
# 1 Ohmsches Gesetz

| Name   |  |
|--------|--|
| Klasse |  |
| Datum  |  |

### 6.1 Allgemeines

Der Zusammenhang zwischen der Stromstärke, der Spannung und dem Widerstand wurde von Georg Simon **Ohm** entdeckt und wird nach ihm **Ohmsches Gesetz** genannt.

#### 6.2 Versuch 9/1 bis 9/5:



Bei den Versuchen 9/1 bis 9/3 wird bei gleichbleibendem Widerstand (R = 10  $\Omega$ ) die Spannung geändert.

| Versuch Nr.  | geänderte<br>Versuchsgrößen | Widerstand<br>R | gemessene<br>Spannung U | gemessene<br>Stromstärke I | Erkenntnisse          |
|--------------|-----------------------------|-----------------|-------------------------|----------------------------|-----------------------|
| 9/1          | einfache<br>Spannung        | 10 Ω            | 10 V                    | 1 A                        | einfache              |
|              | zweifache                   |                 |                         |                            | Stromstärke zweifache |
| 9/2 Spannung |                             | 10 Ω            | 20 V                    | 2 A                        | Stromstärke           |
| 9/3          | dreifache<br>Spannung       | 10 Ω            | 30 V                    | 3 A                        | dreifache Stromstärke |

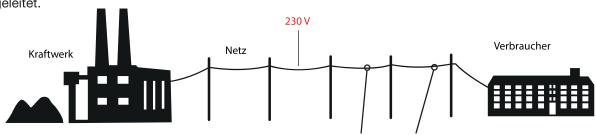
#### Beobachtung:

- 1. Die Stromstärke ist umso größer, je größer die Spannung ist.
- 2. Die Stromstärke ist umso kleiner, je kleiner die Spannung ist.

Bei den Versuchen 9/4 bis 9/5 wird bei gleichbleibender Spannung (U = 30 V) der Widerstand geändert.

| 9/4 | einfacher<br>Widerstand  | 10 Ω | 30 V | 3 A | Stromstärke wird größer  |
|-----|--------------------------|------|------|-----|--------------------------|
| 9/5 | dreifacher<br>Widerstand | 30 Ω | 30 V | 1 A | Stromstärke wird kleiner |

#### **Beobachtung:**

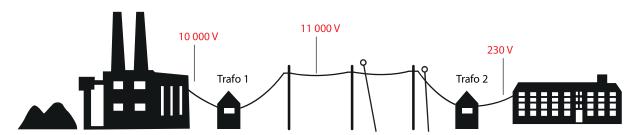

- 1. Die Stromstärke ist umso kleiner, je größer der Widerstand ist.
- 2. Die Stromstärke ist umso größer, je kleiner der Widerstand ist.

# Verteilung elektrischer 1 Energie

Name \_\_\_\_\_\_
Klasse \_\_\_\_\_
Datum \_\_\_\_

#### 13.1 Vom Kraftwerk zum Verbraucher

Elektrische Energie wird z.B. in Generatoren erzeugt und über Leistungsnetze in die Verbrauchergebiete geleitet.



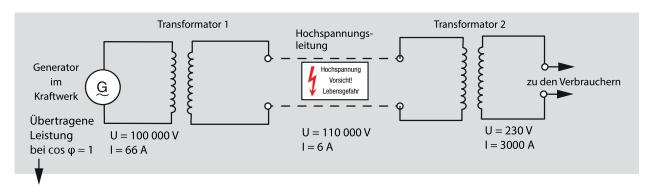

Spannung · Stromstärke = elektrische Leistung = 230 V · 3000 A = 690 000 W = 690 kW

**Erkenntnis:** Niedrige Spannung, aber hohe Stromstärke.

Folgerung: Sehr großer Leistungsquerschnitt wäre erforderlich! In der Praxis nicht so ausgeführt!

Der erforderliche Querschnitt einer Übertragungsleitung hängt von der Stromstärke ab. Bei hoher Spannung und damit niedriger Stromstärke kann deshalb der erforderliche Querschnitt kleiner sein als bei niedriger Spannung und hoher Stromstärke.




Spannung · Stromstärke = elektrische Leistung = 110000 V · 6 A = 690 000 W = 690 kW

**Erkenntnis:** Niedrige Stromstärke, aber hohe Spannung (Hochspannung).

Folgerung: Kleiner Leistungsquerschnitt ist erforderlich! In der Praxis so ausgeführt!

Mithilfe von Transformatoren (Umspanner) wird in Elektrizitätswerken die von Generatoren erzeugte Spannung hochtransformiert (umgespannt) und über Hochspannungsleitungen fortgeleitet. Kurz vor dem Verbraucher (Ortsnetz) wird die hohe Spannung in die Gebrauchsspannungen 230 V und 400 V heruntertransformiert.

#### 13.2 Beispiel einer Energieübertragung (Verluste nicht berücksichtigt) Versuch 30/1



 $P = U \cdot I \cdot \cos \varphi = 10\,000\,V \cdot 66\,A \cdot 1 = 110\,000\,V \cdot 6\,A \cdot 1 = 230\,V \cdot 3000\,A \cdot 1 = 690\,000\,W = 690\,kW = 0,69\,MW$ 

**Erkenntnis:** Die Generatorleistung entspricht der Verbraucherleistung.



| Name   |  |
|--------|--|
| Klasse |  |
| Datum  |  |

## 15.3 Leuchtstofflampen als elektrische Lichtquelle

Leuchtstofflampen haben eine lange Lebensdauer (ca. 15 000 Betriebsstunden) und eine hohe Lichtausbeute (bis zu 100 lm/W). Sie werden in unterschiedlichen Lichtfarben angeboten. Danach richtet sich auch ihre Farbwiedergabeeigenschaft, die als gut bezeichnet werden kann.

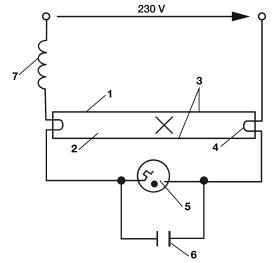
Leuchtstofflampen sind Gasentladungslampen. Das Entladungsrohr mit eingeschlämmten Leuchtschichten ist mit Quecksilberdampf sowie eine geringe Menge Edelgas gefüllt. An den Rohrenden sind Wolframwendel als Elektroden eingebaut.

**Beachte:** Starter (Glimmstarter) sind dem Verschleiß unterworfen. Zum Austausch dürfen nur Starter mit gleicher Typenbezeichnung verwendet werden.

#### Elektronisches Vorschaltgerät

Zur Zündung und zum Betrieb von Leuchtstofflampen werden häufig "Elektronische Vorschaltgeräte" (EVGs) verwendet. Sie haben manche Vorteile. Zum Beispiel:

- Lampenschonende Zündvorgänge
- Geringe Verlustleistung
- Flackerfreier Start
- Höhere Lichtausbeute der Lampe
- Stufenlos dimmbar


#### Kenziffern bei Leuchtstofflampen

| Kennziffer | Bedeutung              | Verwendung                     |
|------------|------------------------|--------------------------------|
| 11,12      | tageslichtweiß (tw)    | Innenbeleuchtung               |
| 21,22      | neutralweiß<br>(nw)    | Arbeitsstätten-<br>beleuchtung |
| 31,32      | warmweiß<br>(ww)       | Wohnbereichs-<br>beleuchtung   |
| 72         | ähnlich<br>Sonnenlicht | Bürobeleuchtung                |

#### Arbeitsweise der Leuchtstofflampe

Prinzipzeichnung zur Wirkungsweise

An den Elektroden wird eine elektrische Spannung angelegt. Freie Ladungsträger im Entladungsrohr werden dadurch beschleunigt und kollidieren mit den Gasatomen. Folge ist eine kurzzeitige Strahlungsemission. Die Lichtfarbe wird durch die Leuchtschicht bestimmt.



- 1 Glasrohr der Leuchtstofflampe
- 2 Gasfüllung
- 3 Leuchtschicht
- 4 Wolframelektroden
- **5** Starter (Glimmstarter)
- 6 Entstörkondensator
- 7 Vorschaltgerät

Beim Einschalten fließt ein geringer Strom über Vorschaltgerät, Lampenelektroden und Starter. Die Kontakte des Starters werden durch Glimmentladung erwärmt. Der Starter schließt den Stromkreis. Der dann fließende höhere Strom erhitzt die Lampenelektroden. Es kommt zu einer Zunahme der Elektronenemission.

Glimmentladung am Starterkontakt erlischt. Durch Abkühlung wird der Starterkreis geöffnet. Dadurch erzeugt die Drossel eine hohe Spannung (Induktion) und die Lampe wird gezündet. Nach dem Zünder begrenzt die Drossel die Lampenspannung auf ca. 80 V, was den Lampenstrom begrenzt.

#### Aufgaben des Vorschaltgeräts

- 1. Erzeugung der notwendigen Zündspannung.
- 2. Strombegrenzung nach dem Zündvorgang.