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The PVTOL Aircraft

2.1 Introduction

We introduce in this chapter the well-known Planar Vertical Take-Off and
Landing (PVTOL) aircraft problem. The PVTOL represents a challenging
nonlinear systems control problem that is a particular case of what is today
known as “motion control”. The PVTOL is clearly motivated by the need to
stabilize aircraft that are able to take-off vertically such as helicopters and
some special airplanes.

The PVTOL is a mathematical model of a flying object that evolves in a
vertical plane. It has three degrees of freedom (x, y, φ) corresponding to its
position and orientation in the plane. The PVTOL is composed of two inde-
pendent thrusters that produce a force and a moment on the flying machine,
see Figure 2.1. The PVTOL is an underactuated system since it has three de-
grees of freedom and only two inputs [144]. The PVTOL is a very interesting
nonlinear control problem.

Numerous design methods for the flight control of the PVTOL aircraft
model exist in the literature [24, 26, 45, 53, 92, 96]. Indeed, this particular
system is a simplified aircraft model with a minimal number of states and
inputs but retains the main features that must be considered when designing
control laws for a real aircraft. Since, the system possesses special properties
such as, for instance, unstable zero dynamics and signed (thrust) input [63],
several methodologies for controlling such a system have been proposed.

An algorithm to control the PVTOL based on an approximate I-O lin-
earization procedure was proposed in [63]. Their algorithm achieves bounded
tracking and asymptotic stability. A nonlinear small gain theorem was pro-
posed in [173] which can be used to stabilize a PVTOL. The author has proved
the stability of a controller based on nested saturations [172]. The algorithm
is very simple, has bounded control inputs and performs well even if the initial
horizontal displacement error is large.
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An extension of the algorithm proposed by [63] was presented in [100].
They were able to find a flat output of the system that was used for tracking
control of the PVTOL in presence of unmodelled dynamics.

The forwarding technique developed in [102] was used in [44] to propose a
control algorithm for the PVTOL. This approach leads to a Lyapunov function
which ensures asymptotic stability. Other techniques based on linearization
were also proposed in [43].

Recently [99] proposed a control algorithm for the PVTOL for landing
on a ship whose deck oscillates. They designed an internal model-based error
feedback dynamic regulator that is robust with respect to uncertainties.

In this chapter we present a global stabilizing strategy for the control of
the PVTOL aircraft. The stability proof is simple. The control algorithm has
been tested in numerical simulations and in real-time applications.

This chapter is organized as follows. Section 2.2 presents the PVTOL
dynamical model. Section 2.3.1 gives the control of the vertical displacement
while the roll and horizontal displacement control are presented in Section
2.3.2. Real-time experimental results are given in Section 2.4. The conclusions
are finally given in Section 2.5.

2.2 System Description

The dynamical model of the PVTOL aircraft can be obtained using the La-
grangian approach or Newton’s laws. Therefore, the PVTOL system equations
are given by (see Figure 2.1)

ẍ = − sin(φ)u1 + ε cos(φ)u2

ÿ = cos(φ)u1 + ε sin(φ)u2 − 1 (2.1)
φ̈ = u2

where x is the horizontal displacement, y is the vertical displacement and φ is
the angle the PVTOL makes with the horizontal line. u1 is the total thrust and
u2 is the couple as shown in Figure 2.1. The parameter ε is a small coefficient
which characterizes the coupling between the rolling moment and the lateral
acceleration of the aircraft. The constant −1 is the normalized gravitational
acceleration.

In general, ε is negligible and not always well known [63]. Therefore, it is
possible to suppose that ε = 0, i.e.

ẍ = − sin(φ)u1 (2.2)
ÿ = cos(φ)u1 − 1 (2.3)
φ̈ = u2 (2.4)
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Fig. 2.1. The PVTOL aircraft (front view).

Furthermore, several authors have shown that by an appropriate change
of coordinates, we can obtain a representation of the system without the term
due to ε [125]. For instance, R. Olfati-Saber [125] applied the following change
of coordinates

x̄ = x− ε sin(φ) (2.5)
ȳ = y + ε(cos(φ) − 1) (2.6)

The system dynamics considering these new coordinates become

¨̄x = − sin(φ)ū1

¨̄y = cos(φ)ū1 − 1 (2.7)
φ̈ = u2

where ū1 = u1 −εφ̇2. Note that this structure (2.7) has the same form as (2.1)
with ε = 0.

2.3 Control Strategy

In this section we present a simple control algorithm for the PVTOL whose
convergence analysis is also relatively simple as compared with other con-
trollers proposed in the literature. We present a new approach based on nested
saturations to control the PVTOL which can lead to further developments in
nonlinear systems. The simplicity of both the algorithm and the analysis al-
lows for a better understanding of the problem. The proposed algorithm can
be considered as an extension of the control of multiple integrators of [172] to
the case when there are nonlinear functions between the integrators.
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This section is divided in two parts. In the first part, we are interested in
stabilizing the altitude y, while in the second part we propose u2 in order to
control the roll angle and the horizontal displacement in the x-axis.

2.3.1 Control of the Vertical Displacement

The vertical displacement y will be controlled by forcing the altitude to behave
as a linear system. This is done by using the following control strategy

u1 =
r1 + 1

cosσp(φ)
(2.8)

where 0 < p < π
2 and ση, for some η > 0, is a saturation function

ση(s) =


η for s > η
s for −η ≤ s ≤ η
−η for s < −η

(2.9)

and

r1 = −a1ẏ − a2(y − yd) (2.10)

where yd is the desired altitude and a1 and a2 are positive constants such that
the polynomial s2 + a1s+ a2 is stable. Let us assume that after a finite time
T2, φ(t) belongs to the interval

Iπ
2

= (−π

2
+ ε,

π

2
− ε) (2.11)

for some ε > 0 so that cosφ(t) �= 0. Introducing (2.8) and (2.10) into (2.2)–
(2.4) we obtain for t > T2

ẍ = − tanφ(r1 + 1)
ÿ = −a1ẏ − a2(y − yd)
φ̈ = u2

(2.12)

Note that in view of the above, y → yd and r1 → 0 as t → ∞.

2.3.2 Control of the Roll Angle and the Horizontal Displacement

We will now propose u2 to control φ̇, φ, ẋ and x. The control algorithm will
be obtained step by step. The final expression for u2 will be given at the end
of this section (see (2.63)). Roughly speaking, for φ close to zero, the (x, φ)
subsystem is represented by four integrators in cascade. A. Teel [172] proposed
a control strategy based on nested saturations that can be used to control a set
of integrators connected in cascade. We will show that the strategy proposed
in [172] for linear systems can be modified to control x and φ in the nonlinear
system (2.12).

We will also show that φ(t) ∈ Iπ
2

in (2.11) after t = T2 independently of
the input u1 in (2.8).
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Boundedness of φ̇

In order to establish a bound for φ̇ define u2 as

u2 = −σa(φ̇+ σb(z1)) (2.13)

where a > 0 is the desired upper bound for |u2| and z1 will be defined later.
Let

V1 = 1
2 φ̇

2 (2.14)

Then it follows that

V̇1 = −φ̇σa(φ̇+ σb(z1)) (2.15)

Note that if | φ̇ |> b+ δ for some b > 0 and some δ > 0 arbitrarily small,
then V̇1 < 0. Therefore, after some finite time T1, we will have

| φ̇(t) | ≤ b+ δ (2.16)

Let us assume that b satisfies

a ≥ 2b+ δ (2.17)

Then, from (2.12) and (2.13) we obtain for t ≥ T1

φ̈ = −φ̇− σb(z1) (2.18)

Boundedness of φ

To establish a bound for φ, define z1 as

z1 = z2 + σc(z3) (2.19)

for some z3 to be defined later and

z2 = φ+ φ̇ (2.20)

From (2.18)–(2.20) we have

ż2 = −σb(z2 + σc(z3)) (2.21)

Let
V2 = 1

2z
2
2 (2.22)

then
V̇2 = −z2σb(z2 + σc(z3)) (2.23)

Note that if |z2| > c+ δ for some δ arbitrarily small and some c > 0, then
V̇2 < 0. Therefore, it follows that after some finite time T2 ≥ T1, we have
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|z2(t)| ≤ c+ δ (2.24)

From (2.20) we obtain for t ≥ T2

φ(t) = φ(T2)e−(t−T2) +
∫ t
T2
e−(t−τ)z2(τ)dτ (2.25)

Therefore, it follows that there exists a finite time T3 such that for t ≥
T3 > T2 we have

|φ(t)| ≤ φ̄ � c+ 2δ (2.26)

If
c+ 2δ ≤ π

2
− ε (2.27)

then φ(t) ∈ Iπ
2
, see (2.11), for t ≥ T2.

Assume that b and c also satisfy

b ≥ 2c+ δ (2.28)

Then, in view of (2.24), (2.21) reduces to

ż2 = −z2 − σc(z3) (2.29)

for t ≥ T3.
Note that the following inequality holds for |φ| < 1

|tanφ− φ| ≤ φ2 (2.30)

We will use the above inequality in the following development.

Boundedness of ẋ

To establish a bound for ẋ, let us define z3 as

z3 = z4 + σd(z5) (2.31)

where z4 is defined as
z4 = z2 + φ− ẋ (2.32)

and z5 will be defined later. From (2.12), (2.20) and (2.29) and the above it
follows that

ż4 = (1 + r1) tanφ− φ− σc(z4 + σd(z5)) (2.33)

Define
V3 = 1

2z
2
4 (2.34)

then
V̇3 = z4 [(1 + r1) tanφ− φ− σc(z4 + σd(z5))] (2.35)

Since r1 tanφ→ 0 (see (2.10) and (2.12)), there exists a finite time T5 > T4,
large enough such that if
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|z4| > d+ φ̄2 + δ (2.36)

and
c ≥ φ̄2 + δ (2.37)

for some δ arbitrarily small and d > 0, then V̇3 < 0. Therefore, after some
finite time T6 > T5, we have

|z4(t)| ≤ d+ δ + φ̄2 (2.38)

Let us assume that d and c satisfy

c ≥ 2d+ δ + φ̄2 (2.39)

Thus, after a finite time T6, (2.33) reduces to

ż4 = (1 + r1) tanφ− φ− z4 − σd(z5) (2.40)

Note that in view of (2.20), (2.32) and (2.38) it follows that ẋ is bounded.

Boundedness of x

To establish a bound for x, let us define z5 as

z5 = z4 + φ− 2ẋ− x (2.41)

From (2.12), (2.20), (2.32) and (2.40) we get

ż5 = (1 + r1) tanφ− φ− z4 − σd(z5) + φ̇+ 2 tanφ(r1 + 1) − ẋ

= −σd(z5) + 3r1 tanφ+ 3(tanφ− φ) (2.42)

Define
V4 = 1

2z
2
5 (2.43)

then
V̇4 = z5 [−σd(z5) + 3r1 tanφ+ 3(tanφ− φ)] (2.44)

Since r1 tanφ → 0, there exists a finite time T7 > T6, large enough such
that if |z5| > 3φ̄2 + δ for some δ arbitrarily small and

d ≥ 3φ̄2 + δ (2.45)

then V̇4 < 0. Therefore, after some finite time T8 > T7, we have

|z5(t)| ≤ 3φ
2

+ δ (2.46)

After time T8 (2.42) reduces to

ż5 = −z5 + 3r1 tanφ+ 3(tanφ− φ) (2.47)
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Boundedness of x follows from (2.38), (2.41) and (2.46).
Let us rewrite all the constraints on the parameters a, b, c, d and φ

a ≥ 2b+ δ (2.48)
φ̄ � c+ 2δ ≤ 1 (2.49)
b ≥ 2c+ δ (2.50)
c ≥ (c+ 2δ)2 + 2d+ δ (2.51)
d ≥ 3(c+ 2δ)2 + δ (2.52)

From the above we obtain

a ≥ 4c+ 3δ (2.53)
b ≥ 2c+ δ (2.54)

c+ 2δ ≤ 1 (2.55)
c ≥ (c+ 2δ)2 + 2d+ δ

≥ (c+ 2δ)2 + 2(3(c+ 2δ)2 + δ) + δ

≥ 7(c+ 2δ)2 + 3δ (2.56)
d ≥ 3(c+ 2δ)2 + δ (2.57)

Convergence of φ, φ̇, x and ẋ to zero

Therefore, c and δ should be chosen small enough to satisfy (2.53) and (2.57).
The parameters a, b and d can then be computed as a function of c as above.

From (2.47) it follows that for a time large enough,

| z5(t) | ≤ 3φ2 + δ (2.58)

for some δ arbitrarily small. From (2.40) and (2.58) we have that for a time
large enough,

| z4(t) | ≤ 4φ2 + 2δ (2.59)

for some δ arbitrarily small. From (2.31) and the above we have

| z3(t) | ≤ 7φ2 + 3δ (2.60)

Similarly, from (2.29)

| z2(t) | ≤ 7φ2 + 4δ (2.61)

and finally for a time large enough and an arbitrarily small δ, from (2.25) and
the above we get

| φ | ≤ 7φ2 + 5δ (2.62)

Since δ is arbitrarily small, the above inequality implies that
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φ = 0

| φ | ≥ 1
7

If c is chosen small enough such that φ̄ < 1
7 (see (2.26)), then the only

possible solution is φ = 0. Therefore φ → 0 as t → ∞. From (2.58)–(2.61) and
(2.19) we have that zi(t) → 0 for i = 1, 2, ..., 5. From (2.20) we get φ̇ → 0.
From (2.32) and (2.41) it follows respectively that ẋ → 0 and x → 0. The
control input u2 is given by (2.13), (2.19), (2.20), (2.31), (2.32) and (2.41),
i.e.

u2 = −σa(φ̇+ σb(φ+ φ̇+ σc(2φ+ φ̇− ẋ+ σd(3φ+ φ̇− 3ẋ− x)))) (2.63)

The amplitudes of the saturation functions should satisfy the constraints
in (2.53)–(2.57).

2.4 Real-time Experimental Results

In this section we present a real-time application of the control algorithm for
the PVTOL presented in the previous sections. We have tested our control
algorithm in two experiments, the first one was made using a quad-rotor
rotorcraft and the second one with a prototype of the PVTOL built at the
Heudiasyc laboratory.

Fig. 2.2. Photograph of the quad-rotor rotorcraft (front view).

2.4.1 Experiment using a Quad-Rotor Rotorcraft

We use a four-rotor electric mini-helicopter as shown in Figure 2.2. Note
that when the yaw and pitch angles are set to zero, the quad-rotor rotorcraft
reduces to a PVTOL.
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In our experiment the pitch and yaw angles are controlled manually by an
experienced pilot. The remaining controls, i.e. the main thrust and the roll
control, are controlled using the control strategy presented in the previous
sections. In the four-rotor helicopter, the main thrust is the sum of the thrusts
of each motor. Pitch movement is obtained by increasing (reducing) the speed
of the rear motor while reducing (increasing) the speed of the front motor.
The roll movement is obtained similarly using the lateral motors.

The radio is a Futaba Skysport 4. The radio and the PC (INTEL Pentium
III) are connected using data acquisition cards (ADVANTECH PCL-818HG
and PCL-726). The connection in the radio is directly made to the joystick
potentiometers for the main thrust and pitch control.

We use the 3D tracker system (POLHEMUS) [46] for measuring the po-
sition and the orientation of the rotorcraft. The Polhemus is connected via
RS232 to the PC.

In Chapter 3, we will give a detailed description of this platform.

We wish to use our control law with a quad-rotor rotorcraft; this helicopter
evolves in 3D and its movements are defined by the variables (x, y, z, ψ, θ, φ).
We are going to assimilate the altitude of the quad-rotor rotorcraft to the
altitude of the PVTOL. This means that we will see y of the PVTOL as z of
the quad-rotor rotorcraft.

The control objective for this experience is to make the quad-rotor ro-
torcraft hover at an altitude of 20 cm i.e. we wish to reach the position
(x, z) = (0, 20) cm while φ = 0◦.

With respect to the time derivatives, we have simplified the mathematical
computation by setting q̇t ∼= qt−qt−T

T , where q is a given variable and T is the
sampling period. In the experiment T = 71 ms.
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Fig. 2.3. Altitude of the quad-rotor rotorcraft.
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Fig. 2.4. x position of the quad-rotor rotorcraft.

Figures 2.3–2.4 show the performance of the controller when applied to the
helicopter. Take-off and landing were performed autonomously. The choice of
the values for a, b, c, d were carried out satisfying inequalities (2.53)−(2.57).
However these parameters have been tuned experimentally in the sequence as
they appear in the control input u2.

Figure 2.3 describes the gap between the real altitude of the rotorcraft and
the desired altitude. One can notice that it follows satisfactorily the desired
reference. Following the vertical axis, we notice that the position error in the
variable z is of about 3 to 4 cm. In Figure 2.4, one can see the gap between
the real horizontal position of the quad-rotor rotorcraft (according to x) and
the desired position. We note that the rotorcraft position converges towards
the desired position. The final position error is about 2 to 4 cm.
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Fig. 2.5. Roll angle (φ) of the quad-rotor rotorcraft.
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Figure 2.5 shows the evolution of the φ angle. It can be seen that the control
law achieves convergence of the roll angle to zero, as the helicopter goes up
to the altitude of 20 cm. It also shows the rotorcraft horizontal displacement
in the x-axis.

2.4.2 Experimental Platform Using Vision

In this subsection we have tested the control algorithm using vision [131].

The PVTOL prototype built at Heudiasyc laboratory is shown in Fig-
ure 2.6. The rotors are driven separately by two motors. One motor rotates
clockwise while the second one rotates counter-clockwise. The main thrust
is the sum of the thrusts of each motor. The rolling moment is obtained by
increasing (decreasing) the speed of one motor while decreasing (increasing)
the speed of the second motor.

Fig. 2.6. Photograph of the PVTOL aircraft (front view).

The PVTOL moves on an inclined plane, which defines our 2D workspace.
The PVTOL platform is an experimental setup designed to study the prob-
lems currently found in navigation at low altitude of a small flying object. At
low altitude, GPS and even intertial navigation systems are not enough to
stabilize mini-flying objects. Vision using cameras should provide additional
information to make autonomous flights near the ground possible. For sim-
plicity, at a first stage, we have placed the camera outside the aircraft. In the
future, the camera will be located at the base of the mini-helicopter, pointing
downwards. Note that even when the camera is located outside the flying ob-
ject, we still have to deal with the problems of object localization computation
using cameras and delays in the closed-loop system.

In the platform, a CCD camera Pulnix is located perpendicular to the
plane at a fixed altitude and provides an image of the whole workspace. We
have used an acquisition card PCI-1409 of National Instruments Company.
The camera is linked to the PC dedicated to the vision part (which will be
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referred as Vision PC). From the image provided by the camera, the program
calculates the position (x, y) and the orientation φ of the PVTOL with respect
to a given origin. Then, the Vision PC sends this information to another
PC dedicated to the control part (which we call Control PC), via a RS232
connection, transmitting at 115 200 bps (bauds per second).

The control inputs are therefore calculated according to the proposed strat-
egy based on saturation functions and sent to the PVTOL via the radio. In
order to simplify the implementation of the control law we have designed the
platform in such a way that each of the two control inputs can independently
work either in automatic or in manual mode. The minimum sampling period
we are able to obtain in the experimental platform is 40 ms. This includes the
computation of the control law, image processing, localization computation
and A/D and D/A conversion in the radio–PC interface.

Experiment

The control objective is to make the PVTOL hover at an altitude of 60 pixels
i.e. we wish to reach the position (x, y) = (0, 60) in pixels while φ = 0◦.

The measurements of x, y are expressed in pixels in the image frame and
φ is expressed in degrees, which means that the servoing is done on the basis
of image features directly.

With respect to the time derivatives, we have simplified the mathematical
computation by setting q̇t = qt−qt−T

T , where q represent either x, y or φ and
T is the sampling period.

Fig. 2.7. Vision interface.
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In Figure 2.7, the results of the image acquisition program are shown. We
clearly see the detection of two points located on the PVTOL prototype. From
the measurement of these two points, we compute the position x, y and the
angle φ of the system.

Figures 2.8–2.10 show the performance of the controller when applied to
the PVTOL aircraft. Hovering at 60 pixels as well as following a horizontal
trajectory were performed satisfactorily. The choice of the values for a, b, c,
d were carried out satisfying inequalities (2.53)–(2.57). However these param-
eters have been tuned experimentally in the sequence as they appear in the
control input u2.

In Figure 2.8, one can see the gap between the real horizontal position
of the PVTOL in the x-axis and the desired position. In the x-axis, 1 cm
corresponds to 5 pixels. This means that the error position is about 2 to 3
cm.

Figure 2.9 presents the gap between the real PVTOL altitude and the
desired altitude. One can notice that the PVTOL follows the desired reference.
In the vertical y-axis, 1 cm corresponds to 2.5 pixels. This means that the
vertical position error is about 2 to 3 cm.

Figure 2.10 shows the evolution of the φ-angle In this figure, one can see
that the control law achieves convergence of the φ-angle to zero. Therefore,
the difference between the real trajectory and desired one is due to friction.
The results are nevertheless very satisfactory.
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Fig. 2.8. Position [x] of the PVTOL.
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Fig. 2.9. Position [y] of the PVTOL.
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Fig. 2.10. Orientation [φ] of the PVTOL.

2.5 Conclusion

We have presented a simple control algorithm for stabilizing the PVTOL.
The controller is an extension of the nested saturations technique introduced
in [172]. The convergence Lyapunov analysis has shown that the proposed
algorithm is asymptotically stable.

We have been able to test the algorithm in real-time applications. The
simplicity of the algorithm was very useful in the implementation of the control
algorithm. The results showed that the algorithm performs well. We were able
to perform autonomously the tasks of take-off, hover and landing.

This platform exhibits the same difficulties found in autonomous flight
close to the ground and can be used as a benchmark for developing controllers
for unmanned flying vehicles.




