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1 Introduction

It is well-known that a logistic regression model aims at finding how
a response variable Y is influenced by a set of explanatory variables
{x1, . . . , xp} when Y is either binary with values 0 and 1 or a proportion
of values between 0 and 1. A logistic regression model consists of three
components (McCullagh and Nelder (1989)):

1. A random component Y that is either binary with values 0 and 1
or a proportion with values between 0 and 1. In the latter case,
Y = Z/m where Z is assumed to have a binomial distribution
B(m,π) with the probability of “success” π and the number of
independent “experiments” m. We have binary data if m ≡ 1.

2. A systematic component (linear predictor) η = x′β, where x =
(x1, . . . , xp)

′ and β is the unknown p-vector parameter of interest.
3. A function π = h(η) = eη/(1+ eη) that relates the expectation π of
Y with the linear predictor η. The inverse function g(π) of h(η) is

named the logistic link function, where g(π)
def
= log(π/(1 − π)) = η.

Logistic regression has been one of the most frequently used techniques
in applications. Yet at times either the logistic curve does not describe
the probability of success π(x) adequately, or m is larger than 1 and Y
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is more variable than the binomial distribution allows, which is termed
over-dispersion in the literature. Over-dispersion relative to binomial
distribution is possible if the m trials in a set are positively correlated,
or an important covariate is omitted. A simple way to accommodate de-
partures from a single logit link and over-dispersion is to introduce the
logistic regression clustering model. Examples on the fitting of mixtures
of logistic regression to biological and marketing data may be found in
Farewell and Sprott (1988), Follmann and Lamber (1989, 1991), and
Wedel and DeSarbo (1995), etc.

This paper studies the problem of estimating the number of clus-
ters in the context of logistic regression clustering. The classification
likelihood approach is employed to tackle this problem. An informa-
tion theoretic criterion for selecting the number of logistic curves is
proposed in the sequel and then its asymptotic property is considered.

The paper is arranged as follows: In Section 2, some notations are
given and an information theoretic criterion is proposed for estimating
the number of clusters. In Section 3, the small sample performance of
the proposed criterion is studied by Monte Carlo simulation. In Sec-
tion 4, the asymptotic property of the criterion proposed in Section
2 is investigated. Some lemmas needed in Section 4 are given in the
appendix.

2 Notation and Preliminaries

Assume that we have n objects O(n) = {1, 2, . . . , n} with the associ-
ated data points (x1, y1), . . ., (xn, yn), where x′

j = (xj1, . . . , xjp) ∈ R
p

is a fixed explanatory p-vector and yj ∈ R is a random dependent
variable. The hidden true distributions of y1, . . . , yn are the binomial
distributions B(m1, π01), . . . , B(mn, π0n). The set of these n objects is
a random sample coming from a structured population. Suppose that
this population is composed of k0 sub-populations, each of which has
a distinct underlying linear predictor between the response variable
and the explanatory variables. Then, there exists a hidden true par-

tition of these n objects Π
(n)
k0

= {O(n)
1 , . . . ,O(n)

k0
}, and each cluster

O(n)
i , {i1, . . . , ini

} ⊆ O(n) is characterized by a class-specific linear
predictor

ηj,Oi
= x′

j,Oi
β0i, ηj,Oi

= log

(
π0j,Oi

1 − π0j,Oi

)
, j ∈ O(n)

i , (1)

where xj,Oi
and π0j,Oi

are just relabeled xj and π0j which indicate

that the associated object is the j-th object in the i-th cluster O(n)
i
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(i = 1, . . . , k0). We will use this double-index notation throughout this
paper. Let β0i ∈ R

p, i = 1, . . . , k0, be k0 unknown class-specific true
parameter vectors, which are assumed to be pairwise distinct. For con-

venience, we have suppressed the n in O(n)
i in (1).

However the true partition Πk0 and the associated model (1) are
not observable. Hence, based on the observed data values (xj , yj), j =
1, . . . , n, we need to estimate the number of clusters first, and then the
model (1).

Consider any possible partition of these n objects: Π
(n)
k =

{C(n)
1 , . . . , C(n)

k }, where k ≤ K is a positive integer. Then under the
clusterwise logistic regression model, the log-likelihood function for the
k parameter vectors βs is

l(β1, . . . ,βk|Yn, Xn)

=
k∑

s=1

∑

j∈Cs

{log

(
mj,Cs

mj,Csyj,Cs

)
+mj,Csyj,Cs log πj,Cs

+mj,Cs(1 − yj,Cs) log(1 − πj,Cs)}

=
k∑

s=1

∑

j∈Cs

log

(
mj,Cs

mj,Csyj,Cs

)
−

k∑

s=1

∑

j∈Cs

ξ(πj,Cs ; yj,Cs ,mj,Cs)

=

k∑

s=1

∑

j∈Cs

log

(
mj,Cs

mj,Csyj,Cs

)
−

k∑

s=1

∑

j∈Cs

ξ(h(x′
j,Cs

βi); yj,Cs ,mj,Cs),

where Yn = (y1, . . . , yn)
′, Xn = (x1,x2, . . . ,xn)

′. Again yj,Cs , xj,Cs ,
πj,Cs and mj,Cs are just relabeled yj ,xj , πj and mj (j = 1, . . . , n) to
indicate the cluster to which the associated object belongs, and

ξ(π; y,m) = −my log π −m(1 − y) log(1 − π).

Note that by convention ξ(0; y,m) = ξ(1; y,m) = 0. The clusterwise

maximum likelihood estimator (MLE) β̂s based on the partition Π
(n)
k

is defined to be

β̂s = arg max
βs

l(βs|Yn, Xn)

≡ arg min
βs

∑

j∈Cs

ξ(h(x′
j,Cs

βs); yj,Cs ,mj,Cs), s = 1, . . . , k.

We then propose an information theoretic criterion for determining the
number of clusters and subsequently classifying the data as follows:
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Let q(k) be a strictly increasing function of k, and An be a sequence of
constants. We define

Dn(Π
(n)
k )

def
=

k∑

s=1

∑

j∈Cs

ξ(h(x′
j,Cs

β̂s); yj,Cs ,mj,Cs) + q(k)An, (2)

and define k̂n, the estimate of k0, to satisfy the equation

Dn(k̂n) = min
1≤k≤M

min
Π

(n)
k

Dn(Π
(n)
k ). (3)

It is named Criterion LG-C, which stands for clustering by logistic re-
gression in this paper. It can be seen that in (2), the first term is
basically the negative maximum log-likelihood; the second term is the
penalty term measuring the complexity of the underlying model. In
addition, Criterion LG-C in (3) shows that we determine the optimal
number of clusters and the corresponding partitioning of the data si-
multaneously.

3 Monte Carlo Simulation

We constructed three models in the simulation study: the two-cluster
case; the three-cluster case with only one covariate; and the three-
cluster case with two covariates. The parameter values used to build
these models are listed in Table 1. We generate the covariates as follows:
for the first two cases, the covariate x is generated from N(0, 1), and the
two covariates x1, x2 in case 3 are generated from a bivariate Normal
distribution with the mean of 0, variance of 1 and the covariance being
0.3.

In this simulation study, q(k) = 3k(p + 3), where p is the number
of regression coefficients in the model and is a constant in our study;
k is the unknown number of clusters that we are seeking, and, An =

A
(i)
n , i = 1, 2, 3, 4, where A

(i)
n = (1/λ)((logn)λ)− 1, with λ1 = 1.5, λ2 =

1.8, λ3 = 2 and λ4 = 2.3.
For reducing the exhaustive computation needed by Criterion LG-

C, we adopt the approach used in Shao and Wu (2005) here. The only
change is that we fit a logistic regression other than a regression model
within each cluster in every iteration. Then, we first do logistic regres-
sion clustering for each k (the choice of k being the same as the previous
studies), and subsequently select the best k using Criterion LG-C. We
run the simulation for each model 500 times and obtain the relative fre-
quencies of selecting every k out of these 500 repetitions. The results
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Table 1. Parameter values used in the simulation study of logistic regression
clustering

Case k0 Regression coefficients Number of

observations

1 2 β01 =

(
1

6

)
, β02 =

(
1

−6

)
n1 = 70,

n2 = 50

n1 = 35,

2 3 β01 =

(
1

−1

)
, β02 =

(
−2

−1

)
, β03 =

(
−1

1

)
n2 = 35,

n3 = 50

n1 = 35,

3 3 β01 =




1

−1
1
2


 , β02 =




−2

−1

− 1
2


 , β03 =




−1

1
1
2


 n2 = 35,

n3 = 50

are summarized in Table 2. It can be seen that Criterion LG-C does
nearly perfect a job to detect the underlying number of groups for the
models considered in this simulation study.

Table 2. Relative frequencies of selecting k based on 500 simulations of lo-
gistic regression clustering

Case B1C2 (k0 = 2) B1C3 (k0 = 3) B2C3 (k0 = 3)

Model A
(1)
n A

(2)
n A

(3)
n A

(4)
n A

(1)
n A

(2)
n A

(3)
n A

(4)
n A

(1)
n A

(2)
n A

(3)
n A

(4)
n

k = 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k = 2 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.012 0.000 0.000 0.000 0.006

k = 3 0.000 0.000 0.000 0.000 1.000 1.000 1.000 0.988 1.000 1.000 1.000 0.994

k = 4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

k = 5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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4 Asymptotic Property of Criterion LG-C

Denote the eigenvalues of a symmetric matrix B of order p by λ1(B) ≥
. . . ≥ λp(B). Let Oℓ = {ℓ1, . . . , ℓnℓ

} be any cluster or a subset of a

cluster corresponding to the true partition Π
(n)
k0

of O(n) , and nℓ = |Oℓ|.
Let Xnℓ

= (xℓ1,Oℓ
, . . . ,xℓnℓ

,Oℓ
)′ be the design matrix in Oℓ. The Fisher

information for the parameter β0ℓ is defined as

Inℓ
(β0ℓ) = −E ∂2l

∂β0ℓ∂β′
0ℓ

= X ′
nℓ
Mnℓ

Mπℓ
Xnℓ

,

where

Mnℓ
= diag(mℓ1,Oℓ

, . . . ,mℓnℓ
,Oℓ

)

Mπℓ
= diag{π0ℓ1,Oℓ

(1 − π0ℓ1,Oℓ
), . . . , π0ℓnℓ

,Oℓ
(1 − π0ℓnℓ

,Oℓ
)}.

The following assumptions are needed in the discussion on the as-
ymptotic property of the criterion (3).

(A) For the true partition Π
(n)
k0

= {O(n)
1 , . . . ,O(n)

k0
}, let n0i = |Oi| be

the number of objects in the cluster O(n)
i . Then there exists a fixed

constant a0 > 0 such that

a0n ≤ n0i ≤ n, ∀i = 1, . . . , k0. (4)

(X1) limnℓ→∞ λζ{Inℓ
(β0ℓ)} = ∞, ζ = 1, . . . , p. Also, there exists some

constant a1 > 0 such that 0 < λp{Inℓ
(β0ℓ)} ≤ a1λ1{Inℓ

(β0ℓ)}.

(X2) Let δnℓ
=

(
max
j∈Oℓ

m2
j,Oℓ

x′
j,Oℓ

Inℓ
(β0ℓ)

−1xj,Oℓ

) 1
2

, then

δnℓ
(log log λp{Inℓ

(β0ℓ)})
1
2 = o(1).

(X3) a2nℓ ≤ λp{Inℓ
(β0ℓ)} ≤ a3nℓ holds for some positive constants a2

and a3.
(X4) a4nℓ ≤ λ{X ′

nℓ
Mnℓ

Xnℓ
} ≤ a5nℓ holds for some positive constants

a4 and a5.
(X5) Let d0 = 1

4 min1≤i6=ℓ≤k0 |β0i − β0ℓ|. Also let

Qnℓ
= diag{υ1, . . . , υnℓ

},

where υi = mℓi,Oℓ
e−d0||xℓi,Oℓ

||π0ℓi,Oℓ
(1−π0ℓi,Oℓ

), i = 1, . . . , nℓ. Then
there exists a constant a6 > 0 such that λ1{X ′

nℓ
Qnℓ

Xnℓ
} ≥ a6nℓ.
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(Z) n−1An → 0, (log logn)−1An → ∞, as n→ ∞.

Remark 4.1 Assumption (A) implicitly implies that the population
is comprised of k0 sub-populations with proportions p1, . . . , pk0 , where

0 < pi ≤ 1, i = 1, . . . , k0,
∑k0

i=1 pi = 1, and a0 = min1≤i≤k0 pi.

Remark 4.2 Assumptions (X1)–(X5) are essentially about the behav-
iour of the explanatory variables x. Roughly speaking, they mean that
most of the x observations should be finite and stay away from 0. In
fact, as observed by Qian and Field (2002), if we assume x to be a
random vector and x ∈ Oi are i.i.d. observations within each cluster
Oi of the true partitioning Πk0 , for all i = 1, . . . , k0, then by applying
the strong law of large numbers given in Chung (2001, p. 132, Theorem
5.4.1), it is easy to show that the following assumptions are sufficient
for (X1) to (X5) to hold:

(S1) P{x′t 6= 0} > 0 for any t 6= 0 in R
p, which implies that E(xx′) is

positive definite.
(S2) P{h(x′β0i)(1 − h(x′β0i)) 6= |x′t 6= 0} > 0 for any t 6= 0 in R

p,
which implies that both E(π0Oi

(1−π0Oi
)xx′) and E(e−d0‖x|π0Oi

(1−
π0Oi

)xx′) are positive definite, where π0Oi
= h(x′β0i), ∀i =

1, . . . , k0.
(S3) E‖x‖2+κ <∞ for some constant κ > 0.
(S4) sup1≤k≤nmk <∞.

Since there is no essential complexity with random x, we will treat
the observations x1, . . . ,xn as deterministic in the sequel for ease of
notation throughout the rest of this paper.
Suppose that the assumptions (A), (X1)–(X5), (Z) hold, and that

Π
(n)
k0

= {O(n)
1 , . . ., O(n)

k0
} is the underlying true classification of the

n objects in O(n). Observe that the true partition Π
(n)
k0

is a sequence
of naturally nested classifications as n increases, i.e.,

O(n)
i ⊆ O(n+1)

i , i = 1, . . . , k0, for large n.

Consider any given sequence of classifications with k clusters

Π
(n)
k ={C(n)

1 , . . . , C(n)
k } of O(n) such that

C(n)
s ⊆ C(n+1)

s , s = 1, . . . , k, for large n,

when n increases. For simplicity, when no confusion appears, n will be

suppressed in Π
(n)
k0

, Π
(n)
k , O(n)

i , 1 ≤ i ≤ k0, and C(n)
s , 1 ≤ s ≤ k.
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Case 1: When k0 < k ≤ K, where K < ∞ is a fixed constant

First we have

Dn(Πk) −Dn(Πk0)

=
k∑

s=1

∑

j∈Cs

ξ(h(x′
j,Cs

β̂s); yj,Cs ,mj,Cs)

−
k0∑

i=1

∑

j∈Oi

ξ(h(x′
j,Oi

β̂0i); yj,Oi
,mj,Oi

) + (q(k) − q(k0))An,

where

β̂s = arg min
β

∑

j∈Cs

ξ(h(x′
j,Cs

β); yj,Cs ,mj,Cs), s = 1, . . . , k, (5)

β̂0i = arg min
β

∑

j∈Oi

ξ(h(x′
j,Oi

β); yj,Oi
,mj,Oi

), i = 1, . . . , k0. (6)

Note that

O(n) =

k0⋃

i=1

Oi =
k⋃

s=1

Cs =
k⋃

s=1

k0⋃

i=1

(Cs ∩ Oi).

Then

Dn(Πk) −Dn(Πk0)

=

k∑

s=1

k0∑

i=1

∑

j∈Cs∩Oi

[
ξ(h(x′

j,Cs∩Oi
β̂s); yj,Cs∩Oi

,mj,Cs∩Oi
)

−ξ(h(x′
j,Cs∩Oi

β̂0i); yj,Cs∩Oi
,mj,Cs∩Oi

)
]

+ (q(k) − q(k0))An

=
k∑

s=1

k0∑

i=1

∑

j∈Cs∩Oi

[
ξ(h(x′

j,Cs∩Oi
β̂s); yj,Cs∩Oi

,mj,Cs∩Oi
)

−ξ(h(x′
j,Cs∩Oi

β̂0si); yj,Cs∩Oi
,mj,Cs∩Oi

)
]

+
k∑

s=1

k0∑

i=1

∑

j∈Cs∩Oi

[
ξ(h(x′

j,Cs∩Oi
β̂0si); yj,Cs∩Oi

,mj,Cs∩Oi
)

−ξ(h(x′
j,Cs∩Oi

β̂0i); yj,Cs∩Oi
,mj,Cs∩Oi

)
]

+ (q(k) − q(k0))An,

where β̂0si is the MLE of β defined by
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β̂0si = arg min
β

∑

j∈Cs∩Oi

ξ(h(x′
j,Cs∩Oi

β); yj,Cs∩Oi
,mj,Cs∩Oi

). (7)

By (5) and (7), we have

∑
j∈Cs∩Oi

[
ξ(h(x′

j,Cs∩Oi
β̂s); yj,Cs∩Oi

,mj,Cs∩Oi
)

−ξ(h(x′
j,Cs∩Oi

β̂0si); yj,Cs∩Oi
,mj,Cs∩Oi

)
]
≥ 0.

By Assumptions (X1)-(X4), (25) in Lemma 3, (6), (7) and again the
fact that Cs ∩Oi is a subset of the cluster Oi corresponding to the true
partition Πk0 , we have

k∑

s=1

k0∑

i=1

∑

j∈Cs∩Oi

[
ξ(h(x′

j,Cs∩Oi
β̂0si); yj,Cs∩Oi

,mj,Cs∩Oi
)

−ξ(h(x′
j,Cs∩Oi

β0i); yj,Cs∩Oi
,mj,Cs∩Oi

)
]

= O(log logn),

and

k0∑

i=1

∑

j∈Oi

[
ξ(h(x′

j,Oi
β̂0i); yj,Oi

,mj,Oi
) − ξ(h(x′

j,Oi
β0i); yj,Oi

,mj,Oi
)
]

= O(log logn).

Using the fact that

k∑

s=1

k0∑

i=1

∑

j∈Cs∩Oi

ξ(h(x′
j,Cs∩Oi

β0i); yj,Cs∩Oi
,mj,Cs∩Oi

)

≡
k0∑

i=1

∑

j∈Oi

ξ(h(x′
j,Oi

β0i); yj,Oi
,mj,Oi

),

where

ξ(h(x′
j,Oi

β0i); yj,Oi
,mj,Oi

)

= −mj,Oi
yj,Oi

log π0j,Oi
−mj,Oi

(1 − yj,Oi
) log(1 − π0j,Oi

), (8)

and ξ(h(x′
j,Cs∩Oi

β0i); yj,Cs∩Oi
,mj,Cs∩Oi

) is similarly defined, we obtain
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k∑

s=1

k0∑

i=1

∑

j∈Cs∩Oi

[
ξ(h(x′

j,Cs∩Oi
β̂0si); yj,Cs∩Oi

,mj,Cs∩Oi
)

−ξ(h(x′
j,Cs∩Oi

β̂0i); yj,Cs∩Oi
,mj,Cs∩Oi

)
]

=

k∑

s=1

k0∑

i=1

∑

j∈Cs∩Oi

[
ξ(h(x′

j,Cs∩Oi
β̂0si); yj,Cs∩Oi

,mj,Cs∩Oi
)

−ξ(h(x′
j,Cs∩Oi

β0i); yj,Cs∩Oi
,mj,Cs∩Oi

)
]

−
k0∑

i=1

∑

j∈Oi

[
ξ(h(x′

j,Oi
β̂0i); yj,Oi

,mj,Oi
)

− ξ(h(x′
j,Oi

β0i); yj,Oi
,mj,Oi

)
]

= O(log logn). (9)

Hence by (8), (9) and Assumption (Z) and the fact that q(k) −
q(k0) > 0, we have that for large n,

Dn(Πk) −Dn(Πk0) ≥ O(log logn) + (q(k) − q(k0))An > 0. (10)

Case 2: When k < k0

By Lemma 1, for any partition Π
(n)
k = {C(n)

1 , . . . , C(n)
k }, there exist one

cluster in Π
(n)
k and two distinct clusters in the true partition Π

(n)
k0

, say

C1 ∈ Π
(n)
k and O1,O2 ∈ Π

(n)
k0

, such that

b0n < |C1 ∩ O1| < n and b0n < |C1 ∩ O2| < n, (11)

where b0 = a0/k0 > 0 is a constant.
Consider

∑

j∈C1∩O1

ξ(h(xj,C1∩O1)
′β̂1; yj,C1∩O1 ,mj,C1∩O1)

and ∑

j∈C1∩O2

ξ(h(xj,C1∩O2)
′β̂1; yj,C1∩O1 ,mj,C1∩O2),

where β̂1 is defined in (5) with s = 1. Then in view of the convexity
of ξ(·) and (5), (11) and the fact that β01,β02 are two distinct true
parameter vectors, at least one of the below two inequalities hold:
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∑

j∈C1∩O1

ξ(h(xj,C1∩O1)
′β̂1; yj,C1∩O1 ,mj,C1∩O1)

>
∑

j∈C1∩O1

ξ(h(xj,C1∩O1)
′β; yj,C1∩O1 ,mj,C1∩O1), ∀β : |β − β01| ≤ d0,

(12)
∑

j∈C1∩O2

ξ(h(xj,C1∩O2)
′β̂1; yj,C1∩O2 ,mj,C1∩O2)

>
∑

j∈C1∩O2

ξ(h(xj,C1∩O2)
′β; yj,C1∩O2 ,mj,C1∩O2), ∀β : |β − β02| ≤ d0,

where d0 is defined in Assumption (X5). Without loss of generality,
we assume that (12) holds. Now let us focus our discussion on the set
C1 ∩ O1 first. Let n11 = |C1 ∩ O1|. We want to find out the order of

∑
j∈C1∩O1

[
ξ(h(x′

j,C1∩O1
β̂1); yj,C1∩O1 ,mj,C1∩O1)

−ξ(h(x′
j,C1∩O1

β̂011); yj,C1∩O1 ,mj,C1∩O1)
]

def
= T

as n increases to infinity, where β̂011 is defined in (7). For simplicity,
we will use single indices exclusively for observations in the set C1∩O1,
i.e., xj , yj , mj and π0j will respectively represent xj,C1∩O1 , yj,C1∩O1 ,
mj,C1∩O1 and π0j,C1∩O1 until the equation (18).

First note that

T =
∑

j∈C1∩O1

[
ξ(h(x′

jβ̂1); yj ,mj) − ξ(h(x′
jβ̂011); yj ,mj)

]

=
∑

j∈C1∩O1

[
ξ(h(x′

jβ̂1); yj ,mj) − ξ(h(x′
jβ01); yj ,mj)

]

−
∑

j∈C1∩O1

[
ξ(h(x′

jβ̂011); yj ,mj) − ξ(h(x′
jβ01); yj ,mj)

]

def
= T1 + T2.

By Lemma 3 and (7), we have that for large n,

T2 =
∑

j∈C1∩O1

[
ξ(h(x′

jβ̂011); yj ,mj) − ξ(h(x′
jβ01); yj ,mj)

]

= log log n11 = o(n11). (13)

Now let us consider the order of T1. For any β, define
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H(β) =
∑

j∈C1∩O1

{
ξ(h(x′

jβ); yj ,mj) − ξ(h(x′
jβ01); yj ,mj)

}
.

From the definitions of ξ(π; y,m) and w(u, v), it follows that

H(β) =
∑

j∈C1∩O1

{
−mjyjx

′
j(β − β01) −mj log

1 − h(x′
jβ)

1 − h(x′
jβ01)

}

= −
∑

j∈C1∩O1

mj(yj − π0j)x
′
j(β − β01)

+
∑

j∈C1∩O1

mjw(x′
jβ,x

′
jβ01)

def
= H1(β) +H2(β). (14)

Let A0 = {β : ‖β − β01‖ ≤ d0}. Then by Lemma 3 it can be shown
that

inf
β∈∂A0

H1(β) = O(
√
n11 log logn11) inf

β∈∂A0

‖β − β01‖

= O(
√
n11 log logn11) a.s. (15)

By (23) of Lemma 2 and Assumption (X5), we derive that

inf
β∈∂A0

H2(β)

≥ inf
β∈∂A0

1

4

∑

j∈C1∩O1

mje
−|x′

j(β−β01)|h(x′
jβ01)(1 − h(x′

jβ01))

×(x′
jβ − x′

jβ01)
2

=
1

4
inf

β∈∂A0

(β − β01)
′X ′

C1∩O1
Qn11XC1∩O1(β − β01)

≥ 1

4
a6n11 inf

β∈∂A0

‖β − β01‖ =
1

4
d0a6n11. (16)

From (14), (15) and (16) it follows that there exists a constant τ > 0
such that for large n,

inf
β∈∂A0

H(β) ≥ τn11. (17)

By (12) and (17), we have that

T1 =
∑

j∈C1∩O1

[
ξ(h(x′

jβ̂1); yj ,mj) − ξ(h(x′
jβ01); yj ,mj)

]

≥ inf
β∈∂A0

H(β) ≥ τn11. (18)
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Hence by combining results from (13) and (18), we have

∑

j∈C1∩O1

[
ξ(h(x′

j,C1∩O1
β̂1); yj,C1∩O1 ,mj,C1∩O1)

−ξ(h(x′
j,C1∩O1

β̂011); yj,C1∩O1 ,mj,C1∩O1)
]
≥ τn11. (19)

Note that Dn(Πk) −Dn(Πk0) can be partitioned as follows:

Dn(Πk) −Dn(Πk0)

=
k∑

s=1

∑

j∈Cs

ξ(h(x′
j,Cs

β̂s); yj,Cs ,mj,Cs)

−
k0∑

i=1

∑

j∈Oi

ξ(h(x′
j,Oi

β̂0i); yj,Oi
,mj,Oi

) + (q(k) − q(k0))An

=
∑

j∈C1∩O1

[
ξ(h(x′

j,C1∩O1
β̂1); yj,C1∩O1 ,mj,C1∩O1)

−ξ(h(x′
j,C1∩O1

β̂011); yj,C1∩O1 ,mj,C1∩O1)
]

+
∑

Jis

∑

j∈Cs∩Oi

[
ξ(h(x′

j,Cs∩Oi
β̂s); yj,Cs∩Oi

,mj,Cs∩Oi
)

−ξ(h(x′
j,Cs∩Oi

β̂0si); yj,Cs∩Oi
,mj,Cs∩Oi

)
]

+

k∑

s=1

k0∑

i=1

∑

j∈Cs∩Oi

[
ξ(h(x′

j,Cs∩Oi
β̂0si); yj,Cs∩Oi

,mj,Cs∩Oi
)

−ξ(h(x′
j,Cs∩Oi

β̂0i); yj,Cs∩Oi
,mj,Cs∩Oi

)
]

+ (q(k) − q(k0))An,

where Jis = {i, s : i = 1, . . . , k; s = 1, . . . , k0; i and s can not be 1
simultaneously} and hence Jis corresponds to all possible intersection

sets of Πk and Πk0 excluding C1 ∩ O1; β̂i, β̂0i and β̂0si are defined in
(5), (6), and (7), respectively. By (8), we obtain

∑∑

Jis

∑

j∈Cs∩Oi

[
ξ(h(x′

j,Cs∩Oi
β̂s); yj,Cs∩Oi

,mj,Cs∩Oi
)

−ξ(h(x′
j,Cs∩Oi

β̂0si); yj,Cs∩Oi
,mj,Cs∩Oi

)
]
≥ 0. (20)

By following the same line of argument as in proving (9), we can show
that
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k∑

s=1

k0∑

i=1

∑

j∈Cs∩Oi

[
ξ(h(x′

j,Cs∩Oi
β̂0si); yj,Cs∩Oi

,mj,Cs∩Oi
)

−ξ(h(x′
j,Cs∩Oi

β̂0i); yj,Cs∩Oi
,mj,Cs∩Oi

)
]

= O(log logn) = o(n).(21)

Hence in terms of (11), (19), (20) and (21) and Assumption (Z), we
obtain that for large n,

Dn(Πk) −Dn(Πk0) ≥ τb0n+ o(n) + (q(k) − q(k0))An > 0. (22)

Therefore combining the results from (10) in Case 1 and (22) in Case
2, we have showed that the true classification is preferable when n
increases to infinity.

Appendix

Lemma 1. Suppose that Assumption (A) holds, for any possible parti-

tion Π
(n)
k of O(n), if k < k0, where k is the number of clusters for Π

(n)
k

and k0 is the true number of clusters in O(n), there exist Cs ∈ Π
(n)
k and

Oi,Ol ∈ Π
(n)
k0

such that

|Cs ∩ Oi| > b0n and |Cs ∩ Ol| > b0n,

where b0 = a0/k0 > 0 is a fixed constant.

The proof can be found in Shao and Wu (2005).

Lemma 2. Define w(u, v) = − log(1− h(u))/(1− h(v))− h(v)(u− v),
where h(u) = eu/(1 + eu). Then w(u, v) is strictly convex with respect
to u. Further, we have

w(u, v) ≥ 1

4
e−ζh(v)(1 − h(v))(u− v)2 if |u− v| ≤ ζ, ∀ζ > 0.(23)

The proof can be found in Qian and Field (2002).

Lemma 3. Suppose that Assumptions (X1)–(X4) hold. Then we have
that for large n,

∂l

∂β

∣∣∣∣
β=β0ℓ

=
∑

j∈Oℓ

mj,Oℓ
(yj,Oℓ

− π0j,Oℓ
)xj,Oℓ

= X ′
nℓ
Mnℓ

(Ynℓ
− Π0nℓ

) = O(
√
nℓ log lognℓ), (24)
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and

0 ≤
∑

j∈Oℓ

{ξ(h(x′
j,Oℓ

β̂nℓ
); yj,Oℓ

,mj,Oℓ
) − ξ(h(x′

j,Oℓ
β0ℓ); yj,Oℓ

,mj,Oℓ
)}

= O(log lognℓ), (25)

where Ynℓ
= (yℓ1 , . . . , yℓnℓ

)′ and Π0nℓ
= diag{πℓ1 , . . . , πℓnℓ

}.
See Qian and Field (2002) for the proof. In fact, (24) and (25) are
respectively the results of Lemma 2 and Theorem 2 in that paper.
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