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Electron Transfer Theories

1.1
Introduction

Electron transfer (ET) is one of themost ubiquitous and fundamental phenomena in
chemistry, physics, and biology [1–34].Nonradiative and radiative ETare found to be a
key elementary step in many important processes involving isolated molecules and
supermolecules, ions and excess electrons in solution, condensed phase, surfaces
and interfaces, electrochemical systems and biology, and in solar cells, in particular.

As a light microscopic particle, an electron easily tunnels through a potential
barrier. Therefore, the process is governed by the general tunneling law formulated
byGamov [35]. The principal theoretical cornerstone for condensed phase ETwas laid
by Franck and Libby (1949–1952) who asserted that the Franck–Condon principle is
applicable not only to the vertical radiative processes but also to nonradiative
horizontal electron transfer. The next decisive step in the field was taken by Marcus
and his colleagues [2, 17, 36] and Hash [37]. These authors articulated the need for
readjustment of the coordination shells of reactants in self-exchange reactions and of
the surrounding solvent to the electron transfer. They also showed that the electronic
interaction of the reactants gives rise to the splitting at the intersection of the potential
surfaces, which leads to a decrease in the energy barrier.

1.2
Theoretical Models

1.2.1
Basic Two States Models

1.2.1.1 Landau–Zener Model
The nonadiabatic electron transfer between donor (D) and acceptor (A) centers is
treated by the Fermi�s golden rule (FGR) [38]

Solar Energy Conversion. Chemical Aspects, First Edition. Gertz Likhtenshtein.
� 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA.

j1

CO
PYRIG

HTED
 M

ATERIA
L



kET ¼ 2pV2FC
h

ð1:1Þ

where FC is the Franck–Condon factor related to the probability of reaching the terms
crossing area for account of nuclear motion and V is an electronic coupling term
(resonance integral) depending on the overlap of electronic wave functions in initial
and final states of the process (see Figure 1.1).

At the transition of a system from one state to another, with a certain value of
the coordinate Qtr, the energy of the initial (i) and final (f) states of energy terms
is the same and the law of energy conservation permits the term–term transition

Figure 1.1 Variation in the energy of the systemalong the reaction coordinate: (a) diabatic terms of
the reactant (i) and products (f); (b) adiabatic terms of the ground state (f) and excited state (f). V is
the resonance integral [9].
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Figure 1.2 Energy versus reaction coordinates
for the reactants and the products for normal
and inverted reactions, and the inversion curve.
The electron in the initial state requires a
positive excitation energy Del for the normal
reaction and a negative excitation energy - Del
for the inverted reaction (which could be directly
emitted as light). There is a positive energy

barrierDF� in both cases between the reactants
and the products that requires thermal
activation for the reaction to occur. This energy
barrier as well as the energy for a direct electron
excitation vanishes for the inversion curve and
then the electron transfer becomes ultrafast.
Reproduced from Ref. [61].
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(Figure 1.2). Generally, the rate constant of the transition in the crossing area is
dependent on the height of the energetic barrier (activation energy, Ea), the
frequency of reaching of the crossing area (y), and the transition coefficient (k):

ktr ¼ kn exp �Eað Þ ð1:2Þ
The transition coefficient k is related to the probability of the transition in the

crossing area (P) and is described by the Landau–Zener equation [39, 40]:

k ¼ 2P
ð1þPÞ ð1:3Þ

where

P ¼ 1�exp �4p2V2

hvðSi�Sf Þ
� �

ð1:4Þ

V is the electronic coupling factor (the resonance integral), v is the velocity of
nuclear motion, and Si and Sf are the slopes of the initial and final terms in the Qtr

region. If the exponent of the exponential function is small, then

P ¼ 4p2V2

hv ðSi�Sf Þ ð1:5Þ

and the process is nonadiabatic. Thus, the smaller the magnitude of the resonance
integral V, the smaller is the probability of nonadiabatic transfer. The lower the
velocity of nuclear motion and smaller the difference in the curvature of the terms,
the smaller is the probability of nonadiabatic transfer. At P¼ 1, the process is
adiabatic and treated by classical Arrhenius or Eyring equations.

The theory predicts a key role by electronic interaction, which is quantitatively
characterized by the value of resonance integralV in forming energetic barrier. If this
value is sufficiently high, the terms are split with a decreasing activation barrier and
the process occurs adiabatically. In another nonadiabatic extreme, where the inter-
action in the region of the coordinateQtr is close to zero, the terms practically do not
split, and the probability of transition i ! f is very low.

1.2.1.2 Marcus Model
According to the Marcus model [2, 3, 5, 17, 36], the distortion of the reactants,
products, and solvent from their equilibrium configuration is described by identical
parabolas, shifted relative to each other according to the driving force of the value of
the process, standard Gibbs free energy DG0 (Figure 1.2). Within the adiabatic
regime (strong electronic coupling, the resonance integral V> 200 cm�1), in the
frame of the Eyring theory of the transition state, the value of the electron transfer rate
constant is

kET ¼ hv
kBT

� �
exp� ðlþDG0Þ2

4lkBT

" #
ð1:6Þ
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where l is the reorganization energy defined as energy for the vertical electron
transfer without replacement of the nuclear frame. Equation 1.6 predicts the log
kET�DG0 relationships depending on the relative magnitudes of l and DG0

(Figure 1.3): (1) l > DG0, when log k increases if DG0 decreases (normal Marcus
region); (2) l¼DG0, the reaction becomes barrierless; and (3) l < DG0, when log k
decreases with increasing driving force.

The basic Marcus equation is valid in following conditions:

1) All reactive nuclear modes, that is, local nuclear modes, solvent inertial polar-
ization modes, and some other kinds of collective modes, are purely classical.
The electronic transition in the ET process is via the minimum energy at the
crossing of the initial and final state potential surfaces.

2) The potential surfaces are essentially diabatic surfaces with insignificant split-
ting at the crossing and of parabolic shape. The latter reflects harmonic
molecular motion with equilibrium nuclear coordinate displacement and a
linear environmental medium response.

3) The vibrational frequencies and the normalmodes are the same in the initial and
final states.

The Marcus theory also predicts the Br€onsted slope magnitude in the normal
Marcus region:

aB ¼ dDG#

dDG0
¼ 1

2
1þ DG0

l

� �
ð1:7Þ

The processes driving force (DG0) can be measured experimentally or calculated
theoretically. For example,when solvation after the process of producingphotoinitiated
charge pairing is rapid,DG0 can be approximately estimated by the following equation:

DG0 ¼ ED=Dþ �ðEA=Aþ þED*Þ� e2

e
ðrDþ þ rA�Þ ð1:8Þ

Figure 1.3 Variation in the logarithm of the rate constant of electron transfer with the driving force
for the reaction after Marcus [50].
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where ED=Dþ and EAþ =A are the standard redox potential of the donor and acceptor,
respectively, ED� is the energy of the donor exited state, rDþ and rA� are the radii of the
donor and acceptor, respectively, and e is the medium dielectric constant.

The values of l can be roughly estimated within the framework of a simplified
model suggesting electrostatic interactions of oxidized donor (Dþ ) and reduced
acceptor (A�) of radii rDþ and rA� separated by the distance RDA with media of
dielectric constant e0 and refraction index n:

l ¼ e2

2
1
n2
� 1
e0

� �
1

rDþ
þ 1

rA�
� 2
RDA

� �
ð1:9Þ

1.2.1.3 Electronic and Nuclear Quantum Mechanical Effects
The nonadiabatic electron transfer between donor (D) and acceptor (A) centers is
treated by the FGR (Equation 1.1). The theory of nonadiabatic electron transfer was
developed by Levich,Dogonadze, andKuznetsov [41–43]. These authors, utilizing the
Landau–Zener theory for the intersection area crossing suggesting harmonic one-
dimensional potential surface, proposed a formula for nonadiabatic ET energy:

kET ¼ 2pV2

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4plkBT
p exp �ðlþDG0Þ2

4lkBT

" #
ð1:10Þ

Therefore, the maximum rate of ET at l¼DG0 is given by

kET ðmaxÞ ¼ 2pV2

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4plkBT
p ð1:11Þ

Involvement of intramolecular high-frequency vibrational modes in electron
transfer was considered [44–49]. For example, when the high-frequency mode (hn)
is in the low-temperature limit and solvent dynamic behavior can be treated classi-
cally [1], the rate constant for nonadiabatic ET in the case of parabolic terms is givenby

kET ¼

X
j

2pFjV
2

hlkBT
exp �ðjhvþ lsþDG0Þ2

4lkBT

" #
ð1:12Þ

where j is the number of high-frequency modes, Fj¼ e�S/j!, S¼ lv/hy, and lv and ls
denote the reorganization inside the molecule and solvent, respectively.

In the case of thermal excitation of the local molecular and medium high-
frequency modes, theories mentioned before predicted the classical Marcus relation
in the normal Marcus region. While in the inverted region, significant deviation on
the parabolic energy gap dependence is expected (Figure 1.4). The inverted Marcus
region cannot be experimentally observed if the stabilization of the first electron
transfer product for the accounting of the high-frequency vibrational mode occurs
faster than the equilibrium of the solvent polarization with the momentary charge
distribution can be established. Another source of the deviation is the nonparabolic
shape of the activation barrier [1].
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A nonthermal electron transfer assisted by an intramolecular high-frequency
vibrational mode has been theoretically investigated [18]. An analytical expression
for the nonthermal transition probability in the framework of the stochastic point
transition approach has been derived. For the strong electron transfer, the decay
of the product state can vastly enhance the nonthermal transition probability in
the whole range of parameters except for the areas where the probability is
already close to unity. If the initial ion state is formed either by forward electron
transfer or by photoexcitation, it may be visualized as a wave packet placed on the
ion free energy term above the ion and the ground-state terms intersection (see
Figure 6.1).

TheMarcus inverted region cannot be observed experimentally when term-to-term
transition in the crossing region is not a limiting step of the process as a whole
(Figure 1.3) [50]. When ET reaction is very fast in the region of maximum rate, the
process can be controlled by diffusion and, therefore, is not dependent on l, V2, and
DG0. The integral encounter theory (IET) has been extended to the reactions limited
by diffusion along the reaction coordinate to the level crossing points where either
thermal or hot electron transfer occurs [18]. IETdescribed the bimolecular ionization
of the instantaneously excited electron donor D� followed by the hot geminate
backward transfer that precedes the ion pair equilibration
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Figure 1.4 The energy gap dependence of the
nuclear Franck–Condon factor, which
incorporates the role of the high-frequency
intramolecular modes. Sc¼D/2 is the
dimensionless electron–vibration coupling,

given in terms that reduce replacement (D)
between the minimum of the nuclear potential
surfaces of the initial and final electronic
states [1]. Reproduced with permission.
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and its subsequent thermal recombination tunneling is strong. It was demonstrated
that the fraction of ion pairs that avoids the hot recombination is much smaller than
their initial number when the electron tunneling is strong. The kinetics of recom-
bination/dissociation of photogenerated radical pairs (RPs) was described with a
generalized model (GM), which combines exponential models (EMs) and contact
models (CMs) of cage effect dynamics [31]. Kinetics of nonthermal electron transfer
controlled by the dynamical solvent effect was discussed in Ref. [11]. Recombination
of ion pairs created by photoexcitation of viologen complexes is studied by a theory
accounting for diffusion along the reaction coordinate to the crossing points of the
electronic terms. The kinetics of recombination convoluted with the instrument
response function were shown to differ qualitatively from the simplest exponential
decay in both the normal and the inverted Marcus regions. The deviations of the
exponentiality are minimal only in the case of activationless recombination and are
reduced evenmore by taking into consideration a single quantummode assisting the
electron transfer

1.2.2
Further Developments in the Marcus Model

1.2.2.1 Electron Coupling
Variational transition-state theory was used to compute the rate of nonadiabatic
electron transfer for a model of two sets of shifted harmonic oscillators [51]. The
relationship to the standard generalized Langevin equation model of electron
transfer was established and provided a framework for the application of variational
transition-state theory in simulation of electron transfer in amicroscopic (nonlinear)
bath. A self-consistent interpretation based on a hybrid theoretical analysis that
includes ab initio quantum calculations of electronic couplings, molecular dynamics
simulations of molecular geometries, and Poisson–Boltzmann computations of
reorganization energies was offered [52]. The analysis allowed to estimate the
following parameters of systems under investigation: (1) reorganization energies,
(2) electronic couplings, (3) access to multiple conformations differing both in
reorganization energy and in electronic coupling, and (4) donor–acceptor coupling
dependence on tunneling energy, associated with destructively interfering electron
and hole-mediated coupling pathways. Fundamental arguments and detailed com-
putations show that the influence of donor spin state on long-range electronic
interactions is relatively weak.

The capability of multilevel Redfield theory to describe ultrafast photoinduced
electron transfer reactions and the self-consistent hybrid method was investigat-
ed [53]. Adopting a standardmodel of photoinduced electron transfer in a condensed
phase environment, the authors considered electron transfer reactions in the normal
and inverted regimes, as well as for different values of the electron transfer
parameters, such as reorganization energy, electronic coupling, and temperature.
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A semiclassical theory of electron transfer reactions in Condon approximation and
beyond was developed in [54]. The effect of the modulation of the electronic wave
functions by configurational fluctuations of the molecular environment on the
kinetic parameters of electron transfer reactions was discussed. A new formula for
the transition probability of nonadiabatic electron transfer reactions was obtained
and regular method for the calculation of non-Condon corrections was suggested.
Quantum Kramers-like theory of the electron transfer rate from weak-to-strong
electronic coupling regions using Zhu–Nakamura nonadiabatic transition formulas
was developed to treat the coupled electronic and nuclear quantum tunneling
probability [55]. The quantum Kramers theory to electron transfer rate constants
was generalized. The application in the strongly condensed phasemanifested that the
approach correctly bridges the gap between the nonadiabatic (Fermi�s golden rule)
and adiabatic (Kramers theory) limits in a unified way, and leads to good agreement
with the quantum path integral data at low temperature.

In work [56], electron transfer coupling elements were extracted from constrained
density functional theory (CDFT). This method made use of the CDFTenergies and
the Kohn–Sham wave functions for the diabatic states. A method of calculation of
transfer integrals between molecular sites, which exploits few quantities derived
from density functional theory electronic structure computations and does not
require the knowledge of the exact transition state coordinate, was conceived and
implemented [57]. The method used a complete multielectron scheme, thus includ-
ing electronic relaxation effects. The computed electronic couplings can then be
combined with estimations of the reorganization energy to evaluate electron transfer
rates. On the basis of the generalized nonadiabatic transition-state theory [58], the
authors of the work [59, 60] presented a new formula for electron transfer rate, which
can cover the whole range from adiabatic to nonadiabatic regime in the absence of
solvent dynamics control. The rate was expressed as a product of the Marcus theory
and a coefficient that represents the effects of nonadiabatic transition at the crossing
seam surface. The numerical comparisons were performed with different
approaches and the present approach showed an agreement with the quantum
mechanical numerical solutions from weak to strong electronic coupling.

A nonadiabatic theory for electron transfer and application to ultrafast catalytic
reactions has been discussed in Ref. [61]. The author proposed a general formalism
that not only extends those used for the standard theory of electron transfer but also
becomes equivalent to it far from the inversion point. In the vicinity of the inversion
point when the energy barrier for ET is small, the electronic frequencies become of
the order of the phonon frequencies and the process of electron tunneling is
nonadiabatic because it is strongly coupled to the phonons. It was found that when
the model parameters are fine-tuned, ET between donor and acceptor becomes
reversible and this system is a coherent electron–phonon oscillator (CEPO). The
acceptor that does not capture the electronmay play the role of a catalyst (Figure 1.5).
Thus, when the catalyst is fine-tuned with the donor in order to form a CEPO, it may
trigger an irreversible and ultrafast electron transfer (UFET) at low temperature
between the donor and an extra acceptor. Such a trimer system may be regulated by
small perturbations and behaves as a molecular transistor.
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Two weakly coupled molecular units of donor and catalyst generate a CEPO. This
system is weakly coupled to a third unit, the acceptor (Figure 1.5a). An electron
initially on the donor generates an oscillation of the electronic level of the CEPO. If
the bare electronic level of a thirdmolecular unit (acceptor) is included in the interval
of variation, as soon as resonance between the CEPO and the acceptor is reached, ET
is triggered irreversibly to the acceptor (Figure 1.5b). The authors suggested that
because of their ability to produce UFET, the concept of CEPOs could be an essential
paradigm for understanding the physics of the complexmachinery of living systems.

Perturbation molecular orbital (PMO) theory was used to estimate the electronic
matrix element in the semiclassical expression for the rate of nonadiabatic electron
transfer at ion–molecular collisions [62]. It was shown that the electron transfer
efficiency comes from the calculated ETrate divided by the maximum calculated ET
rate and by dividing the observed reaction rate by the collision rate, calculated by the
PMO treatment of ion–molecular collision rates.

1.2.2.2 Driving Force and Reorganization Energy
Several works were devoted to models for medium reorganization and donor–
acceptor coupling [63–78]. The density functional theory based on ab initiomolecular
dynamics method combines electronic structure calculation and statistical mechan-
ics and was used for first-principles computation of redox free energies at one-
electron energy [66]. The authors showed that this is implemented in the framework
of the Marcus theory of electron transfer, exploiting the separation in vertical
ionization and reorganization contributions inherent in Marcus theory. Direct
calculation of electron transfer parameters through constrained density functional
theory was a subject of the work by Wu and Van Voorhis [67]. It was shown that
constrained density functional theory can be used to access diabatic potential energy
surfaces in theMarcus theory of electron transfer, thus providing ameans to directly
calculate the driving force and the inner sphere reorganization energy. The influence

Figure 1.5 Principle of ET with a coherent electron–phonon oscillator [61].
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of static and dynamic torsional disorder on the kinetics of charge transfer (CT) in
donor–bridge–acceptor (D-B-A) systems has been investigated theoretically using a
simple tight binding model [68]. Modeling of CT beyond the Condon approximation
revealed two types of non-Condon (NC) effects. It was found that if trot is much less
than the characteristic time, tCT, of CT in the absence of disorder, the NC effect is
static and can be characterized by rate constant for the charge arrival on the acceptor.
For larger trot, the NC effects become purely kinetic and the process of CT in the
tunneling regime exhibits timescale invariance, the corresponding decay curves
become dispersive, and the rate constant turns out to be time dependent. In the limit
of very slow dynamic fluctuations, the NC effects in kinetics of CTwere found to be
very similar to the effects revealed for bridges with the static torsional disorder. The
authors argued that experimental data reported in the literature for several D-B-A
systems must be attributed to the multistep hopping mechanism of charge motion
rather than to the mechanism of single-step tunneling. Survival probability as a
function of time for D-B-A systems is shown in Figure 1.6.

The theory developed by Fletcher in Refs [71, 72] took into account the fact that
charge fluctuations contribute to the activation of electron transfer, besides dielectric
fluctuations. It was found that highly polar environments are able to catalyze the rates
of thermally activated electron transfer processes because under certain well-defined
conditions, they are able to stabilize the transient charges that develop on transition
states. Plots of rate constant for electron transfer versus driving force are shown in
Figure 1.7, which is drawn on the assumption that electron transfer is nonadiabatic
and proceeds according to Dirac�s time-dependent perturbation theory. On the
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Figure 1.6 Survival probability as a function of
time for D-B-A systems containing three (solid
line), four (dotted line), and five (dashed line)
subunits. All curves were calculated for the

D-B-A system with the energy gap De between
the donor and the equienergetic bridge equal to
1.2 eV. The valueof the charge transfer integralV
was taken to be equal to 0.3 eV [68].
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theory, the relative permittivity of the environment exerts a powerful influence on the
reaction rate in the highly exergonic region (the �inverted� region) and in the highly
endergonic region (the �superverted� region).

According to authors, nonadiabatic electron transfer is expected to be observed
whenever there is small orbital overlap (weak coupling) between donor and acceptor
states, so that overall electron transfer rates are slow compared to the media
dynamics. For strongly exergonic electron transfer reactions that are activated by
charge fluctuations in the environment, the activation energy was determined by the
intersection point of thermodynamic potentials (Gibbs energies) of the reactants and
products. The following equations for Greactants and Gproducts, which are the total
Gibbs energies of the reactants and products (including their ionic atmospheres),
respectively, were suggested:

Greactants ¼ 1
2
Q2

1
1

4pe0

� �
1

eð0Þ
� �

1
aD
þ 1

aA
� 2
d

� �
ð1:13Þ

Gproducts ¼ 1
2
Q2

2
1

4pe0

� �
1

eð¥Þþ f1 ½eð0Þ�eð¥Þ�
� �

1
aD
þ 1

aA
� 2
d

� �
ð1:14Þ

Q1 and Q2 are the charge fluctuations that build up on them, e(0) is the relative
permittivity of the environment in the low-frequency limit (static dielectric constant),
e(¥) is the relative permittivity of the environment in the high-frequency limit (e� 2),
aA is the radius of the acceptor in the transition state (including its ionic atmosphere),
aD is the radius of the electron donor in the transition state (including its ionic

Figure 1.7 The rate constant for electron transfer (kET) as a function of the driving force (�DG0)
and reorganization energy (l) on the Fletcher theory [71, 72]. Note the powerful catalytic effect of
polar solvents (such as water) on strongly exergonic reactions.
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atmosphere), and f1 is a constant (0< f1< 1) that quantifies the extent of polar
screening by the environment, d is the distance between the electron donor and
acceptor. Figure 1.8 shows the Gibbs energy for electron transfer through an
intermediate.

Authors of paper [73] focused on themicroscopic theory of intramolecular electron
transfer rate. They examinedwhether or not and/or underwhat conditions thewidely
used Marcus-type equations are applicable to displaced–distorted (D-D) and dis-
placed–distorted–rotated (D-D-R) harmonic oscillator (HO) cases. For this purpose,
the cumulant expansion (CE) method was applied to derive the ETrate constants for
these cases. In the CE method, the analytical condition was derived upon which the
Marcus-type equation of theGaussian formwas obtained for theD-DHOcase. In the
frame of theory, the following equation for the ET rate constant was derived:

Wb! a ¼ jJabj
2

h2

ffiffiffiffiffiffiffiffiffiffiffi
ph2

lkBT

s
exp � ½hvabþhVabð0Þi�lþ l�2

4lkBT

 !
ð1:15Þ

where DGab¼ hvab þ hVab(0)i� l and hvab¼Ea�Eb.
The quantity hvab þ hVab(0)i has the following physical meaning. The quantity

hVab(0)i is the vibrational energy acquired in the final state through vertical or FC
transition from the initial state, averaged over the initial vibrational states under
condition of vibrational thermal equilibrium in the initial potential energy surface.

It was found that the reorganization energy and the free energy change for theD-D
HO depend on the temperature. As a consequence, the preexponential factor of the
ET rate shows a temperature dependence different from the usual Arrhenius

Figure 1.8 Superimposed Gibbs energy
profiles in the vicinity of the electron trap T2.
Trapping is thermodynamically reversible, so
the electron can return to T0 radiatively (R) via T1
or nonradiatively (NR) via the inverted region.
Both routes are kinetically hindered by the

extreme narrowness of the Gibbs energy
parabola, however. This narrowness is
conferred by the extremely nonpolar
environment surrounding T2. Trapping state T3
is the final acceptor [72].
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behavior. The dependence of the Franck–Condonweighted density 1 on the degree of
distortion for a model one-mode D-D HO system is presented in Figure 1.9.

The temperature dependence of the ETrate at different degrees of mixing for two
modes whose frequencies are 100 and 30 cm�1 is shown in Figure 1.10.

The influence of spatial charge redistribution modeled by a change in the dipole
moment of the reagent that experiences excitation on the dynamics of ultrafast

Figure 1.9 The dependent of the Franck–
Condon weighted density 1 (FC DOS) (y-axis)
on the degree of distortion for a model one-
modeD-DHO system described in the text. The
degrees of distortion are 0.9 in (a), 0.75 in (b),
and 0.6 in (c). The peaks are the EGL calculated

with the exact TCF method. The thick dashed
lines denote the energy gap law (EGL) of the ET
rate EGL calculated with the CE method using
the same parameters. The thin smooth lines are
the EGL calculated with the conventional
Marcus theory [73].
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Figure 1.10 The temperature dependence of
the ET rate at different degrees ofmixing for two
modes whose frequencies are 100 and 30 cm�1

in the lower level, without distortion. The
abscissa is the inverse temperature, labeled in
1000/T. On the top, T (K) is also shown. (a) The
ET rate on logarithmic scale versus the inverse

temperature, for four different angles of rotation
(labeled in the legend in radian). (b) The ET rate
multiplied by the square root of the
temperature, on logarithmic scale, versus the
inverse temperature. (c) The ET rate multiplied
by the temperature, on logarithmic scale, versus
the inverse temperature [73].
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photoinduced electron transfer was studied [22]. A two-center model based on the
geometry of real molecules was suggested. Themodel described photoexcitation and
subsequent electron transfer in a donor–acceptor pair. The rate of electron transfer
was shown to depend substantially on the dipole moment of the donor at the
photoexcitation stage and the direction of subsequent electron transfer. The authors
of the work [74] have shown that the polarization fluctuation and the energy gap
formulations of the reaction coordinate follow naturally from the Marcus theory of
outer electron transfer. The Marcus formula modification or extension led to a
quadratic dependence of the free energies of the reactant and product intermediates
on the respective reaction coordinates. Both reaction coordinates are linearly related
to the Lagrangianmultiplierm in theMarcus theory of outer sphere electron transfer,
so thatm also plays the role of a natural reaction coordinate.Whenm ¼ 0; F�ðm ¼ 0Þ
is the equilibrium free energy of the reactant intermediate X� at the bottomof its well,
and when m ¼ −1; Fðm ¼ −1Þ is the corresponding equilibrium free energy of the
product intermediate X. Atm ¼ −1 the free energy of reorganization of the solvent
from its equilibrium configuration at the bottom of the reactant. A theory of electron
transfer with torsionally induced non-Condon (NC) effects was developed by Jang
and Newton [69]. The starting point of the theory was a generalized spin-boson
Hamiltonian, where an additional torsional oscillator bilinearly coupled to other bath
modes causes a sinusoidal non-Condon modulation. Closed form time-dependent
nonadiabatic rate expressions for both sudden and relaxed initial conditions, which
are applicable for general spectral densities and energetic condition, were derived.
Under the assumption that the torsional motion is not correlated with the polaronic
shift of the bath, simple stationary limit rate expression was obtained. Model
calculation of ET illustrated the effects of torsional quantization and gating on the
driving force and temperature dependence of the electron transfer rate. The Born–
Oppenheimer (BO) formulation of polar solvation is developed and implemented at
the semiempirical (PM3) CI level, yielding estimation of ET coupling elements (V0)
for intramolecular ET in several families of radical ion systems [70]. The treatment
yielded a self-consistent characterization of kinetic parameters in a two-dimensional
solvent framework that includes an exchange coordinate. The dependence of V0 on
inertial solvent contributions and on donor–acceptor separation was discussed (see
Figure 1.11).

In the work [76], it was demonstrated that constrained density functional theory
allowed to compute the three key parameters entering the rate constant expression:
the driving force (DG0), the reorganization energy (l), and the electronic coupling
HDA. The results confirm the intrinsic exponential behavior of the electronic
coupling with the distance separating D and A or, within the pathway paradigm,
between two bridging atoms along the pathway. Concerning the �through space�
decay factors, the CDFT results suggested that a systematic parameterization of the
various kinds of weak interactions encountered in biomolecules should be under-
taken in order to refine the global �through space� decay factors. Such a work has
been initiated in this paper. The hydrogen bond term has also been adjusted. Besides
the refinement of the distance component, the authors underlined the appearance of
an angular dependence and the correlation factor between R and w.
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Taking into account the volume of reagents, the theory gives the following
Equation 1.16 [77]:

l ¼ e2

2
1
n2
� 1
e0

� �
1

rDþ
þ 1

rA�
� 2
RDA

þ r3Dþ þ r3A�
� �

2R4
DA

� �
ð1:16Þ

Further development of theory of reorganization energy consisted in taking into
consideration the properties of medium and manner in which it interfaces with the
solute [65]. These properties must include both size and shape of the solute and
solvent molecules, distribution of electron density in reagents and products, and the
frequency domain appropriate to medium reorganization. When the symmetry of
donor and acceptor is equivalent, reorganization energy can be generalized as

l ¼ CDgeff ðe2Þ 1
reff
� 1
RDA

� �
ð1:17Þ

where C¼ 0.5 is a coefficient, Dgeff is the effective charge, and reff is the effective
radius of charge separated centers. More general theory of the reorganization energy
takes the difference between energies of the reactant state and product state,UR and
UP, with the same nuclear coordinates q, as the reaction coordinate [78]:

DeðqÞ ¼ UPðqÞ�URðqÞ ð1:18Þ
In this theory, the reorganization energy is related to the equilibriummean square

fluctuation of the reaction coordinate as

L ¼ 1
2
ðb < De�hDeiÞ2 ð1:19Þ

Figure 1.11 ET dynamics in a low temperature case for different reorganization energies (see
details in Ref. [87, 88]).
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The atoms in the systems are divided into four groups: donor (D) and acceptor
(A) sites of a reaction complex (as in protein), nonredox site atoms, and water
atoms as the environment. The following calculation determined each
component�s contribution to De and, therefore, to the reorganization energy. In
the case of thermal excitation of the local molecular and medium high-frequency
modes, before theories mentioned predicted the classical Marcus relation in the
normal Marcus region. While in the inverted region, significant deviation in the
parabolic energy gap dependence is expected. The inverted Marcus region cannot
be experimentally observed if the stabilization of the first electron transfer product
for the accounting of the high-frequency vibrational mode occurs faster than the
equilibrium of the solvent polarization with the momentary charge distribution
can be established. Another source of the deviation is the nonparabolic shape of
the activation barrier.

The effect of solvent fluctuations on the rate of electron transfer reactions was
considered using linear expansion theory and a second-order cumulant expan-
sion [79]. An expression was obtained for the rate constant in terms of the dielectric
response function of the solvent andwas proved to be valid not only for approximately
harmonic systems such as solids but also for strongly molecularly anharmonic
systems such as polar solvents.

Microscopic generalizations of the Marcus nonequilibrium free energy surfaces
for the reactant and the product, constructed as functions of the charging parameter,
were presented [55]. Their relation to surfaces constructed as functions of the energy
gap is also established. The Marcus relation was derived in a way that clearly shows
that it is a good approximation in thenormal region evenwhen the solvent response is
significantly nonlinear. The hybrid molecular continuum model for polar solvation,
combining the dielectric continuum approximation for treating fast electronic
(inertialess) polarization effects, was considered [32]. The slow (inertial) polarization
component, including orientational and translational solventmodes, was treated by a
combination of the dielectric continuum approximation and a molecular dynamics
simulation, respectively. This approach yielded an ensemble of equilibrium solvent
configurations adjusted to the electric field created by a charged or strongly polar
solute. Both equilibrium and nonequilibrium solvation effects were studied by
means of this model, and their inertial and inertialess contributions were separated.
Three types of charge transfer reactions were analyzed. It was shown that the
standard density linear response approach yields high accuracy for each particular
reaction, but proves to be significantly in error when reorganization energies of
different reactions were compared.

1.2.3
Zusman Model and its Development

The Zusman equation (ZE) has been widely used to study the effect of solvent
dynamics on electron transfer reactions [80–90]. In this equation, dynamics of the
electronic degrees of freedom is coupled to a collective nuclear coordinate. Appli-
cation of this equation is limited by the classical treatment of the nuclear degrees of
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freedom. The Zusman theory is based on description of the solvent complex
permittivity in the Debey approach. According to the theory, the Gibbs energy
activation

DG6¼ ¼ ðDG0þEpÞ2=4Ep ð1:20Þ
where

Ep ¼ ð8pÞ�1ð1=em�1=esÞ IntDD2ðrÞdr ð1:21Þ
where em is the dielectric constant of the solvent at intermediate frequency, es is the
dielectric constant of the solvent, andDD(r) is the difference of inductions in the first
and second dynamics state. The difference of the Equations 1.20 and 1.21 from the
corresponding classicMarcus equation (1.5) is that the �equilibrium� reorganization
energy l was replaced for the dynamic reorganization energy (Ep) of the slow degree
of freedom of the solvent, while preexponential factor for nonadiabatic reaction
including the coupling factor (V) and effective frequency uef of the solvent 1/uef¼ es/
eoptD, where eop is the optical dielectric constant and tD is the average time for
orientation of dipoles of solvent. The Zusman theory is limited because of the
neglection of quantum effects in describing the dynamics of the nuclear degrees of
freedom.

The authors of paper [84] derived the ZE as a high-temperature approximation to
the exact theory. In this work, the authors applied the recently developed hierarchical
equations of motion (HEOM) method. A multistate displaced oscillator system
strongly coupled to a heat bath was considered amodel of an ETreaction system [85].
By performing canonical transformation, the model was reduced to the multistate
system coupled to the Brownian heat bath defined by a nonohmic spectral distri-
bution. For this system, the hierarchy equations of motion for a reduced density
operatorwas derived. To demonstrate the formalism, the time-dependent ETreaction
rates for a three-state system were calculated for different energy gaps. An analytic
study of the density matrix and Wigner representation equations for dissipative
electron transfer was presented [86]. Obtained expression showed a very fast
relaxation in time if the barrier to reaction is greater than the thermal energy. The
fast off-diagonal relaxation disallows an adiabatic elimination of themomentumeven
in the large friction limit. These equations are a generalization to phase space of the
large friction Zusman equations [80]. Taking into account the quantum effect of
nuclear dynamics, formalism provided an exact solution to the ET dynamics.

By taking into account both the quantum fluctuations of the collective bath
coordinate and its non-Markovian dynamics, an exact solution to the ET dynamics
was provided [88]. The forward ET reaction rates were calculated using the HEOM,
the ZE, and also the Fermi� golden rule, resulting in

kFGR ¼ 2V2 Re
ð¥
0
dte�iE0t exp �

ð¥
0
dv

4JðvÞ
pv2

�

� coth ðbv=2Þ 1�cosðvtÞ½ ��i sin ðvtÞf g
#

ð1:22Þ
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The interacting spectral density of the harmonic bath was defined as

JðvÞ ¼ p

2

X
i

c2i
vi

d ðv�viÞ ð1:23Þ

The solvent reorganization energy is determined as

l ¼ 4
p

ð¥
0
dv

JðvÞ
v

ð1:24Þ

Using solvent-controlled charge transfer dynamics on diabatic surfaces with
different curvatures, the framework of Zusman was theoretically analyzed [88].
A generalization of the nonadiabatic Marcus–Levich–Dogonadze rate expression
was obtained for the case of different forward and backward reorganization energies
and a corresponding generalization of the Zusman rate expression that bridges
between nonadiabatic and solvent-controlled adiabatic electron transfer was provid-
ed. The derived analytical rate expressionswere comparedwith the precise numerics.
The proposed mechanism consisted of spontaneously arising inhomogeneous in
space fluctuation in polarization relaxations to equilibrium, not only via solvent
dipoles rotation but also via solvent molecule self-diffusion. This process of polar-
ization diffusion leads to the modulation of electronic energy levels that are now
fluctuating faster if only the rotational motions of the solvent dipoles are accounted
for. It was found that if the rate of tunneling is large enough, the rate constant of the
reaction is controlled by the solvent dynamics and the polarization diffusion also
contributes. It is also shown that the contribution of the polarization diffusion can
become a dominating one in the solvents with large enough diffusion coefficients.

The theory of electron transfer reactions accounting for the influence of the solvent
polarization diffusion on the rate of reaction was developed [82]. It was shown that in
the limit when reaction is controlled by the solvent dynamics, the effective frequency
of the medium fluctuations consists of the sum of two contributions – the contri-
bution of the solvent dipole rotation and the contribution of the solvent polarization
diffusion. The model of charge distribution of the products and reagents of the
reaction is suggested. Starting from the Zusman equations to the case of parabolic
diabatic curves with different curvatures, a generalized master equation for the
populations and formal expressions for their long-time limit was derived [89]. In the
limit of very small tunnel splitting, a novel rate formula for the nonadiabatic
transitions was obtained. For larger values of the tunnel splitting, the consecutive
step approximation leading to a rate formula was used that bridges between the
nonadiabatic and the solvent-controlled adiabatic regimes.

In Ref. [84], the Zusman equation in the framework of the exact hierarchical
equations of motion formalism was revisited. It was shown that a high-temperature
approximation of the hierarchical theory is equivalent to the Zusman equation in
describing electron transfer dynamics and the exact hierarchical formalism naturally
extends the Zusman equation to include quantum nuclear dynamics at low tem-
peratures. Numerical exact results are also presented for the electron transfer
reaction dynamics and rate constant calculation. The authors derived the ZE as a
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high-temperature approximation to the exact theory, the HEOM method. The latter
provides an exact solution to the ET dynamics, by taking into account both the
quantum fluctuations of the collective bath coordinate and its non-Markovian
dynamics. Since the HEOM method is based on nonperturbative propagation of
the reduced density matrix, it can be used to study both nonequilibrium dynamics
and dissipative dynamics under a driving laser field interaction. Figure 1.12 shows
the temperature effect on ET rates derived from different theories.

It can be seen that the rate from the ZE agrees well with the exact result at high
temperatures and deviates from the exact result at low temperatures.

The comprehensive theory of charge transfer in polar media was used for the
treatment of experimental data for complex systems, with due account of large-
amplitude strongly anharmonic intramolecular reorganization [90]. Equations for
the activation barrier and free energy relationships taking into account vibrational
frequency changes, localmode anharmonicity, and rotational reorganization, in both
diabatic and adiabatic limits were provided. Possible modifications of the Zusman
stochastic equations aimed to account for quantum interference of basis states of the
system have been investigated. A set of equations that includes nonequilibrium
distribution in the momentum space at short timescale in a strong friction limit was
obtained. The authors stressed the following features of ET of complex molecules:

1) �Large� intramolecular reorganization, that is, coordinate displacements in
excess of, say, � 0.2A

�
;

2) As a consequence of (1), significant vibrational frequency changes (potential
surface distortion) and/or large anharmonicity;

3) Intramolecular rotational reorganization;
4) Ion pair reorganization in weakly polar solvents;
5) Multi-ET and long-range ET reactions;
6) All correlations are smooth and appear to resemble one another;

Figure 1.12 The temperature effect on ET rates derived from different theories (see details in
Ref. [84]).
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7) The activation free energy increases with increasing d, which characterizes the
repulsive branches of the Morse potentials in the initial and final states. Small d
represents a shallower potential in the final than in the initial state, and vice
versa. Smaller values of d therefore give a smaller activation Gibbs free energy
(Figure 1.13).

Harmonic and anharmonic potentials were compared. The harmonic local mode
corresponds to d¼ 1. The activation free energy for a shallow final-state anharmonic
mode (d¼ 0.5) is lower than for the harmonic mode (d¼ 1) but higher for a steep
repulsive final state branch (d¼ 2). In addition, the correlation was notably asym-
metric around zero driving force for the anharmonic mode, with larger curvature for
negative than for positive DG0. Resonance splitting (DE¼ 0.1 and 0.2 eV) lowers the
activation free energy by approximately DE/2 over most of the driving force range.

a ¼ dGA

dDG0
¼ 1

2
1þ DG0

Esol
I

� �
ð1:25Þ

1.2.4
Effect of Nonequilibrity on Driving Force and Reorganization

When the initial state distribution remains in thermal equilibrium throughout theET
process, the process driving force is related to the standard Gibbs energy (DG0).

Figure 1.13 Activation Gibbs free energy
dependence on reaction free energy for charge
transfer with coupling to a local Morse potential
and a harmonic solvent continuum, calculated
with different values of the parameter d. The
harmonic local mode d ¼ Df =DiX2

0 . Energies in
units of kBT, T¼ 298 K. Esolr ¼ EQr ¼ 20.
Resonance splitting DE¼ 4. The following
parametric variations: (1) d¼ 2, diabatic limit;

(2) d¼ 2, adiabatic limit; (3)d¼ 1, diabatic limit;
(4) d¼ 1, adiabatic limit; (5) d¼ 0.5, diabatic
limit; (6) d¼ 0.5, adiabatic limit. Large d
corresponds to strong repulsion in the repulsive
branch of the Morse potential, small d to weak
repulsion. Large d therefore gives the higher
activation free energy. d ¼ Df =DiX2

0 Morse
potential (d¼ 0.5), adiabatic limit [90].
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A different situation takes place if the elementary act of ET occurs before
the formation of conformational and solvational states of the medium. In fact, two
consecutive stages take place: ET for the accounting of fast vibration translation
modes of the system and the media relaxation. In such a case, the thermodynamic
standard energy for the elementary act ðDGneq

0 Þ appears to be less than that involved
in the case of the equilibrium dielectric stabilization of redox centersDG0 [9, 19, 91].
It can be concluded that the initial and final energy terms in the nonequilibrium
case will be positioned closer to each other in space and energy than in equilibrium
(Figure 1.14). Consequently, in the inverted Marcus region, the value of
the reorganization, Gibbs and activation energies are expected to be markedly
lower than that in the equilibrium case. In the normal Marcus region, we predict
a larger activation energy and slower ET rate for nonequilibrium processes than for

Figure 1.14 Schematic representation of
electronic potential energy surfaces: (1)
consecutive conformational and solvational
equilibriumprocesses with the essential change
in the nuclear coordinates Q and the standard
Gibbs energy DG0; (2) consecutive

nonequilibrium processes with small changes
in Q and DG0; (3, 4) equilibrium (full line) and
nonequilibrium (broken line) processes in the
normal and inverted Marcus regions,
respectively. Reproduced with permission from
Ref. [91].
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equilibrium processes when differences in their standard Gibbs energy would be
larger than that in the reorganization energy. In general, the situation would be
dependent on the interplay of both parameters of the Marcus model. The second
property expected for nonequilibrium processes is the lack of dependence (Fig-
ure 1.15, curve 1) or weak dependence (curve 2) of the experimental rate constant of
ET in bothMarcus regions (inverted and noninverted), compared to that predicted by
the classic Marcus expression (curve 3).

During the ET processes, the nuclear degrees of freedom need to reorganize in
responding to the change in charge distributions upon the electronic state transi-
tions. The interplay of electronic coupling and nuclear reorganization dynamics
could thus result in rich dynamical behaviors in ETreactions. An example of nuclear
dynamical effects on ETreaction is that, when increasing the nuclear relaxation time,
ETreactions change from the nonadiabatic regime to the solvent-controlled adiabatic
regime.

A microscopic theory for the rate of nonadiabatic electron transfer, including
generalizations of the Marcus nonequilibrium free energy surfaces for the reactant
and the product, was developed and its relation to classical Marcus theory was
analyzed [92]. A simple algorithm was proposed for calculating free energy changes
from computer simulations on just three states: the reactant, the product, and an
�anti�-product formed by transferring a positive unit charge from the donor to the
acceptor. The activation energy as a parabolic function of the free energy change of
reaction was derived when the solvent response is significantly nonlinear. The
electron transfer theory for the high-frequency intramolecular mode and low-
frequency medium mode for a single-mode case when the reactant surface is not
in a thermal equilibrium has been rederived [93]. In the limit of very low and very
high temperatures, the expressions were analyzed and compared with the case of
thermal distribution and a Franck–Condon factor for a multimode displaced,
distorted, and Duschinsky rotated adiabatic potential surfaces has been derived to
obtain the ET rate.

Figure 1.15 Schematic representation of the
dependence of the ET constants logarithm on
the equilibrium Gibbs energy DG0: (1)
nonequilibrium conformational and solvational
processes; (2) partial nonequilibrium

processes, lneq and DGneq
0 , are slightly

dependent on DG0; (3) equilibrium processes.
Arrows a and b are conditions for the maximum
l¼DG0 and lneq ¼ DGneq

0 , respectively.
Reproduced with permission from Ref. [91]
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1.2.5
Long-Range Electron Transfer

Long-range Electron Transfer (LRET) between donor (D) and acceptor (A) centers can
occur by three mechanisms: (1) direct transfer that involves direct overlap between
electronorbitalsof thedonorandacceptor, (2)consecutiveelectron jumpsviachemical
intermediates with a fixed structure, and (3) superexchange via intermediate orbitals.
In direct LRET the direct electronic coupling between D and A is negligible and this
mechanism isnot practically realized in condensedmedia beingnoncompetitivewith
the consecutive and superexchange processes. In theoretical consideration of the
consecutive LRET, a relevant theory of ET in two-term systems can be applied.

Of considerable interest is the superexchange process [9, 91, 94–110]. According to
the Fermi�s golden rule (Equation 1.5), the nonadiabatic ET rate constant is strongly
dependent on electronic coupling between the donor state D and the acceptor state A
connected by a bridge (VAB) that is given by an expression derived from the weak
perturbation theory

VAB ¼
P

VAaVaB

DEa
ð1:26Þ

whereVAa andVaB are the couplings between bridge orbitals and acceptor and donor
orbitals, respectively, andDEa is the energy of the bridge orbitals relative to the energy
of the donor orbital. The summation over a includes both occupied and unoccupied
orbitals of the bridge.

Using static perturbation theory, time-dependent perturbation theory, and direct
time-dependent dynamics within generalized tight binding models, the authors of
work [99] examined the role of energy gaps, relative energetics of donor and acceptor
orbitals with hole-type and electron-type superexchange sites, damping and dephas-
ing, and overall energetics in electron transfer. The dynamic studies indicated some
important phenomena, which include quantum interferences between different
pathways, recurrences, and oscillations and competitive effects of hole-type and
electron-type superexchange. An integral equation approach to nonlinear effects in
the free energy profile of electron transfer reaction has been developed [103].
Electronic and dynamical aspects of superexchange-assisted through-bridge electron
transfer were considered. This approach was extended to a more general case, where
D is connected to A by a number of atomic orbitals. A special, the so-called �artificial
intelligence,� search procedure was devised to select the most important amino acid
residues, which mediate long-range transfer [104–106].

According to the approach of Onuchic and coworkers [107], for a pathway between
bridged donor and acceptor groups, the coupling element can be written as

VAB ¼ V0

YN
i

ei ð1:27Þ

whereV0 is the coupling between the donor and the first bond of the pathway and ei is
a decay factor associated with the decay of electron density from one bond to another.
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The eB, eH, and es values are related to superexchange through two covalent bonds
sharing a common atom, an H bond, and space, respectively. The decay factor is
approximated by equation

ei ¼ e0i exp biðR�R0
i Þ

� � ð1:28Þ
where R0

i is the equilibrium length bond or van derWaals distance, bi is some factor,
specific to the distanceR, which depends on the orbital interactions and e0i is the value
of ei forR ¼ R0

i , which is proportional to factors related to the interaction orientation.
The values of eB¼ 0.4–0.6, sH¼ sB¼ 1.0, and bs¼ 1.7 A

�
were taken for the calcu-

lation of VAB. According to this theory, the increase in connectivity for the electron
transfer is about 0.24 per atom.

A semiempirical approach for the quantitative estimation of the effect bridging the
group on LRET was developed by Likhtenshtein [9, 91].

The basic idea underlying this approach is an analogy between superexchange in
electron transfer and such electron exchange processes as triplet–triplet energy
transfer (TTET) and spin exchange (SE). The ET rate constant is proportional to the
square of the resonance integral VET. The rate constant of TTET is

kTT ¼ 2p
h
JTTFC ð1:29Þ

where JTT is the TTexchange integral. The Hamiltonian of the exchange interaction
(HSE) between spins with operators S1 and S2 is described by the equation

HSE ¼ �2JSES1S2 ð1:30Þ
where JSE is the SE exchange integral.

All three integrals V2
ET, JSE, and JTT are related to the overlap integral (Si), which

quantitatively characterizes the degree of overlap of orbitals involved in these
processes. Thus,

V2
ET; JSE; JTT / Sni / exp ð�biRiÞ ð1:31Þ

where Ri is the distance between the interacting centers and bi is a coefficient that
characterizes the degree of the integral decay. In the first approximation, n¼ 2 for the
ET and SE processes with the overlap of two orbitals and n¼ 4 for the TTprocess in
which four orbitals overlap (ground and triplet states of the donor and ground and
triplet states of the acceptor). The spin exchange and TT phenomena may be
considered an idealized model of ET without or with only a slight replacement of
the nuclear frame (see Figure 1.16). Thus, the experimental dependence of exchange
parameters kTT and JSE on the distance between the exchangeable centers and the
chemical nature of the bridge connecting the centersmay be used for evaluating such
dependences for the resonance integral in the ET equation (1.30).

A vast literature is connected with the quantitative investigation of exchange
processes [101, 102]. As it seen in Figure 1.17, experimental data on the dependence
of kTT and JSE on the distance between the centers (DR) lie on two curves, which are
approximated by the following equation [91].
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kTT; JSE / exp ð�bDRÞ ð1:32Þ

For systems in which the centers are separated by a �nonconductive� medium
(molecules or groups with saturated chemical bond), bTT equals 2.6 A

� �1. For
systems in which the radical centers are linked by �conducting� conjugated bonds,
bSE is 0.3 A

� �1.

Figure 1.16 Dependence of the logarithm of
relative parameters of the exchange interaction
on the distance between the interacting centers
(DR). kTT is the rate constant of triplet–triplet

electron transfer and JSE is the spin-exchange
integral. Index 0 is related to van der Waals
contact. Reproduced with permission from
Ref. [91].

Figure 1.17 Triplet–singlet spin conversion of the radical pair [110, 112].
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We can consider the ratios

cSE ¼
J0SE
JSE
ðDRÞ ð1:33Þ

as parameters of attenuation of the exchange interaction of SE through the given
medium. Taking into account Equations 1.31 and 1.32with value n¼ 2 for SE and ET,
we have an expression for the dependence of the attenuation parameters for SE and
ET on the distance between remote donor and acceptor centers DRDA

cET ¼ cSE ¼ exp ð�biDRÞ ð1:34Þ
with bET(nc)¼ 0.5bTT¼ 1.3A

� �1 for a �nonconducting�medium and bET(c)¼ 0.3 A
� �1

for a �conducting� bridge. The value of bET (1.3 A
� �1) is found to be close to that

obtained by analysis of kET on the distance DR in model and biological systems
(Figure 2.7).

An examination of the empirical data on the exchange integral values (JET) for the
spin–spin interactions in systemswith known structure, that is, biradicals, transition
metal complexes with paramagnetic ligands, and monocrystals of nitroxide radicals,
allows the value of the attenuation parameter cX for the exchange interaction through
a given group X to be estimated. By our definition, the cX is

cX ¼
JRYZP
JRYXZP

ð1:35Þ

where R is a nitroxide or organic radical, P is a paramagnetic complex or radical, and
X, Y, and Z are chemical groups in the bridge between R and P.

Table 1.1 shows the results of the calculation parameter cX from empirical data by
Equation 1.35 [9, 19]. The table of values for X, C¼O, S¼O, P¼OandC¼C, calculated
from independent experimental data, is similar. Data presented in Table 1.1 and

Table 1.1 Values of the attenuation parameter of individual groups (cX), van derWaals contact (cv),
and hydrogen bond (chb) for spin exchange in biradicals and paramagnetic complexes of transition
metals with nitroxide ligands (see text) (reproduced with permission from Ref. [91]).

Group, X cx Group, X cx

C6H4 6.00	 0.03
C¼C 1.7 �NH�CO� 55a)

C¼O 8.4	 0.4 cv 50
C
NH 6.5 chb 10
O 5 H 12
S¼O 2.1 SO2 2.2

3.5 RP¼O 2.40	 0.03b)

a) Calculated by equation cx¼ cCOcNH.
b) R:Ph�, CH2¼CH�, Ph�CH¼CH�, Ph�CCl¼CH�.
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Equation 1.35may beused for the analysis of alternative electron transfer pathways in
biological systems.

The dynamics of charge transfer from a photoexcited donor to an acceptor coupled
through a bridge was investigated by using a correlation function approach in
Liouville space that takes into account solvent dynamicswith an arbitrary distribution
of timescales [108]. A nonadiabatic theory of electron transfer, which improves the
standard theory near the inversion point and becomes equivalent to it far from the
inversion point, was presented [109]. This theory revealed the existence of an
especially interesting marginal case when the linear and nonlinear coefficients of
a two electronic states system are appropriately tuned for forming a coherent
electron–phonon oscillator. An electron injected in one of the electronic states of
a CEPO generates large amplitude charge oscillations associated with coherent
phonon oscillations and electronic-level oscillations that may resonate with a third
site that captures the electron so ultrafast electron transfer becomes possible
(Figure 1.5). Numerical results are shown where two weakly interacting sites, a
donor and a catalyst, form a CEPO that catalytically triggers an UFET to an acceptor.

1.2.6
Spin Effects on Charge Separation

Chemical reactions are known to be controlled by two fundamental parameters,
energy (both free and activation energy) and angular momentum (spin) of reac-
tants [110, 111]. The latter results in electron and nuclear spin selectivity of reactions:
only those spin states of reactants are chemically active whose total spin is identical to
that of products. For example, for the triplet radical pair (R1, R2) prepared by
photolysis, radiolysis, or encounter of freely diffusing radicals to recombine and
produce diamagnetic, zero-spinmolecule R1R2, triplet–singlet spin conversion of the
radical pair is required (Figure 1.17).

In a static model of spin catalysis, if the starting spin state of the pair is triplet (it
corresponds toD0 state of the triad), then the probability to find this pair in the singlet
state (it corresponds to D state of the triad) [110, 111]:

rSðtÞ ¼ ðDJ=2VÞ sin2 Vt ð1:36Þ
where

V ¼ 2�1=2½ðJ12�J13Þ2þðJ12�J23Þ2þðJ13�J23Þ2�1=2 ð1:37Þ
andDJ¼ J13� J23; Jij denotes the pair-wise exchange energies for pairsRi andRj (i 6¼ j),
(i, j¼ 1, 2, 3). Both conjugated processes, triplet–singlet conversion of the pair and
doublet–doublet evolution of the triad, oscillate in time with a period t¼ (2V)�1.

Photogenerated radical pairs are capable of exhibiting coherent spin motion over
microsecond timescales, which is considerably longer than coherent phenomena
involving photogenerated excited states. The rate of radical pair intersystem crossing
between photogenerated singlet and triplet radical pairs has been shown to increase
in the presence of stable free radicals and triplet state molecules. Spin catalysis was
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proved to operate in radical recombination biradical decay, cis–trans isomerization of
molecules, primary light-harvesting reactions in photosynthetic centers, charge
separation and water oxidation by photosystem II, in particular, paramagnetic
quenching of excited molecules, and so on [110]. Another way of controlling the
lifetime of the photoseparated charges by the spin chemistry mechanism appears to
be the introduction to donor or acceptor molecules an isotope bearing a nuclear
spin [111].

1.2.7
Electron–Proton Transfer Coupling

Proton-coupled electron transfer (PCET) reactions play a vital role in a wide range of
chemical and biological processes such as the conversion of energy in photosynthesis
and respiration, in electrochemical processes, and in solid statematerials. Recently, a
number of experiments on model PCET systems have been performed [112–123].
A theory of PCET was developed by Cukier and coworkers [113–115]. The authors
took in consideration that in PCET the electron and proton may transfer consecu-
tively, electron transfer followed by proton transfer (PT), designated as ET/PT, or they
may transfer concertedly, in one tunnel event, designated as ETPT. It was suggested
that the proton charge is coupled to the solvent dipoles in a fashion similar to the
electron–solvent coupling and the analysis of effect of solvation on the shape of the
proton potential energy surface allowed to evaluate the PCET rate constant. The
dielectric continuum theory was used to obtain the proton-solvated surfaces. Accord-
ing to this model, the proton can affect the PCET rate via Franck–Condon factors
between the proton surfaces for the initial and final electron states and also influence
the activation energy via the proton energy levels. The rates corresponding to the
ETPTand ET/PTchannels were evaluated for several model reaction complexes that
mimic electron donor–hydrogen-bonded interface–electron acceptor system para-
meters. Figure 1.18 displays the charge site geometry and the ellipsoid and spheres
with the definitions of the relevant dimensions.

According to the theory, the rate constant is

kETPT ¼ V2
el

h2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ph2=lETPTs kBT

q
�
X
n0

rin0
X
n2b
jhxfnjxin0 ij2

�e�ðlETPTs þDel þ efn�ein0 Þ2=4lETPTs kBT ð1:38Þ

where xi is the protonic wave function, which is dependent on the electron state; ls is
the reorganization energy arising from the solvent–charge coupling and the reaction
free energy. The reaction free energy is the sum of the electronic structure DEel and
the equilibrium solvation DGsol contributions, e�i and e�f are the proton energy in
initial and final states, respectively.

In the theory for PCETdeveloped byHammes-Schiffer and coworkers [116–123], a
PCET reaction involving the transfer of one electron and one proton (depicted in
Figure 1.19) was described in terms of four diabatic states: the proton and electron on
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their donors, the proton and electron on their acceptors, the proton on its donor and
the electron on its acceptor, and the proton on its acceptor and the electron on its
donor. The transferring hydrogen nucleus was treated quantum mechanically to
include effects such as zero point energy and hydrogen tunneling.

Within this four-state model, the mixed electron/proton vibrational free energy
surfaces were obtained as functions of two collective solvent coordinates correspond-
ing to ETand PTand the free energy surfaces for PCETreactions were approximated
as two-dimensional paraboloids (Figure 1.20).

In this case, the PCET reaction is viewed as a transition from the reactant set of
paraboloids to the product set of paraboloids. Thus, this theory is amultidimensional
analogue of standard Marcus theory for single ET and the PCET reaction requires a
reorganization of the solvent and involving intramolecular solute modes.

Figure 1.18 Model for the evaluation of the
reorganization and solvation free energy of the
ET, PT, and ETPT reactions. The donor and
acceptor sites are spheres of radius rs
embedded in an ellipsoid with major (minor)
axis a (b) and interfocal distance R. The
locations 1 and 4 (2 and 3) denote charge sites

associated with the electron (proton) states.
The proton sites are at a fixed distance of 3 A

�
and

the electron sites are separatedby a distancedof
15 A

�
. The ellipsoid expands to contain the donor

and acceptor spheres as the sphere radii
increase [113].

Dp

Dp H

Ap

Ap

Ap Ae

Ae

–

–+

+

HDe

De

Figure 1.19 Schematic illustration of a PCET
reaction, where the electron donor and acceptor
are denoted De and Ae, respectively, and the
proton donor and acceptor are denoted Dp and

Ap, respectively. The transferring proton is
represented as both a sphere and a quantum
mechanical wave function [120].
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The theoretical description of the most basic PCET reaction involved the transfer of
one electron and one proton requires four diabatic states:

ð1aÞ DH
e �
DpH � � � Ap�Ae

ð1bÞ DH
e �Dp � � � HA
p�Ae

ð2aÞ De�
 DpH � � � Ap�A�A
e

ð2bÞ De�Dp � � � HA
p�A�A
e

According to Ludlow et al. [122], there are three distinct regimes of PCET:

1) Electronically adiabatic PT and ET, where the coupling between all pairs of the
four diabatic states is strong.

2) Electronically nonadiabatic PT and ET, where the coupling between all pairs of
the four diabatic states is weak.

3) Electronically adiabatic PT and electronically nonadiabatic ET, where the cou-
pling between PTdiabatic states is strong and the coupling between ETdiabatic
states is weak.

Figure 1.20 Schematic illustration of a pair of paraboloids Im and IIn as functions of the solvent
coordinates zp and ze. The reorganization energy lmn and the equilibrium free energy differenceDG0

mv
are indicated [120].
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The regime of electronically adiabatic PT and electronically nonadiabatic ET is
suggested to bemost relevant for PCETreactionswith awell-separated electrondonor
and acceptor connected by a hydrogen-bonded interface. Schematic illustration of
two-dimensional ET diabatic mixed electronic/proton vibrational free energy sur-
faces as functions of the solvent coordinates zp and ze is displayed in Figure 1.21.

A rate expression in the limit of electronically adiabatic PT and electronically
nonadiabatic was derived. Application of the golden rule to the two sets of free energy
surfaces illustrated in Figure 1.5a leads to the following rate expression:

k ¼ 2p
h

X
m

PIm

X
n

V2
mn ð4plmnkBTÞ�1=2exp

�ðDG0
mnþ lmnÞ2

4lmnkBT

( )
ð1:39Þ

Figure 1.21 (a) Schematic illustration of two-
dimensional ET diabatic mixed electronic/
proton vibrational free energy surfaces as
functions of the solvent coordinates zp and ze.
The reactant and product ET diabatic surfaces
are labeled I and II, respectively. Only two
surfaces are shown for each ET diabatic state,
and the lower and higher energy surfaces are
shown with solid and dashed contour lines,
respectively. Each free energy surface is labeled
according to the dominant diabatic state, and

the minima of the lowest surfaces are labeled
(�zIp, �z

I
e) and (�z

II
p , �z

II
e ). (b) Slices of the free energy

surfaces along the straight-line reaction path
connecting solvent coordinates (�zIp, �z

I
e) and (�z

II
p ,

�zIIe ) indicated in (a). Only the lowest surface is
shown for the reactant (I), and the lowest two
surfaces are shown for the product (II). (c) The
reactant (I) and product (II) proton potential
energy curves are functions of rp at the solvent
configurations corresponding to the intersection
points A and B indicated in (b) [120].
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where
P

m and
P

n indicate a sum over vibrational states associated with ETstates 1
and 2, respectively, and PIm is the Boltzmann factor for state Im. In this expression, the
reorganization energy is defined as

lmn ¼ eIm �zIInp ; �zIIne

	 

�eIm �z

Im
p ; �z

Im
e

	 

¼ eIIn �z

Im
p ; �z

Im
e

	 

�eIIn �zIInp ; �zIIne

	 

ð1:40Þ

and the free energy difference is defined as

DG0
mn ¼ eIIn ð�zIInp ; �zIIne Þ�eImð�zImp ; �zIme Þ ð1:41Þ

where (�z
Im
p , �z

Im
e ) and (�zIInp , �zIIne ) are the solvent coordinates for the minima of eIm(zp, ze)

and eIIn (zp, ze), respectively. As a result of the averaging over, the proton applicability of
the Born–Oppenheimer approximation (BOA) for the calculation of the transition
probability for a nonadiabatic process of charge transfer in a polar environment with
allowance made for temperature effects was theoretically investigated.

The transfer of a quantum particle (proton) that interacts with a local vibration
mode in a model of bound harmonic oscillators was considered [124]. The model
admitted an exact solution for wave functions of the initial and final states. A
calculation showed that the model is applicable even for very large distances of the
proton transfer. It was shown that the non-Condon effects are in general temperature
dependent and may substantially influence the calculated values of the transition
probability.

1.2.8
Specificity of Electrochemical Electron Transfer

The current flowing in either the reductive or oxidative steps of a single electron
transfer reaction between two species (O) and (R)

OðsÞþ e�ðmÞÐkred
kox

RðsÞ ð1:42Þ

can be described using the following expressions:

ia ¼ �FAkox½R�0 ð1:43Þ

ic ¼ �FAkred½O�0 ð1:44Þ
where ic and ia are the reduction and oxidation reaction currents, respectively;A is the
electrode area; kRed or kOx are the rate constant for the electron transfer; and F is the
Faraday�s constant.

At consideration processes occurring with participation of electrodes, the con-
ception of the Fermi energy, Fermi level, and the Fermi–Dirac (F–D) distribution
are widely used (http://en.wikipedia.org/wiki/Fermi_energy) [125–128]. The Fermi
energy is the energy of the highest occupied quantum state in a system of fermions
at absolute zero temperature (http://en.wikipedia.org/wiki/Fermi_energy). By def-
inition, fermions are particles that obey Fermi–Dirac statistics: when one swaps two

1.2 Theoretical Models j33



fermions, the wave function of the system changes sign. Fermions can be either
elementary, like the electron, or composite, like the proton. F–D statistics describes
the energies of single particles in a system comprising many identical particles that
obey the Pauli exclusion principle. For a system of identical fermions, the average
number of fermions in a single-particle state i, is given by the F–D distribution,

�ni
1

eðei�mÞ=kT þ 1
ð1:45Þ

where k is Boltzmann constant, T is the absolute temperature, ei is the energy of the
single-particle state i, and m is the chemical potential. At T¼ 0, the chemical potential
is equal to the Fermi energy. For the case of electrons in a semiconductor, m is also
called the Fermi level.

The one-dimensional infinite square well of length L is a model for a one-
dimensional box. In the framework of a standard model-system in quantum
mechanics for a single quantum number n, the energies are given by

En ¼ h2p2

2mL2
n2 ð1:46Þ

(http://hyperphysics.phy-astr.gsu.edu/HBASE/quantum/disfd.html#c2)
Anumber of theoretical research studies were devoted to electron transfer reaction

from a superconducting electrode [129–142]. The theory of electron transfer reaction
from a superconducting electrode that was described in the framework of the
resonance valence bond model to a reagent in solution was developed [130]. It was
shown that current–overpotential dependence at the boundary between an electrode
and solution should be asymmetrical and the current between a superconducting
electrode and solution should be substantially suppressed in comparison with that
calculated for the same electrode in the normal state.

The quantum theory of electron transfer reactions at metal electrodes was
developed [131]. The obtained potential dependence of the electron transfer rate in
the weak coupling case was shown to resemble the Butler–Volmer equation of
classical electrochemistry. The volcano-shaped dependence of the hydrogen
exchange current on the adsorption energy of hydrogen on various metals and the
mechanism of hydrogen evolution were explained microscopically. The exchange
current density for hydrogen evolution at Pt electrode calculated quantitatively agreed
well with the experimental value. Free energy profiles governing electron transfer
from a reactant to an electrode surface in water were investigated, based on the
reference interaction site model (Figure 1.22) [132]. Three models of a redox pair for
charge separation reactions were examined: a pair of atomic solutes and systems
consisting of an atom and a surface with a localized or a delocalized electron. It was
found that the profile becomes highly asymmetrical when an electron in the electrode
is delocalized.

Theoretical analysis of asymmetric Tafel plots and transfer coefficients for elec-
trochemical proton-coupled electron transfer (EPCET) was performed [122]. The
input quantities to the heterogeneous rate constant expressions for EPCET were
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calculated with density functional theory in conjunction with dielectric continuum
models. The theoretical calculation indicated that the asymmetry of the Tafel plot (the
dependence of electric current on electrode potential) and the deviation of the
transfer coefficient at zero overpotential from the standard value of one-half arise
from the change in the equivalent proton donor–acceptor distance upon electron
transfer. The magnitude of these effects was obtained by the magnitude of this
distance change, as well as the reorganization energy and the distance dependence of
the overlap between the initial and the final proton vibrational wave functions. This
theory provided experimentally testable predictions for the impact of specific system
properties on the qualitatively behavior of the Tafel plots. A theoretical analysis of
EPCET was based on the following approximate expressions for the heterogeneous
PCET anodic and cathodic nonadiabatic rate constants:

kaðgÞ ¼ ðV
elSÞ2
h

ffiffiffiffiffiffiffiffiffiffiffiffi
p

kBTL

s
exp 2a2kBT=FR

� �
rM

�
ð
de 1�f ðeÞ½ �exp �ðD

~Uþ e�egþLþ 2adRkBTÞ2
4LkBT

2
4

3
5

kcðgÞ ¼ ðV
elSÞ2
h

ffiffiffiffiffiffiffiffiffiffiffiffi
p

kBTL

s
exp �2adRþ 2a2kBT=FR
� �

rM

�
ð
def ðeÞexp ð�D

~U�eþ egþL�2adRkBTÞ2
4LkBT

2
4

3
5

ð1:47Þ

Here, f(e) is the Fermi distribution function for the electronic states in the
electrode, rM is the density of states at the Fermi level, g is the overpotential defined
as the difference between the applied and the formal electrode potentials, Vel is the

Figure 1.22 Models of CS electron transfer. (a) A one-site electron donor and a one-site electron
acceptor. (b) A two-dimensional array consisting of 121 identical atoms whose structure is land a
one-site electron donor that is 5 Anstrem apart from the central atom of the surface [132].
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electronic coupling, dR is the difference between the equilibrium proton donor–
acceptor distances for the oxidized and reduced complexes, FR is the force constant
associatedwith the protondonor–acceptormode,S is the overlap integral between the
ground reactant and the product proton vibrational wave functions, a¼� qlnS/qR,
and L¼ ls þ lR is the total reorganization energy, where ls is the solvent reorga-
nization energy and lR¼FR dR

2/2 is the reorganization energy of the proton donor–
acceptor mode.

According the theory, the associated cathodic transfer coefficient at small over-
potential g is

aPCETðgÞ ¼ 1
2
�adRkBT

L
þ eg

2L
ð1:48Þ

The	2adRkBT terms in the exponentials of Equation 1.45 lead to asymmetry of the
Tafel plots, and the adRkBT/L term leads to deviation of aPCET(0) from one-half
predicted from classic linear Tafel plot (Figure 1.23).

A study [136] treated the role of the density of electronic states rF at the Fermi level
of ametal in affecting the rate of nonadiabatic electron transfer. The rate constant kET
was calculated for the electron transfer across an alkanethiol monolayer on platinum
and on gold. It was shown that the metal bands that are weakly coupled contribute
much less to the rate constant than was suggested by their density of states rF. The
authors concluded that kET is approximately independent of rF in two cases: (1)
adiabatic electron transfer and (2) nonadiabatic electron transfer when the extra rF is
due to the d electrons. The temperature dependence of the electronic contribution to
the nonadiabatic electron transfer rate constant (kET) at metal electrodes was
discussed [137]. It was found that this contribution is proportional to the absolute

Figure 1.23 Tafel plot of log[kc/ks] for g< 0 and log[ka/ks] for g> 0 calculated using Equation 1.1.
The experimental data on the of PCET(0) in OsmiumAquo Complex generated at pH 6.0 are shown
as circles [122].
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temperature T. The nonadiabatic rate constant for electron transfer at a semicon-
ductor electrode was also considered. Under conditions for the maximum rate
constant, the electronic contribution was estimated to be proportional to T, but for
different reasons from those the case of metals, that is, Boltzmann statistics and
transfer at the conduction band edge for the semiconductor versus Fermi–Dirac
statistics and transfer at the Fermi level, which is far from the band edge, of themetal.

Molecular dynamics simulations of electron and ion transfer reactions near a
smooth surface were presented [136]. The effect of the geometrical constraint of the
surface and the interfacial electric field on the relevant solvation properties of both a
monovalent negative ion and a neutral atomwas analyzed. The quantummechanical
electron transfer between themetal surface and the ion/atom in solutionwas done by
the MD simulation using a model Hamiltonian. The authors calculated two-dimen-
sional free energy surfaces for ion adsorption allowing for partial charge transfer.

A generalized quantum master equation theory that governs the quantum dissi-
pation and quantum transport was formulated in terms of hierarchically coupled
equationsofmotion foranarbitrary electronic systemincontactwithelectrodesunder
eitherastationaryoranonstationaryelectrochemicalpotentialbias [137].Themultiple
frequency dispersion and the non-Markovian reservoir parameterization schemes
were considered. The resulting hierarchical equations of motion formalism was
applied to arbitrary electronic systems, including Coulomb interactions, under the
influence of arbitrary time-dependent applied bias voltage and external fields. The
authorsclaimedthat thepresent theoryprovidesanexactandnumerically tractable tool
to evaluate various transient and stationary quantum transport properties of many-
electron systems, together with the involving nonperturbative dissipative dynamics.

Effects of electron correlations in a surface molecule model for the adiabatic
electrochemical electron transfer reactions with allowance for the electrostatic repul-
sionofelectronsonaneffectiveorbitalofmetalwasconsidered [138]. Itwasshownthat
taking into account the electrostatic repulsion on the effective orbital of themetal and
the correlation effects leads to qualitative different forms of adiabatic free energy
surfaces insomeregionsofvaluesof themodel�sparameters.Approximatemethodfor
calculation of electron transition probability for simple outer-sphere electrochemical
reactionswas developed [139]. The probability of an elementary act in an outer-sphere
electrochemical electron transfer reaction was calculated with arbitrary values of the
parameter of reactant–electrode electron interaction for diabatic free energy surfaces
of the parabolic form. The dependence of effective transmission coefficient on the
Landau–Zener parameter was found. Interpolation formulas obtained allowed
authors to calculate the electron transition probability using the results of quantum
chemical calculation of the electronic matrix element as a function of distance.

Direct electrochemistry of redox enzymes as a tool for mechanistic studies was
proposed [140]. The following analytical expression for the rate of redox processes
was

kred=ox ¼ kmaxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pl=RT

p ð¥
�¥

exp �ð1=4lRTÞ½l	 F ðE�E0Þ�RTx�2
	 


1þ exp ðxÞ dx

ð1:49Þ
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where kmax is the asymptotic value of the rate constant at large overpotential.
Equation 1.49 is referred to as Marcus theory applied to interfacial ET kinetics.
Dependence of the rate of interfacial, oxidative ET on the electrode potential is
displayed in Figure 1.24.

1.3
Concerted and Multielectron Processes

In order to explain the high efficiency ofmany chemical and enzymatic processes, the
concept of energetically favorable, concerted mechanisms is widely used.

In a concerted reaction, a substrate is simultaneously attracted by different active
reagents with acid and basic groups, nucleophile and electrophile, or reducing and
oxidizing agents. Itmay, however, be presumed that certain kinetic statistic limitation
exists on realization of reactions that are accompanied by a change in the config-
uration of a large number of nuclei [9, 142–148]. A concerted reaction occurs as a
result of the simultaneous elementary transition (taking approximately 10�13 s) of a
systemof independent oscillators, with themean displacement of nucleiw0, from the
ground state to the activated state in which this displacement exceeds for each
nucleus a certain critical value (wcr). If wcr > w0 and the activation energy of the
concerted process Esyn > nRT, the theory gives the following expression for the
synchronization factor asyn, which is the ratio of preexponential factors synchronous
and regular processes:

asyn ¼ n

2n�1
nRT
pEsyn

� �n�1=2
ð1:50Þ

Figure 1.24 Dependence of the rate of
interfacial, oxidative ET on the electrode
potential according to the BV (black) or Marcus
theory of interfacial ET for different values of the
reorganization energy l (solid gray lines). The

dashed line is the traditional Marcus paraboloid
with l¼ 0.7 eV, showing the inverted region at
high driving force. For interfacial ET, the rate
levels off at a high driving force instead of
decreasing [141].
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Analysis of Equation 1.50 provides a clear idea of the scale of the synchronization
factor and dependence of this factor on the number of n and the energy activation
(Figure 1.25) [9, 150]. For example, at moderate energy activation 20–30 kJ/mol, the
incorporation of each new nucleus into the transition state can lead to a 10-fold
decrease in the rate of the process.

The model of concerted processes discussed above is only a crude approximation
of the motion of a complex system of nuclei along the reaction coordinate. However,
such an approximation apparently permits one to choose from among the possible
reaction mechanisms.

In the case of effective concerted mechanism, the decrease in the synchronization
probability (asyn) with increasing nmust be compensated for by an appreciable decrease
in the activation energy. This consideration has led to the formulation of the principle of
optimum motion [9, 144–147]. According to this principle, the number of nuclei whose
configuration is charged in the elementary act of a chemical reaction (including electron
transfer) must be sufficiently large to provide favorable energetic of the step and, at the
same time, sufficiently small for themaintenance of a high value of the synchronization
probability during motion along the reaction pathway to the reaction products.

There are a considerable number of reactions in which the products contain
two electrons more than the starting compounds, and the consecutive several-step

Figure 1.25 Theoretical dependence of the
synchronization factor (fsyn) on the number of
degree of freedom (n) of nuclei involved in a
concerted reaction. The curves have been

constructed in accordance with
Equation 1.50 [9]. Energy activation of the
synchronous reaction is given
in kJ/mol [156].
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one-electron transfer process proves to be energetically unfavorable. In such cases, it is
presumed that two-electron process occurs in one elementary two-electron step.

Two-electron mechanismmay involve the direct transport of two electrons from a
mononuclear transition complex to a substrate. Such a transportmay alter sharply the
electrostatic states of the systems and obviously require a substantial rearrangement
of the nuclear configuration of ligands and polar solvent molecules. For instance, the
estimation of the synchronization factor (a) for an octahedral complex with low
molecular saturated ligands shows a very low value ofa¼ 10�7–10�8 and, therefore, a
very low rate of reaction. The probability of two-electron processes, however,
increases sharply if compensation shift of electronic cloud from bulky nonsaturated
ligands to central metal atom takes place. Involvement of bi- and, especially,
polynuclear transition metal complexes and metal clusters, as well as synchronous
proton transfer, may essentially decrease the environment reorganization and,
therefore, provide a high rate for the two- and four-electron mechanisms.

The concept of four-electron mechanism was first suggested in Ref. [151] and
then developed and applied to such �heavy� enzymatic and chemical reactions as
the reduction of molecular nitrogen and the water splitting under mild condi-
tions [144, 147, 149, 151–155].

The multielectron nature of the energetically favorable processes in clusters does
not evidently impose any new, additional restrictions on its rate. Within the clusters�
coordination sphere, the multiorbital overlap is effective and, therefore, the reso-
nance integralV is high. The electron transfer from (or to) the orbitals of themetal to
substrate orbital is accompanied by the simultaneous shift of electron clouds to the
reverse direction. Such a transport may prevent significant changing of local charges
and does not violate markedly the reaction complex nuclear frame. The strong
delocalization electron in clusters and polynuclear complexes reduces to minimum
the reorganization of the nuclear system during electron transitions and, therefore,
provides low energy activation and a relatively high value for the synchronization
factor.

The data presented in this chapter show that a particularly significant contribution
has been recently made to the theory of electron transfer, which has formed the
theoretical basis for a deeper understanding and effective planning of redox pro-
cesses in dye-sensitized solar cells and other photochemical systems.
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