
2
Functions

G. Dowek, Principles of Programming Languages, 19
Undergraduate Topics in Computer Science, DOI 10.1007/978-1-84882-032-6_2,
c© Springer-Verlag London Limited 2009

2.1 The Concept of Functions

2.1.1 Avoiding Repetition

System.out.print("Flight ");
System.out.print("819");
System.out.print(" to ");
System.out.print("Tokyo");
System.out.print(" takes off at ");
System.out.println("8:50 AM");
System.out.println();
System.out.println();
System.out.println();

System.out.print("Flight ");
System.out.print("211");
System.out.print(" to ");
System.out.print("New York");
System.out.print(" takes off at ");
System.out.println("8:55 AM");
System.out.println();
System.out.println();
System.out.println();

20 2. Functions

In this program, the block of three statements System.out.println();,
which skips three lines, is repeated twice. Instead of repeating it there, you can
define a function jumpThreeLines

static void jumpThreeLines () {
System.out.println();
System.out.println();
System.out.println();}

And use it in the main program

System.out.print("Flight ");
System.out.print("819");
System.out.print(" to ");
System.out.print("Tokyo");
System.out.print(" takes off at ");
System.out.println("8:50 AM");
jumpThreeLines();

System.out.print("Flight ");
System.out.print("211");
System.out.print(" to ");
System.out.print("New York");
System.out.print(" takes off at ");
System.out.println("8:55 AM");
jumpThreeLines();

The statement jumpThreeLines(); that is found in the main program is
named the call of the function jumpThreeLines. The statement that is found in
the function and that is executed on each call is named the body of the function.

Organising a program into functions allows you to avoid repeated code,
or redundancy. As well, it makes programs clearer and easier to read: to un-
derstand the program above, it isn’t necessary to understand how the function
jumpThreeLines(); is implemented; you only need to understand what it does.
This also allows you to organise the structure of your program. You can choose
to write the function jumpThreeLines(); one day, and the main program an-
other day. You can also organise a programming team, where one programmer
writes the function jumpThreeLines();, and another writes the main program.

This mechanism is similar to that of mathematical definitions that allows
you to use the word ‘group’ instead of always having to say ‘A set closed under
an associative operation with an identity, and where every element has an
inverse’.

2.1 The Concept of Functions 21

2.1.2 Arguments

Some programming languages, like assembly and Basic, have only a simple
function mechanism, like the one above. But the example above demonstrates
that this mechanism isn’t sufficient for eliminating redundancy, as the main
program is composed of two nearly identical segments. It would be nice to
place these segments into a function. But to deal with the difference between
these two copies, we must introduce three parameters: one for the flight number,
one for the destination and one for the take off time. We can now define the
function takeOff

static void takeOff
(final String n, final String d, final String t) {

System.out.print("Flight ");
System.out.print(n);
System.out.print(" to ");
System.out.print(d);
System.out.print(" takes off at ");
System.out.print(t);
System.out.println();
System.out.println();
System.out.println();}

and to use it in the main program, we write

takeOff("819","Tokyo","8:50 AM");
takeOff("211","New York","8:55 AM");

The variables n, d and t which are listed as arguments in the function’s
definition, are called formal arguments of the function. When we call the func-
tion takeOff("819","Tokyo","8:50 AM"); the expressions "819", "Tokyo"
and "8:50 AM" that are given as arguments are called the real arguments of
the call.

A formal argument, like any variable, can be declared constant or mutable.
If it is constant, it cannot be altered inside the body of the function.

To follow up the comparison, mathematical language also uses parameters
in definitions: ‘The group Z/nZ is ...’, ‘A K-vector space is ...’, ...

In Caml, a function declaration is written let f x y ... = t in p.

let takeOff n d t =
print_string "Flight ";
print_string n;
print_string " to ";
print_string d;

22 2. Functions

print_string " takes off at ";
print_string t;
print_newline ();
print_newline ();
print_newline ()

in takeOff "819" "Tokyo" "8:50 AM";
takeOff "211" "New York" "8:55 AM"

Formal arguments are always constant variables. However, if the argument
itself is a reference, you can assign to it, just like to any other reference.

In C, a function declaration is written as in Java, but without the keyword
static.

2.1.3 Return Values

a = 3;
b = 4;
c = 5;
d = 12;
u = Math.sqrt(a * a + b * b);
v = Math.sqrt(c * c + d * d);

In this program, we want to isolate the computation Math.sqrt(x * x + y
* y) in a function called hypotenuse. But in contrast to the function takeOff
that performs output, the hypotenuse function must compute a value and
send it back to the main program. This return value is the inverse of argument
passing that sends values from the main program to the body of the function.
The type of the returned value is written before the name of the function. The
function hypotenuse, for example, is declared as follows.

static double hypotenuse (final double x, final double y) {
return Math.sqrt(x * x + y * y);}

And the main program is written as follows.

a = 3;
b = 4;
c = 5;
d = 12;
u = hypotenuse(a,b);
v = hypotenuse(c,d);

In Caml, the function hypotenuse is written

2.1 The Concept of Functions 23

let hypotenuse x y = sqrt(x *. x +. y *. y)

In C, the function hypotenuse is written as in Java, but without the keyword
static and using C’s square root function which is written as sqrt instead of
Math.sqrt.

2.1.4 The return Construct

As we have seen, in Caml, the function hypotenuse is written

let hypotenuse x y = sqrt(x *. x +. y *. y)

In Java and in C, in contrast, you must precede the return value with the
keyword return. So, in Java, instead of writing

static double hypotenuse (final double x, final double y) {
Math.sqrt(x * x + y * y);}

you should write

static double hypotenuse (final double x, final double y) {
return Math.sqrt(x * x + y * y);}

When return occurs in the middle of the function instead of the end, it
stops the execution of the function. So, instead of writing

static int sign (final int x) {
if (x < 0) return -1;
else if (x == 0) return 0;
else return 1;}

you can write

static int sign (final int x) {
if (x < 0) return -1;
if (x == 0) return 0;
return 1;}

Basically, if the value of x is negative, the statement return -1; interrupts the
execution of the function, and the other two statements will not be executed.

Exercise 2.1

In Java, write a function that takes an integer argument called n and
returns the integer 2n.

Exercise 2.2

In Java, write a function that takes an integer argument called n and
returns a boolean that indicates whether n is prime or not.

24 2. Functions

2.1.5 Functions and Procedures

A function can on one hand cause an action to be performed, such as outputting
a value or altering memory, and on the other hand can return a value. Functions
that do not return a value are called procedures.

In some languages, like Pascal, procedures are differentiated from functions
using a special keyword. In Caml, a procedure is simply a function that returns
a value of type unit. Like its name implies, unit is a singleton type that
contains only one value, written (). In Caml, a procedure always returns the
value (), which communicates no information.

Java and C lie somewhere in the middle, because we declare a procedure in
these languages by replacing the return type by the keyword void. In contrast
to the type unit of Caml, there is no actual type void in Java and C. For
example, you cannot declare a variable of type void.

A function call, such as hypotenuse(a,b), is an expression, while a proce-
dure call, such as takeOff("819","Tokyo","8:50 AM");, is a statement.

There are however certain nuances to consider, because a function
call can also be a statement. You can, for example, write the statement
hypotenuse(a,b);. The value returned by the function is simply discarded.
However, even if a language allows it, using functions in this way is considered
to be bad form. The Caml compilers, for example, will produce a warning in
this case.

In Java and in C, a procedure, that is to say a function with return type of
void cannot be used as an expression. For example, to write

x = takeOff("819","Tokyo","8:50 AM");

the variable x would have to be of the type void and we have seen that there
is no such variable. In Caml, in contrast, a procedure is nothing but a function
with a return type unit and you can easily write

x := takeOff("819","Tokyo","8:50 AM")

if the variable x is of type unit ref. However, if such an assignment is possible,
it is not useful.

In general, no matter what the language, it is considered good form to sep-
arate functions and procedures. Functions return a value, and do not perform
actions such as outputting a value, and are used as expressions. Procedures do
not return a value, can perform actions, and are used as statements.

2.1 The Concept of Functions 25

2.1.6 Global Variables

Imagine that we would like to isolate the statement x = 0; with a function in
the program

int x;
x = 3;
x = 0;

We then would write the function

static void reset () {x = 0;}

and the main program

int x;
x = 3;
reset();

But this program is not correct, as the statement x = 0; is no longer in the
scope of variable x. For the function reset to have access to the variable x, you
must declare a variable x as a global variable, and the access to this variable is
given to all the functions as well as to the main program

static int x;

static void reset () {x = 0;}

and the main program

x = 3;
reset();

All functions can use any global variable, whether they are declared before
or after the function.

2.1.7 The Main Program

A program is composed of three main sections: global variable declarations x1,
..., xn, function declarations f1, ..., fn′ , and the main program p which is a
statement.

A program can thus be written as

static T1 x1 = t1;
...

26 2. Functions

static Tn xn = tn;

static ... f1 (...) ...
...
static ... fn′ (...) ...

p

However, in Java, the main program is placed inside a special function called:
main. The main function must not return a value, and must always have an
argument of type String []. In addition to the keyword static, the definition
of the main function must also be preceded by the keyword public.

In addition, the program must be given a name, which is given with the
keyword class. The general form of a program is:

class Prog {

static T1 x1 = t1;
...
static Tn xn = tn;

static ... f1 (...) ...
...
static ... fn′ (...) ...

public static void main (String [] args) {p}}

For example

class Hypotenuse {

static double hypotenuse (final double x, final double y) {
return Math.sqrt(x * x + y * y);}

public static void main (String [] args) {
System.out.println(hypotenuse(3,4));}}

In Caml, there is no main function and the syntax of the language separates
functions from the main program

let hypotenuse x y = sqrt(x *. x +. y *. y)
in print_float(hypotenuse 3.0 4.0)

2.1 The Concept of Functions 27

In C, the main program is also a function called main. For historical reasons,
the main function must always return an integer, and is usually terminated with
return 0;. You don’t give a name to the program itself, so a program is simply
a series of global variable and function declarations.

double hypotenuse (const double x, const double y) {
return sqrt(x * x + y * y);}

int main () {
printf("%f\n",hypotenuse(3,4));
return 0;}

2.1.8 Global Variables Hidden by Local Variables

class Prog {

static int n;

static int f (final int x) {
int p = 5;
return n + p + x;}

static int g (final int x) {
int n = 5;
return n + n + x;}

public static void main (String [] args) {
n = 4;
System.out.println(f(6));
System.out.println(g(6));}}

The value of the expression f(6) is 15. The function f adds the global vari-
able n, which has been initialised to 4 in the main program, the local variable
p, with a value of 5, and the argument x, with a value of 6.

In contrast, the value of the expression g(6) is 16, because both occurrences
of n refer to the local variable n, which has a value of 5. In the environment
in which the body of function g is executed, the global variable n is hidden by
the local variable n and is no longer accessible.

28 2. Functions

2.1.9 Overloading

In Java, it is impossible to define two functions with the same name, for example

static int f (final int x) {
return x;}

static int f (final int x) {
return x + 1;}

except when the number or types of their arguments are different. You can, for
example, declare three identically named functions

static int f (final int x) {
return x;}

static int f (final int x, final int y) {
return x + 1;}

static int f (final boolean x) {
return 7;}

At the time of evaluation of an expression of the form f(t1, ..., tn), the
called function is chosen based on its name as well as the number and types
of its arguments. The expressions f(4), f(4,2), and f(true) evaluate to 4, 5,
and 7 respectively. In this case, we say that the name f is overloaded.

There is no overloading in Caml. The programs

let f x = x in let f x = x + 1 in print_int (f 4)

and

let f x = x in let f x y = x + 1 in print_int (f 4 2)

are valid, but the first declaration is simply hidden by the second.
There is also no overloading in C, and the program

int f (const int x) {return x;}
int f (const int x, const int y) {return x + 1;}
...

is invalid.

2.2 The Semantics of Functions 29

2.2 The Semantics of Functions

This brings us to extend the definition of the Σ function. In addition to a state-
ment, an environment, and a memory state, the Σ function now also takes an
argument called the global environment G. This global environment comprises
an environment called e that contains global variables and a function of a finite
domain that associates each function name with its definition, that is to say
with its formal arguments and the body of the function to be executed at each
call.

We must then take into account the fact that, because functions can modify
memory, the evaluation of an expression can now modify memory as well. Be-
cause of this fact, the result of the evaluation of an expression, when it exists,
is no longer simply a value, but an ordered pair composed of a value and a
memory state.

Also, we must explain what happens when the statement return is exe-
cuted, in particular the fact that the execution of this statement interrupts the
execution of the body of the function.

This brings us to reconsider the definition of the function Σ in the case of
the sequence

Σ({p1 p2},e,m,G) = Σ(p2,e,Σ(p1,e,m,G),G)

according to which executing the sequence {p1 p2} consists of executing p1 and
then p2.

Indeed, if p1 is of the form return t;, or more generally if the execution of
p1 causes the execution of return, then the statement p2 will not be executed.
We will therefore consider that the result Σ(p1,e,m,G) of the execution of p1
in the state e, m is not simply a memory state, but a more complex object. One
part of this object is a boolean value that indicates if the execution of p1 has
occurred normally, or if a return statement was encountered. If the execution
occurred normally, the second part of this object is the memory state produced
by this execution. If the statement return was encountered, the second part of
this object is composed of the return value and the memory state produced by
the execution. From now on, the target set of the Σ function will be ({normal}
× Mem) ∪ ({return} × Val × Mem) where Mem is the set of memory states,
that is to say the set of functions that map a finite subset of Ref to the set
Val.

Finally, we should also take into account the fact that a function cannot
only be called from the main program — the main function — but also from
inside another function. However, we will discuss this topic later.

30 2. Functions

2.2.1 The Value of Expressions

The evaluation function of an expression is now defined as

– Θ(x,e,m,G) = (m(e(x)),m), if x is a mutable variable in e,

– Θ(x,e,m,G) = (e(x),m), if x is a constant variable in e,

– Θ(c,e,m,G) = (c,m), if c is a constant,

– Θ(t ⊗ u,e,m,G) = (v ⊗ w,m”) where ⊗ is an arithmetical or logical op-
eration, (v,m’) = Θ(t,e,m,G) and (w,m”) = Θ(u,e,m’,G),

– if Θ(b,e,m,G) = (true,m’) then

Θ((b) ? t : u,e,m,G) = Θ(t,e,m’,G),

if Θ(b,e,m,G) = (false,m’) then

Θ((b) ? t : u,e,m,G) = Θ(u,e,m’,G).

– Θ(f(t1,...,tn),e,m,G) is defined this way.

Let x1, ..., xn be the list of formal arguments and p the body of the function
associated with the name f in G. Let e’ be the environment of global variables
of G. Let (v1,m1) = Θ(t1,e,m,G), (v2,m2) = Θ(t2,e,m1,G), ..., (vn,mn) =
Θ(tn,e,mn−1,G) be the result of the evaluation of real arguments t1, ..., tn
of the function.

For the formal mutable arguments xi, we consider arbitrary distinct refer-
ences ri that do not appear either in e’ or in mn. We define the environment
e” = e’ + (x1 = v1) + (x2 = r2) + ... + (xn = rn) in which we asso-
ciate the formal argument xi to the value vi or to the reference ri according
to whether it is constant or mutable, and the memory state m” = mn + (r2 =
v2) + ... + (rn = vn) in which we associate to the values vi the references
ri associated to formal mutable arguments.

Consider the object Σ(p,e”,m”,G) obtained by executing the body of the
function in the state formed by the environment e” and the memory state
m”. If this object is of the form (return,v,m”’) then we let

Θ(f(t1,...,tn),e,m,G) = (v,m”’).

Otherwise, the function Θ is not defined: the evaluation of the expression
produces an error because the evaluation of the body of the function has not
encountered a return statement.

2.2 The Semantics of Functions 31

2.2.2 Execution of Statements

We now define what occurs when a statement is executed.

– When the statement p is a declaration of the form {T x = t; p} or {final
T x = t; p}, if Θ(t,e,m,G) = (v,m’) then

Σ({T x = t; p},e,m,G) = Σ(p,e + (x = r),m’ + (r = v),G)

where r is an arbitrary reference that does not appear in e and m, and

Σ({final T x = t; p},e,m,G) = Σ(p,e + (x = v),m’,G).

– When the statement p is an assignment of the form x = t;, if Θ(t,e,m,G)
= (v,m’) then

Σ(x = t;,e,m,G) = (normal,m’ + (e(x) = v)).

– When the statement p is a sequence of the form {p1 p2}, if Σ(p1,e,m,G) =
(normal,m’) then

Σ({p1 p2},e,m,G) = Σ(p2,e,m’,G)

and if Σ(p1,e,m,G) = (return,v,m’) then

Σ({p1 p2},e,m,G) = (return,v,m’).

– When the statement p is a test of the form if (b) p1 else p2, if Θ(b,e,m,G)
= (true,m’) then

Σ(if (b) p1 else p2,e,m,G) = Σ(p1,e,m’,G)

and if Θ(b,e,m,G) = (false,m’) then

Σ(if (b) p1 else p2,e,m,G) = Σ(p2,e,m’,G).

– The definition for loops is unchanged

Σ(while (b) q,e,m,G) = limn Σ(pn,e,m,G)

where

p0 = if (b) giveup; else skip;

and pn+1 = if (b) {q pn} else skip;.

32 2. Functions

– When the statement p is of the form return t;, if Θ(t,e,m,G) = (v,m’)
then

Σ(return t;,e,m,G) = (return,v,m’).

– Finally, we add the case of functions, which is very similar to the case of
functions in the definition of the evaluation of expressions, except that if the
object Σ(p,e”,m”,G) has the form (normal,m”’), then we let

Σ(f(t1,...,tn);,e,m,G) = (normal,m”’)

and if it has the form (return,v,m”’), we let

Σ(f(t1,...,tn);,e,m,G) = (normal,m”’)

by ignoring the value v: we have the case where a function is used as a
statement.

For example, when we execute the statement u = hypotenuse(a,b);
in the environment e = [a = r1, b = r2, u = r3], the memory state
m = [r1 = 3.0, r2 = 4.0, r3 = 0.0], and the global environment G com-
posed of the environment e and the function declaration hypotenuse: (x,y),
return Math.sqrt(x * x + y * y);, we start by evaluating the expression
hypotenuse(a,b). To do so, we start by evaluating a and b, which produces
the values 3.0 and 4.0, without changing the memory state. And we cre-
ate an environment e” = [a = r1, b = r2, u = r3, x = r4, y = r5] and
the memory state m” = [r1 = 3.0, r2 = 4.0, r3 = 0.0, r4 = 3.0, r5 =
4.0]

a b u x y

3.0 4.0 0.0 3.0 4.0

Next, we execute the body of the function, which produces the result
(return,5.0,m”) and so Θ(hypotenuse(a,b),e,m,G) is (5.0,m”). The result
of the execution of the statement u = hypotenuse(a,b); is then an ordered
pair composed of a boolean normal and the memory state m”’ = [r1 = 3.0,
r2 = 4.0, r3 = 5.0, r4 = 3.0, r5 = 4.0].

The value of the variable u in the state e, m”’ is 5.0.

2.2 The Semantics of Functions 33

Exercise 2.3

What happens if the formal arguments x and y of the function hypote-
nuse are constant variables?

Exercise 2.4

What happens if you execute the statement u = hypotenuse(a,b);,
with the variables a, b, and u declared in the main function?

Finally, we can give the definition of the Σ function for the entire program.
Let P be a program formed of global variable declarations static T1 a1 = t1;,
..., static Tn an = tn; and of function declarations static U1 f1 (x1) p1;,
..., static Un′ fn′ (xn′) pn′;.

Let v1, ..., vn be the initial values given to global variables, that is to say the
values of expressions ti. Let e be the environment [a1 = v1, a2 = r2, ...,
an = rn] in which we associate the global variable ai to the value vi or to the
reference ri whether it is constant or mutable, and m is the memory state [r2
= v2, ..., rn = vn], in which we associate the references ri associated to
mutable global variables with the values vi. Let G be the global environment
(e, [f1 = (x1,p1), ..., fn′ = (xn′,pn′)]).

The memory state Σ(P) is defined by

– Σ(P) = Σ(main(null);,e,m,G)

where null is a value of type String [] which we will discuss later.

Exercise 2.5

The function f is defined as follows

static int f (final int x) {
int y = x;
while (true) {
y = y + 1;
if (y == 1000) return y + 1;}}

What is returned from the function call f(500)?

Exercise 2.6

Imagine that all memory states contain two special references: in and
out. Write the definition of the function Σ for the input and output
constructs from Section 1.2.

34 2. Functions

2.2.3 Order of Evaluation

Since expressions can modify memory, consideration must be given to the fact
that in the definition of Σ we have given, arguments of a function are evaluated
from left to right. So, we evaluate t1 in the memory state m, and t2 in the
memory state m1 produced by the evaluation of t1, ... So, the program

class Prog {

static int n;

static int f (final int x, final int y) {
return x;}

static int g (final int z) {
n = n + z;
return n;}

public static void main (String [] args) {
n = 0;
System.out.println(f(g(2),g(7)));}}

outputs the result 2.

2.2.4 Caml

The definition of the function Σ for Caml is somewhat different from the defini-
tion of Σ used for Java. In Caml, all formal arguments are constant variables,
so new references are never created at the point of a function call.

Also, in Caml, there is only one name space for functions and variables. In
Java, the program

class Prog {

static int f (final int x) {
return x + 1;}

static int f = 4;

public static void main (String [] args) {
System.out.println(f(f));}}

2.2 The Semantics of Functions 35

is valid, and in the expression f(f), the first occurrence of f is a function
name f and the second occurrence of f is a variable name. In Caml, however,
the program

let f x = x + 1 in let f = 4 in print_int(f f)

is invalid. The function f becomes hidden by the variable f. There is there-
fore no global environment: global variables and functions are declared in the
environment, like variables. During the call of a function f, it is impossible
to create the environment in which we must evaluate the body of the function
using the global environment. Thus, in the environment, we must associate the
name f, not only with the list of formal arguments and the body of the function,
but also the environment to extend with the arguments for executing the body
of the function. This environment is the environment in which the function is
defined.

So, the Java program

class Prog {

static int f () {return x;}

static int x = 4;

public static void main (String [] args) {
System.out.println(f ());}}

is valid, and outputs 4, while the Caml program

let f () = x in let x = 4 in print_int(f())

is invalid, because the variable x in the body of f is not part of the environment
of the definition of f. It is necessary to declare this variable before f

let x = 4 in let f () = x in print_int(f())

Another difference is that the Caml compilers evaluate the arguments from
right to left. For example, the program

let n = ref 0
in let f x y = x
in let g z = (n := !n + z; !n)
in print_int (f (g 2) (g 7))

results in 9 and not 2.
However, the definition of the Caml language does not specify the order of

evaluation of the arguments of a function. Different compilers may evaluate

36 2. Functions

arguments in a different order. It is up to the programmer to write programs
whose result is not dependent on the order of evaluation.

Finally, there is no return in Caml, and the result of the execution of a
statement, like the evaluation of an expression, is an ordered pair composed of
a value, possibly (), and a memory state.

Exercise 2.7

Give the definition of the Σ function of Caml, assuming that arguments
are always evaluated from right to left.

2.2.5 C

The definition of the Σ function for C is also somewhat different from the
definition of Σ for Java.

In C, the references created at the moment of a function call are removed
from the memory and the end of the execution of the body of the function.

Like in Caml, there is only one name space for functions and variables, and
functions are declared in the same environment as variables. In this environ-
ment, we not only associate the name f to the list of formal arguments and the
body of the function, but also to the environment e to extend with the arguments
for executing the body of the function. This environment is, like in Caml, the
environment of the definition of the function. For example, the program

int f () {return x;}

int x = 4;

int main () {
printf("%d\n",f());
return 0;}

is invalid.
C compilers also evaluate a function’s arguments from left to right, as in

Java. However, the definition of the language, like that of Caml, does not specify
the order of evaluation of a function’s arguments, and it is up to the programmer
to write programs whose result does not depend on the order of evaluation.

Exercise 2.8

Give the definition of the Σ function for C, assuming that arguments are
always evaluated from left to right.

2.3 Expressions as Statements 37

2.3 Expressions as Statements

Now that we have defined the result of the evaluation of an expression as an
ordered pair composed of a value and a state, we can better understand the
link between expressions and statements.

In C, any expression followed by a semicolon is a statement. The value of
an expression is simply ignored when it is used as a statement. If Θ(t,e,m,G)
is the ordered pair (v,m’) then Σ(t;,e,m,G) is the ordered pair composed
of the boolean normal and the memory state m’. The situation is somewhat
similar in Java, except that only certain expressions are eligible to be used
as statements. For example, if f is a function, then f(t1,...,tn); is, as we
have seen, a statement, but that is not the case with 1;. In Caml, there is
no difference between statements and expressions, since statements are simply
expressions of type unit.

Exercise 2.9

In Java and in C, the expression x = t assigns the value of t to x and
returns this same value. How would you modify the definition of the
Θ function to take into account expressions of this type? What is the
output of the following program?

class Prog {

public static void main (String [] args) {
int x;
int y;
x = (y = 4);
System.out.println(x);
System.out.println(y);}}

2.4 Passing Arguments by Value and Reference

If the initial value of the variable x is 4 and that of the variable y is 7, after
executing the statement {z = x; x = y; y = z;}, variable x has the value 7
and variable y has the value 4. More generally, this statement exchanges the
values of these variables, using the principle of the third glass

38 2. Functions

Observe the behaviour of the following program

class Prog {

static int a;

static int b;

static void swap (int x, int y) {int z; z = x; x = y; y = z;}

static public void main (String [] args) {
a = 4;
b = 7;
swap(a,b);
System.out.println(a);
System.out.println(b);}}

You might expect the values of a and b have been exchanged and that the
numbers 7 and 4 are displayed, but surprisingly, the number 4 is displayed first,
followed by the number 7.

In fact, this result is what is expected based on the definition of the Σ func-
tion given above. We start with an environment e = [a = r1, b = r2] and
a memory state m = [r1 = 4, r2 = 7]. The call of the function swap(a,b);
computes the values of the expressions a and b in the environment e and the
memory state m. It obtains 4 and 7 respectively. Then, the environment [a =
r1, b = r2, x = r3, y = r4] and the memory state [r1 = 4, r2 = 7, r3
= 4, r4 = 7] are created.

a b x y

4 7 4 7

2.4 Passing Arguments by Value and Reference 39

The values of the variables x and y are exchanged, which results in the mem-
ory state [r1 = 4, r2 = 7, r3 = 7, r4 = 4, r5 = 4] which returns control
to the main program. The environment is then e = [a = r1, b = r2] with
the memory state [r1 = 4, r2 = 7, r3 = 7, r4 = 4, r5 = 4]. The values
of the variables a and b have not changed.

In other words, the function swap ignores the variables a and b. It can only
use their value at the moment of the function call, and cannot modify their
value: executing the statement swap(a,b); has the same result as executing
the statement swap(4,7);.

The mechanism of argument passing that we have described is called argu-
ment passing by value. It does not allow the creation of a swap function that
changes the contents of two variables. However, most programming languages
have a construct that allows the creation of such a function. But, this construct
is somewhat different in each language. Before seeing how this is done in Java,
Caml, and C, we will look at the much simpler example of the Pascal language.

2.4.1 Pascal

The Pascal language has a built in calling mechanism to pass arguments by
reference, or by variable. In the definition of the swap procedure, we can precede
each argument with the keyword var.

procedure swap (var x : integer, var y : integer) ...

When an argument of a procedure or a function is declared using pass by
reference, we can only apply this procedure or function to a variable. So, we
can write swap(a,b) but not swap(4,7), nor swap(2 * a,b).

When we call the procedure swap(a,b), instead of associating the vari-
ables x and y to new references assigning to these references the values of
the procedure’s arguments, 4 and 7, we associate the variables x and y to
references associated with variables given as arguments to the procedure. So,
we call the procedure swap(a,b) in an environment e = [a = r1, b = r2]
and a memory state m = [r1 = 4, r2 = 7], instead of creating the environ-
ment [a = r1, b = r2, x = r3, y = r4] and the memory state [r1 = 4,
r2 = 7, r3 = 4, r4 = 7], we create the environment [a = r1, b = r2, x
= r1, y = r2] while keeping the memory state [r1 = 4, r2 = 7].

40 2. Functions

a x b y

4 7

Because of this, the procedure swap exchanges the contents of the references r1
and r2 and not of the references r3 and r4

a x b y

7 4

and after execution of the procedure, the contents of the references associated
with the variables a and b have been exchanged.

Being able to explain the mechanism of passing by reference is the main
motivation for decomposing the state into an environment and a memory state
by introducing an intermediate set of references, as we have done in the previous
chapter.

Exercise 2.10

Give the definition of the Σ function in the case of functions with an
argument passed by reference.

2.4.2 Caml

In Caml, passing by reference is not a primitive construct, but it can be accom-
plished by using the fact that references are also values.

For example, in the environment [x = r] and in the memory state [r =
4], the value of the expression !x is the integer 4, but the value of the expression
x is the reference r. This allows the creation of a function swap that takes
two references as arguments and exchanges the values associated with these
references in the memory.

let swap x y = let z = ref 0 in (z := !x; x := !y; y := !z)

To exchange the values of the variables a and b, you simply apply the func-
tion to the references a and b and not to the integers !a and !b.

2.4 Passing Arguments by Value and Reference 41

a:= 4;
b := 7;
swap a b;
print_int !a;
print_newline();
print_int !b;
print_newline()

Indeed, when we call the function swap a b in the environment [a = r1, b =
r2] and the memory state [r1 = 4, r2 = 7], we create the environment [a =
r1, b = r2, x = r1, y = r2] in which the constant formal arguments x and
y are linked to the real arguments r1 and r2 and we keep the same memory
state [r1 = 4, r2 = 7]

a x b y

4 7

and the function swap exchanges the contents of the references r1 and r2 and
after the execution of the function, the contents of the references associated
with the variables a and b have now also been exchanged.

Exercise 2.11

What does the following program do?

let swap x y = let z = !x in (x := !y; y := z)

2.4.3 C

In C as well, the passing by reference is not a primitive construct, but it can be
simulated by using a similar mechanism to that of Caml. The type of references
that can be associated with a value of type T in memory, written T ref in Caml,
is written T* in C. The dereference construct, written ! in Caml, is written as
* in C. For example, in the environment [u = r1] and in the memory state
[r1 = r2, r2 = 4], the value of the expression u is the reference r2 and the
value of the expression *u is the integer 4.

If x is a variable, the reference associated with x in the environment, written
simply as x in Caml, is written as &x in C. For example, in the environment

42 2. Functions

[x = r] and the memory state [r = 4] the value of expression x is the integer
4, the value of expression &x is the reference r and the value of expression *&x
is the integer 4. The & construct applies to a variable and not to an arbitrary
expression.

Exercise 2.12

What does the following program output?

int main () {
int x;
int* u;

x = 4;
u = &x;
printf("%d\n",*u);
return 0;}

Using these constructs, it becomes possible to create states in which some
references are associated with other references. It then becomes necessary to
update our graphical representation of states. When a memory state has a ref-
erence r’ associated with a reference r, one solution is to write in the box of r
the coordinates of the place where we have drawn the reference r’ on the page.
A better solution is to draw in the box of r an arrow that points to the reference
r’.

4

u x

If t is an expression of type T* then the language C has a new assignment
construct *t = u;, similar to the construct := of Caml: if the value of t is a
reference r and the value of u is v, then the execution of the statement *t =
u; associates the value v to the reference r in memory.

Exercise 2.13

Show that the execution of the statement x = u; has the same effect as
executing the statement *&x = u. What can we conclude?

These constructs allow you to write a function swap that takes as argu-
ments two references and exchanges the values associated with these references
in memory.

2.4 Passing Arguments by Value and Reference 43

void swap (int* const x, int* const y) {
int z;
z = *x;
*x = *y;
*y = z;}

To exchange the values of the variables a and b, you can now apply this function
to the references &a and &b.

int main () {
a = 4;
b = 7;
swap(&a,&b);
printf("%d\n",a);
printf("%d\n",b);
return 0;}

When we execute the statement swap(&a,&b); in the environment e = [a =
r1, b = r2] and the memory state m = [r1 = 4, r2 = 7], we create the en-
vironment e = [a = r1, b = r2, x = r1, y = r2] and the memory state m
= [r1 = 4, r2 = 7].

a x b y

4 7

And, the function swap exchanges the contents of the references r1 and r2 and
after the execution of the function, the contents of the references associated
with the variables a and b have been exchanged.

In this example, take note of the syntax of the declaration of the argu-
ment x, int* const x, which prevents the assignment x = t; but allows the
assignment *x = t;. The declaration const int* x, in contrast allows the as-
signment x = t; but prevents the assignment *x = t;. The declaration const
int* const x prevents both types of assignment.

Exercise 2.14

What is the output of the following program?

void swap (int* x, int* y) {
int z;
z = *x;

44 2. Functions

*x = *y;
*y = z;}

int main () {
a = 4;
b = 7;
swap(&a,&b);
printf("%d\n",a);
printf("%d\n",b);
return 0;}

Draw the state in which the body of the function is executed.

Exercise 2.15

What does the following function do?

void swap1 (int* x, int* y) {
int* z;
z = x;
x = y;
y = z;}

Exercise 2.16

Give the definition of the Θ function for expressions of the form *t and
&x, and the definition for the Σ function for statements of the form *t
= u;.

Exercise 2.17

The goal of this exercise is to demonstrate that, in C, you may look for
a reference that does not exist.

1. In the following Caml program, what is the state in which the state-
ment print_int !(!u) is executed?

let f p = let n = ref p in let x = ref n in !x
in let u = ref (f 5)
in print_int !(!u)

Answer the same question for the following program.

let f p = let n = ref p in let x = ref n in !x
in let u = ref (f 5)
in let v = ref (f 10)
in print_int !(!u)

2.4 Passing Arguments by Value and Reference 45

2. Given the following C program

int* f (const int p) {
int n = p;
int* x = &n;
return x;}

int main () {
int* u = f(5);
printf("%d\n",*u);
return 0;}

In what state is the statement printf("%d\n",*u); executed?

Hint: remember that in C, in contrast to Caml, we remove from
memory the reference associated with a variable when that variable
is removed from the environment.

3. In C, when we use a reference that is not declared in memory, it
does not produce an error, and the result will be unpredictable. Try
compiling and running the following C program.

int* f (const int p) {
int n = p;
int* x = &n;
return x;}

int main () {
int* u = f(5);
int* v = f(10);
printf("%d\n",*u);
return 0;}

2.4.4 Java

In Java, passing by reference is not a primitive construct, but it can be simu-
lated by using a different mechanism called wrapper types. We will explain this
later, as it uses language constructs that have yet to be introduced.

