When the speed of the flow exceeds the speed of 
sound, that is, the flow travels faster than information about it, then shock waves 
can arise. 

Typically, a shock wave separates two regions of the gas with principally 
different flow conditions. On the upstream side, the flow is supersonic, and on the 
downstream side, it becomes subsonic. The transition occurs on a very small length 
scale which can be estimated as the distance travelled by a gas molecule between 
two successive collisions with other molecules. That is to say that the thickness of 
a shock wave can be as small as 0.03 micron. 

The flow of gas is characterized by the Mach number which is the ratio 
between the flow speed and the speed of sound 

 
a
UM = . (2.47) 

Obviously, M > 1 in a supersonic flow and is less then one in the subsonic. When 
the Mach number if less than about 0.1, the compressibility effects can usually be 
neglected. It is possible then to model the gas as an incompressible liquid. 

Shock waves may occur when a supersonic flow meets with geometric 
obstructions, such as a flying airplane, or near sudden changes in the flow path, 
such as at an orifice or at the entrance to a vent. 

2.6.7 The Bernoulli Equation for Gases 

The equations of motion 2.29 and 2.31 can be integrated for an adiabtic process to 
yields a solution similar to the Bernoulli equation for the incompressible fluids, 
Equation 2.25. Gravity is usually omitted for gases because its effect is small 
compared to pressure forces. The result is 
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With the help of Equations 2.28 and 2.41, Equation 2.48 can be rendered in several 
other useful forms, for example, 
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and 

 CUTC =+ 2
P 2

1 . (2.50) 

where the constant C is the same for all three equations. It can be determined by 
calculating the left-hand side at some point along the streamline. For example, it 
can be defined by the flow parameters at the stagnation point, that is, where U=0: 
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where the subscript ‘0’ indicates the values of the respective parameters at the 
stagnation point. P0 and T0 are also called the total pressure and temperature, 
respectively. 

Maximum Speed 
The Bernoulli equation can be used to calculate the maximum speed, Umax, that can 
be achieved in a steady-state adiabatic gas flow. Since γ > 1¸ then, according to 
Equation 2.49, the maximum speed is obtained at a point where pressure is equal to 
zero, or 

 0
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−

=
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γ . (2.51) 

Note that the maximum velocity is only a function of the gas stagnation 
temperature. 

Flow with close to adiabatic and steady-state conditions can be obtained by 
letting a gas escape from a large container (or cavity) through a small hole. If the 
container is sufficiently large compared to the hole, then we can assume that the 
conditions inside are close to stagnation. The maximum velocity can then be 
achieved by placing the container in vacuum. For air at room temperature of 300 
Kelvin and CP = 1000 J/Kg K, the maximum velocity comes to about 775 m/sec. 
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2.7 Computational Fluid Dynamics 

In this and other sections, we have presented full systems of equations of motion 
for fluids, together with an array of approximate approaches to solving them. These 
approximations have the benefit of offering analytical dependencies for various 
flow parameters in simple situations and are useful tools in a design process. At the 
same time, they provide only limited information and often cannot be successfully 
applied to general, transient three-dimensional flows with turbulence, heat transfer 
and phase change. In this case, numerical methods must be employed to solve the 
fluid flow equations. The science (and often art) of developing numerical 
approximations to the differential and integral equations of fluid motion is called 
computational fluid dynamics [Roache, 1985]. 

Fluid motion is described with non linear, transient, coupled, second-order 
differential equations. A numerical solution of these equations involves 
approximating its various terms with algebraic expressions. The resulting equations 
are then solved to yield an approximate solution to the original problem. The 
process is called simulation. 

2.7.1 Computational Mesh 

Typically, a numerical model starts with a computational mesh, or grid. It consists 
of a number of interconnected elements of various shapes, e.g., tetrahedrals or 
bricks. These elements subdivide the physical space into small volumes where at 
least one node is associated with each such volume. The nodes are used to store 
values of the unknowns, such as pressure, temperature and velocity. The mesh is 
effectively the numerical space that replaces the original physical one. It provides 
the means for defining the flow parameters at discrete locations, setting boundary 
conditions and, of course, for developing numerical approximations of the fluid 
motion equations. 

The mesh discretizes the physical space. Each fluid parameter is represented in 
a mesh by an array of values at discrete points. Since the actual physical 
parameters vary continuously in space, a mesh with fine spacing between nodes 
provides a better representation of reality than a coarse one. We arrive then at a 
fundamental property of a numerical approximation: any valid numerical 
approximation approaches the original equations as the grid spacing is reduced to 
zero. If an approximation does not satisfy this condition, then it is incorrect. 

Reducing the grid spacing, or refining the mesh, for the same physical space 
results in more elements and nodes and, therefore, increases the size of the 
numerical model. But apart from the physical reality of fluid flow and heat 
transfer, there is also the reality of design cycles, computer hardware and 
deadlines, which combine in forcing the simulation engineers to choose a 
reasonable size for the mesh. Reaching a compromise between satisfying these 
constraints and obtaining accurate solutions is a balancing act that is no lesser an 
art than the CFD model development itself. 
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Figure 2.5. Regular two-dimensional staggered computational mesh. The cell indexing i and 
j are shown for a two-dimensional case 

The regular two-dimensional grid shown in Figure 2.5 is called staggered. All 
scalar quantities, such as pressure and temperature, are calculated and stored at the 
centre of each rectangular cell, and velocity vectors are assigned to the respective 
faces of the cell for better stability of the numerical algorithm. The full velocity 
vector can be reconstructed at the centre of the cell by simply averaging its 
components from the four faces. Each element of such grid has five nodes one for 
the scalar quantities and four for the respective velocity components. Each cell 
shares velocity nodes with its immediate neighbours. 

Grids like that one shown in Figure 2.5 are very easy to generate and store 
because of their regular, or structured, nature. A non uniform grid spacing adds 
flexibility when meshing complex flow domains. The computational cells are 
numbered in a consecutive manner using three indices: i in the x direction, j in the 
y direction and k in the z direction. This way each cell in a three-dimensional mesh 
can be identified by a unique address (i, j, k), similar to coordinates of a point in 
the physical space. 

Structured rectangular grids carry additional benefits of the relative ease of the 
development of numerical methods, transparency of the latter with respect to their 
relationship to the original physical problem and, finally, accuracy and stability of 
the numerical solutions. The oldest numerical algorithms based on the finite 
difference and finite volume approaches have been developed on such meshes and 
are still widely in use. 

2.7.2 Numerical Approximations 

The finite difference (FD) method is based on the properties of the Taylor 
expansion and on the straighforward application of the definition of derivatives. It 
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is the oldest of the methods applied to obtain numerical solutions to differential 
equations and the first application is considered to have been developed by Euler in 
1768.  

The idea of the finite difference method is quite simple. For a function u(x), the 
derivative at a point x can be approximated as 
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The spatial increment Δx can be now selected as the distance between two 
adjacent mesh nodes, u(x+Δx) and u(x) are the values of the function at these 
nodes. Then Equation 2.51 can be rewritten in the form that is more common in 
CFD: 
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Here we use a subscript i to indicate the location on the x axis where the values of 
u and x are taken. Thus we obtain an approximation of the derivative of the 
function u(x) on a structured computational grid. From the definition of derivative, 
the accuracy of the approximation given by Equation 2.52 improves with smaller 
grid spacing. 

A similar approach is taken to approximate all first and second-order spatial 
derivatives in the fluid equations of motion, Equations 2.8 – 2.10 for 
incompressible fluids and Equations 2.29 – 2.31 for gases. The approximation of 
the second-order derivatives, which are present in the diffusive terms, typically 
requires at least three nodes. A time step, Δt, is used to divide time into discrete 
increments so that the temporal derivatives can also be approximated:  
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where superscript n refers to the order of the time points at which the values are 
taken. 

Once all derivatives are replaced with their respective finite difference 
approximations, the differential equations are replaced by a set of algebraic 
equations. As with the original equations of motion, proper boundary conditions 
must also be defined for the finite difference equations. These, for example, 
include the no-slip and heat transfer conditions at the interface between the fluid 
and the surrounding walls. 

The unknowns in that system of algebraic equations are the values of the flow 
parameters velocity, pressure and temperature at the mesh nodes. For a unique 
solution of this system to exist, the number of algebraic equations must match the 
number of nodes. Therefore, the size of a numerical model increases with the 
increase in mesh resolution. For example, for a three-dimensional mesh with a 
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hundred nodes in each coordinate direction, a million equations must be solved. 
Moreover, the solution must be found at each incremental time point tn, starting at 
the beginning, t = 0, and finishing at a predefined moment tN = T, multiplying 
accordingly the number of operations required to find the complete solution. 

The actual procedure for the solution of each equation in the numerical model 
is usually quite simple. It is the huge number of the elementary operations that is so 
daunting for a human brain and where the electronic brain power is really needed. 

CFD simulations in this book use a combination of the finite difference and 
finite volume approaches to the solution of the fluid flow equations on 
computational grids similar to that shown in Figure 2.5. Unlike the finite difference 
method, the finite volume (FV) method uses the integral form of conservation laws. 
For every elementary control volume, fluxes of the conserved quantity (e.g., mass) 
are calculated at its boundaries. The net flux then translates into the change in that 
quantity inside the control volume. One of the strengths of the finite volume 
method is its conservation property adherence to the physical conservations laws 
that naturally arises from the method’s definition. For structured rectangular 
meshes, the look of the formal expressions for the control volume approximations 
is often indistinguishable from those of the finite difference method. 

2.7.3 Representation of Geometry 

As mentioned above, finite difference methodology has been in use for many 
decades. In modern times, it is difficult to accurately describe the complex 
geometry within the framework of the traditional finite difference method. A 
rectangular cells is either fully open or fully blocked by the mould resulting in a 
familiar stair-step representation of the curved surfaces. Such a limitation makes 
the definition of accurate boundary conditions problematic. For example, the 
zigzag shape of the interface introduces unphysical additional flow losses due to 
friction. Also the surface area of a zigzag surface is larger than that of the original 
smooth surface, and the difference does not improve with mesh refinement. 

An innovative technique called Fractional Area Volume Obstacle 
Representation (FAVORTM) has been developed to remedy this problem [Hirt, 
1985]. In this method, a geometric surface can cut through a rectangular mesh cell 
dividing it into blocked and open portions, as shown in Figure 2.6. The ratio of the 
open volume in a cell to its total volume is called the fractional volume. The 
intersections of the surface with the faces of the cell (six in three dimensions) are 
computed and stored as fractional areas, which are the ratios of the open area to 
the total area at respective cell faces. Similarly to the velocity vectors, the 
fractional areas are computed and stored at the staggered, cell-face locations. The 
complete geometry in every computational cell is thus converted into fractional 
volumes and areas. With adequate mesh resolution, the reconstruction of the 
original geometry from those fractional quantities is possible with a high degree of 
reliability. 
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Figure 2.6. Geometric representation (shaded area) in the finite difference mesh using 
fractional area and volumes 

The area and volume fraction are subsequently incorporated into the numerical 
equations and are also used to define boundary conditions. The resulting model 
provides significantly better accuracy in the numerical solution than the traditional 
stair-step approach. 

2.7.4 Free Surface Tracking 

Free surface exists in most metals flows and, certainly, during filling. It is 
challenging to model a free surface in any computational environment because 
flow parameters and materials properties, such as density, velocity and pressure, 
experience a discontinuity at it. Moreover, the motion of the free surface is the 
result of a combination of dynamic and kinematic flow conditions. Proper account 
of these conditions is critical to accurate modelling of free surfaces. 

One of the commonly used methods to model free surfaces is the Volume-of-
fluid (VOF) method [Hirt, 1981; Rider, 1998]. It consists of three main 
components: the definition of the volume-of-fluid function F, a method to solve the 
transport equation for F and the proper boundary conditions at the free surface. 

Volume-of-fluid Function 
The VOF function F is defined equal to one in the fluid and to zero outside. 
Averaged over a cell volume, it becomes the fractional volume of fluid, that is, the 
amount of fluid in the cell divided by the cell’s total volume. Thus F=1.0 in a cell 
that is full of fluid and F=0.0 in an empty cell. A cell with free surface would have 
a value of F in the range between zero and one as shown in Figure 2.7. 
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Figure 2.7. Illustration of the calculation of the Volume-of-fluid function in selected cells. 
The shaded area represents fluid 

The VOF Equation 
The VOF function can be interpreted as a kind of a tracer ink added to a fluid. 
Then it it should be carried through space by the fluid. This consideration leads to a 
transport equation for the volume-of-fluid function: 
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Equation 2.54 is similar to Equation 2.29 for gas density. It is often called the 
kinematic equation because there are no forces present. It just states that the values 
of F move around according to the velocity field, like smoke in the air. This 
applies to the free surface itself making Equation 2.54 automatically include the 
kinematic free surface boundary condition given by Equation 2.15. 

Tracking Free Surface 
If conventional computational methods described earlier in this section are applied 
to the VOF equation the result will most likely be unsatisfactory because the free 
surface represents a boundary between the values of F in the fluid and outside. The 
derivative of F across the free surface is effectively infinite since its value changes 
from one to zero on an infinitely small length scale, that is, across the “thickness” 
of the free surface. Therefore, any attempt at approximating this variation with the 
finite difference method, e.g., using Equation 2.52, is bound to be very inaccurate. 

The most viable way to solve Equation 2.54 numerically is to use the geometric 
method, where the shape and location of the free surface within a computational 
cell are reconstructed using the values of the VOF function in its vicinity before 
computing the fluxes of the fluid volume at the cell faces. For example, if we know 
that fluid is filling the left portion of a cell, as shown in Figure 2.8, it will be some 
time before it crosses into the neighbour on the right. 
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Figure 2.8. The calculation of fluid volume fluxes using the geometric method. The shaded 
area represents fluid, while vectors represent the direction of fluid motion. The cell in the 
middle must fill completely before fluid can cross into its neighbour on the right 

Typically, the segment of the free surface within a computational cell is 
represented in three dimensions in a piecewise linear fashion, that is, with a section 
of a plane. Then its slope can be computed from the gradient of the VOF function, 
and its location is pinned by the value of F inside the cell. Then the respective 
amounts of fluid moving in or out of the cell at each of its six faces can be 
evaluated. This particular approach is sometimes called piecewise linear interface 
calculation or the PLIC method. 

Free Surface Boundary Conditions 
The components of the VOF method described so far can be applied to both two-
phase (metal and air) and one-phase (metal and void) flows. In the former case, the 
space outside the F = 1.0 region is filled with air, and flow equations are solved for 
both fluids. 

In the one-phase case, the inertia of the air is neglected and the F=0.0 space is 
effectively empty, void of mass, represented only by uniform pressure and 
temperature. This approach has the advantage of not wasting CPU time on 
modelling air since in most cases the details of its motion are unimportant for the 
motion of the much heavier metal. However, in this case, free surface becomes one 
of the fluid external boundaries and requires the definition of dynamic boundary 
conditions. These boundary conditions are contained in Equations 2.16 - 2.20. A 
proper definition of the boundary conditions is important for accurate capture of 
free surface dynamics. 

2.7.5. Summary 

The finite difference/finite volume approach to numerically solving the equations 
of fluid motion, combined with the FAVORTM and VOF methods provide the basis 
of the CFD calculations for incompressible and compressible flows in this book. 
The numerical solutions also contain turbulence, heat transfer and solidification. 
These and other numerical models are part of a general-purpose CFD code FLOW-
3D® [FLOW-3D, 2006]. This code has been used through this book to validate 
analytical models and to provide transient, three-dimensional solutions that are 
beyond those simplified approaches. 
 
 
 
 
 


