Hugendubel.info - Die B2B Online-Buchhandlung 

Merkliste
Die Merkliste ist leer.
Bitte warten - die Druckansicht der Seite wird vorbereitet.
Der Druckdialog öffnet sich, sobald die Seite vollständig geladen wurde.
Sollte die Druckvorschau unvollständig sein, bitte schliessen und "Erneut drucken" wählen.

Genetic Modification of Plants

E-BookPDF1 - PDF WatermarkE-Book
675 Seiten
Englisch
Springer Berlin Heidelbergerschienen am15.12.20092010

Conceived with the aim of sorting fact from fiction over genetically modified (GM) crops, this book brings together the knowledge of 30 specialists in the field of transgenic plants. It covers the generation and detection of these plants as well as the genetic traits conferred on transgenic plants. In addition, the book looks at a wide variety of crops, ornamental plants and tree species that are subject to genetic modifications, assessing the risks involved in genetic modification as well as the potential economic benefits of the technology in specific cases. The book's structure, with fully cross-referenced chapters, gives readers a quick access to specific topics, whether that is comprehensive data on particular species of ornamentals, or coverage of the socioeconomic implications of GM technology. With an increasing demand for bioenergy, and the necessary higher yields relying on wider genetic variation, this book supplies all the technical details required to move forward to a new era in agriculture.
mehr
Verfügbare Formate
BuchGebunden
EUR320,99
E-BookPDF1 - PDF WatermarkE-Book
EUR309,23

Produkt

Klappentext
Conceived with the aim of sorting fact from fiction over genetically modified (GM) crops, this book brings together the knowledge of 30 specialists in the field of transgenic plants. It covers the generation and detection of these plants as well as the genetic traits conferred on transgenic plants. In addition, the book looks at a wide variety of crops, ornamental plants and tree species that are subject to genetic modifications, assessing the risks involved in genetic modification as well as the potential economic benefits of the technology in specific cases. The book's structure, with fully cross-referenced chapters, gives readers a quick access to specific topics, whether that is comprehensive data on particular species of ornamentals, or coverage of the socioeconomic implications of GM technology. With an increasing demand for bioenergy, and the necessary higher yields relying on wider genetic variation, this book supplies all the technical details required to move forward to a new era in agriculture.
Details
Weitere ISBN/GTIN9783642023910
ProduktartE-Book
EinbandartE-Book
FormatPDF
Format Hinweis1 - PDF Watermark
FormatE107
Erscheinungsjahr2009
Erscheinungsdatum15.12.2009
Auflage2010
Reihen-Nr.64
Seiten675 Seiten
SpracheEnglisch
IllustrationenXXVII, 675 p. 34 illus., 10 illus. in color.
Artikel-Nr.1012051
Rubriken
Genre9200

Inhalt/Kritik

Inhaltsverzeichnis
1;Part A: Generation and Analysis of Transgenic Plants;27
2;Chapter 1: Plant Nuclear Transformation;28
2.1;Introduction to Plant Transformation;28
2.1.1;DNA Introduction Basics;28
2.2;Transient Expression;29
2.2.1;Optimization of Transient Expression;30
2.2.2;Transient Expression to Study Gene Expression and Stability;30
2.3;Agrobacterium Background;31
2.3.1;A String of Improvements for Agrobacterium;32
2.3.2;Agrobacterium-- Plant Interactions;33
2.3.3;Reducing Agents;33
2.3.4;Agroinfiltration;34
2.3.5;Arabidopsis Floral Dipfloral dip;34
2.4;Particle BombardmentParticle bombardment;35
2.4.1;Gene Guns;36
2.4.2;Optimization of DNA Delivery;36
2.4.3;Control of DNA Integration Patternintegration patterns;37
2.5;Other Direct DNA Uptakedirect DNA uptake Approaches;37
2.5.1;Protoplasts;38
2.5.2;Whole Tissue Electroporation;38
2.5.3;Silicon Carbide Whiskers;39
2.5.4;Nanofiber ArraysNanofiber arrays;39
2.5.5;Pollen Tube PathwayPollen tube pathway;40
2.6;Evidence for Transformation;41
2.6.1;DNA Presence;41
2.6.2;Gene Expression;42
2.7;Conclusions;43
2.8;References;43
3;Chapter 2: Plastid Transformation;47
3.1;Introduction;47
3.2;Delivery of Transforming DNA to the Chloroplast;48
3.3;Vector Design;51
3.3.1;Flanking Regions;51
3.3.2;Promoters and UTRs;53
3.4;Transgene Stacking and Control of Gene Expression;54
3.5;Selection;55
3.5.1;Antibiotic Resistance Markers;55
3.5.2;Other Selection Markers;56
3.6;Marker Gene Excision;56
3.7;Analysis;57
3.8;Conclusions;58
3.9;References;58
4;Chapter 3: Concepts of Marker Genesmarker genes for Plants;62
4.1;Introduction;62
4.2;Criteria for Choosing the Marker Gene SystemMarker gene system;63
4.3;Availability of Selectable Marker GeneSelectable marker gene Systems and Alternatives;65
4.3.1;Positive Selection Marker;65
4.3.1.1;AntibioticsAntibiotics;65
4.3.1.1.1;Neomycin Phosphotransferase IINeomycin phosphotransferase II;66
4.3.1.1.2;Hygromycin Phosphotransferase;67
4.3.1.1.3;Antibiotic Resistance Genes Beside nptII and hph;67
4.3.1.2;HerbicidesHerbicides;67
4.3.1.3;Metabolic Analogous, Toxic, Non-Toxic Agents;68
4.3.1.3.1;2-Deoxyglucose-6-Phosphate Phosphatase;68
4.3.1.3.2;Xylose Isomerase;69
4.3.1.3.3;Isopentenyl Transferaseisopentenyl transferase;69
4.3.1.3.4;Phosphomannose Isomerasephosphomannose isomerase;70
4.3.2;Alternative Systems;70
4.3.2.1;Selectable Marker Gene Eliminationmarker gene elimination;70
4.3.2.1.1;Co-TransformationCotransformation;70
4.3.2.1.2;Recombinase-Induced EliminationRecombinase induced elimination;72
4.3.2.1.3;Transposon-Based EliminationTransposon-based elimination;73
4.3.2.1.4;Homologous RecombinationHomologue recombination;74
4.3.3;Screenable Marker GenesScreenable marker genes;74
4.3.4;Negative Selection MarkerNegative selection marker;75
4.3.5;Marker-Free TransformationMarker-free transformation Without Usage of Any Marker Gene;75
4.4;Conclusions and Perspective;76
4.5;References;77
5;Chapter 4: Precise Breeding Through All-Native DNA Transformation;84
5.1;Introduction;84
5.2;Examples of the Intragenic Modification in Potato;85
5.3;Requirements for the All-Native DNA Transformation of Potato;88
5.4;Intragenic Tomato (S. esculentum): Concentrating the Quality Potential of Tomatotomato into its Fruit;90
5.5;Exploring the Diversity of Solanaceous Crops;91
5.6;Intragenic Modification of Alfalfa: Optimization of a Forage Feed;92
5.7;Exploiting Native Genetic Elements for Canola Oilseed Improvements;93
5.8;Drought-Tolerant Perennial Ryegrass;94
5.9;Bruise-Tolerant Appleapple;95
5.10;Native Markers for Intragenic Transformation;95
5.11;Intragenic Crops Are at Least as Safe as Those Developed Through Traditional Methods;96
5.12;Conclusions;97
5.13;References;97
6;Chapter 5: Gene Silencing in Plants: Transgenes as Targets and Effectors;101
6.1;Introduction;101
6.2;Mechanisms of Gene Silencing;102
6.2.1;The Role of Small RNAs;103
6.2.1.1;MicroRNA Genes;104
6.2.1.2;Natural Sense--Antisense Gene Pairs;104
6.2.1.3;Viral Genomic RNA, Transcripts, and Replication Intermediates;104
6.2.1.4;Heterochromatic and Repetitive Sequences;105
6.2.2;Epigenetic Silencing of Transcription;105
6.3;Silencing of Transgene Expression;107
6.3.1;Cis- and Trans-Silencing Of Multi-Copy Transgenes;107
6.3.2;Silencing of Single-Copy Transgenes;110
6.3.3;Reducing the Risk of Transgene Silencing;111
6.4;Applications of RNA Interference in Transgenic Plants;112
6.4.1;Applications of RNAi for Crop Protectioncrop protection;114
6.4.2;Applications of RNAi for Crop Improvementcrop improvement and Metabolic Engineering;115
6.5;Conclusions;116
6.6;References;116
7;Chapter 6: Breeding with Genetically Modified Plants;124
7.1;Genetic Variation in Plant Breeding;124
7.2;Breeding Aims;124
7.3;Methods for Introducing Transgenes into Elite Plant Material;126
7.4;Breeding Methods;128
7.4.1;Line VarietiesLine varieties;129
7.4.2;Open-Pollinated VarietiesOpen pollinated varieties;130
7.4.3;Hybrid Varieties;130
7.4.4;Clone VarietiesClone varieties;132
7.5;Safety and Legal Aspects of GMO Breeding;133
7.5.1;Separating Transgenic and Non-Transgenic Breeding Programs;133
7.5.2;Breeding Marker-Free Cultivarsmarker-free cultivars;134
7.5.3;`Cisgenic´ and Transgenic Plants;134
7.6;Non-Transgenic Versus Transgenic Breeding;135
7.7;Conclusions;136
7.8;References;137
8;Chapter 7: Detection of Genetically Modified Plants in Seeds, Food and Feed;138
8.1;Introduction;138
8.2;Techniques Used to Detect a Transgenic Plant;139
8.2.1;DNA-Based DetectionDNA-based detection;139
8.2.1.1;Polymerase Chain Reaction;140
8.2.1.2;Conventional Qualitative PCR;140
8.2.1.3;Quantitative Real-Time PCRQuantitative real-time PCR;141
8.2.1.4;Alternative DNA-Based Techniques;142
8.2.2;Protein-Based DetectionProtein-based detection;143
8.2.2.1;Lateral Flow Strip;143
8.2.2.2;Enzyme-Linked Immunosorbent AssayEnzyme-Linked Immunosorbent Assay (ELISA);144
8.2.3;Method Validationvalidation and Standardisation;144
8.3;Detection Strategies;145
8.3.1;ScreeningScreening;145
8.3.2;IdentificationIdentification;149
8.3.3;Quantification;150
8.3.4;Detection of Stacked Events;150
8.3.5;Detection of Unauthorised/Unknown GMOs;151
8.3.6;Method Databases;152
8.3.7;SamplingSampling Issues;152
8.4;Conclusions;153
8.5;References;153
9;Part B: Selected Characters of Transgenic Plants and Their Application in Plant Production ;158
10;Chapter 8: Drought Stress Tolerance;159
10.1;Introduction;159
10.2;Transgenic Plant Strategies for Enhanced Drought Stress Tolerance in Crop Plants;160
10.2.1;OsmoprotectantsOsmoprotectants and Metabolite Engineeringmetabolite engineering;161
10.2.1.1;Amino Acid-Derived Osmoprotectants;165
10.2.1.1.1;ProlineProline;165
10.2.1.1.2;Glycine BetaineGlycine betaine;165
10.2.1.2;Sugar-Related Osmoprotectants;166
10.2.1.2.1;FructansFructans;166
10.2.1.2.2;Polyols;166
10.2.1.2.3;TrehaloseTrehalose;166
10.2.2;Regulatory and Signalling Genessignalling genes: Tools to Engineer Drought Stress Tolerance;167
10.2.2.1;DREB/CBF: a Landmark Discovery in the Manipulation of Abiotic Stress Tolerance;167
10.2.2.2;SNAC1/2: Stress-Responsive Plant-Specific Transcription Factors with Distinct Mechanisms of Action;169
10.2.2.3;HARDY: Engineering Water Use Efficient Rice;170
10.2.2.4;HD-START: a Developmental Regulator Conferring Drought Tolerance;171
10.2.2.5;Plant Nuclear Factor Y B Subunits: Field-Validated Drought Tolerance in Maize;171
10.2.2.6;Rice Calcium-Dependent Protein Kinase 7: Multiple Abiotic Stress Tolerance with Minimal Pleiotropic Events;172
10.2.2.7;Tobacco Protein Kinase: Sustained Yield in Maize under Water-Limited Conditions;172
10.3;Future Prospects: ``Climate-Ready´´ Crops;173
10.4;References;174
11;Chapter 9: Herbicide Resistance;178
11.1;Introduction;178
11.1.1;Overview of Adoption;179
11.1.2;Types of Herbicide Resistance;179
11.1.3;Modes of Herbicide Action in Herbicide-Resistant Crops;180
11.1.4;Implications of Genetically Modified Herbicide-Resistant Crops;181
11.1.4.1;Selection Pressure Indirectly Attributable to Genetically Modified Herbicide-Resistant Crops;181
11.1.4.2;Evolved Herbicide Resistance;182
11.1.4.3;Changes in Herbicide Use;182
11.1.4.4;Lack of Integrated Weed Management;183
11.2;Specific Crops with Herbicide Resistance;183
11.2.1;Maize;183
11.2.2;Soybean;184
11.2.3;Cotton;184
11.2.4;Canola;184
11.2.5;Sugarbeets;185
11.2.6;Turf;185
11.2.7;Alfalfa;185
11.2.8;Rice;185
11.2.9;Wheat;186
11.3;Implications of Genetically Modified Herbicide Resistance on Cropping Systems;186
11.3.1;Tillage;186
11.3.2;Diversity of Weed Management Tactics;187
11.3.3;Timelines of Weed Management Tactics;188
11.4;Herbicide-Resistant Weeds;188
11.4.1;Weedy Near-Relatives to Genetically Modified Herbicide-Resistant Crops -- Gene Flow;189
11.4.2;Implications of Herbicide Resistance -- Persistence in the Agroecosystem;190
11.5;Conclusions;191
11.6;References;192
12;Chapter 10: Insectinsect and Nematodenematode Resistance;196
12.1;Introduction;196
12.2;R Gene-Mediated Resistance;197
12.2.1;Plant ResistancePlant resistance and Resistance Gene;197
12.2.2;Plant Parasite Resistance and Resistance Genes;198
12.2.3;Significance and Limitations of Plant Resistance Genes;200
12.3;Engineering of Insect and Nematode Resistance;201
12.3.1;Anti-Insect/Nematode Genes;202
12.3.1.1;Bt Toxins;202
12.3.1.2;Proteinase InhibitorsProteinase Inhibitors;203
12.3.1.3;LectinsLectins;205
12.3.1.4;a-Amylase Inhibitors;206
12.3.1.5;ChitinasesChitinases and Others;206
12.3.2;RNA Interference-Based Gene Silencing;207
12.4;Conclusions;208
12.5;References;208
13;Chapter 11: Metabolic Engineering;217
13.1;Introduction;217
13.2;Strategies for Metabolic Engineering in Plants;218
13.3;Engineering of Primary Metabolism;219
13.3.1;Carbohydrate Metabolism;219
13.3.1.1;Production of Novel Carbohydrates in Transgenic Plants;222
13.3.2;Metabolic Engineering of Lipid Metabolismlipid metabolism;224
13.3.2.1;Biosynthesis of Storage Lipidsstorage lipids;224
13.3.2.2;Genetic Engineering of Plant Lipid Metabolism;226
13.3.2.2.1;Unusual Medium-Chain Fatty Acids;226
13.3.2.2.2;Unusual Long-Chain Fatty AcidsUnusual long-chain fatty acids;227
13.3.2.2.3;Fatty Acids with Additional Functional Groups;229
13.4;Engineering of Secondary Metabolism for Human Health and Nutrition;230
13.4.1;Flavonoids;230
13.4.2;Vitamins;231
13.5;Conclusions;232
13.6;References;232
14;Chapter 12: Pharmaceuticals;238
14.1;Introduction;238
14.2;Expression Systems;239
14.2.1;Transient Expression Systems;239
14.2.2;Stable Expression Systems;240
14.2.2.1;Transplastomic Plants;240
14.2.2.2;Nuclear Transgenic Plants;242
14.3;Post-Translational Modifications;243
14.4;Downstream Processing;245
14.5;PMPs in Advanced Development;245
14.5.1;Glucocerebrosidase;245
14.5.2;Insulin;246
14.5.3;Idiotype Vaccines;247
14.5.4;Interferon;248
14.6;Conclusion;248
14.7;References;249
15;Chapter 13: Biopolymers;253
15.1;Introduction;253
15.2;Transgene-Encoded Biopolymers;254
15.2.1;Starch and Cellulose;255
15.2.1.1;Starch;255
15.2.1.2;Cellulose;255
15.2.1.3;Glucoside;257
15.2.2;Polyhydroxyalkanoates;258
15.2.3;Protein-Based Biomaterials;259
15.2.3.1;Fibrous Proteins;259
15.2.3.2;Non-Ribosomally Produced Poly-Amino Acids;261
15.3;Conclusion;263
15.4;References;264
16;Chapter 14: Engineered Male Sterility;269
16.1;Introduction;269
16.2;Natural Male Sterility Systems in Plants;270
16.2.1;Cytoplasmic Male Sterility;270
16.2.2;Nuclear Male Sterility;271
16.3;Methods of Producing Male-Sterile Plants;272
16.3.1;The Selective Destruction of Tissues Important for the Production of Functional Pollenpollen;272
16.3.2;Changing the Levels of Metabolites Needed for the Production of Viable Pollenpollen;274
16.3.3;Engineering Cytoplasmic Male-Sterile Plants;275
16.4;Strategies for the Multiplication of Male-Sterile Lines;275
16.4.1;Herbicide Application for Selection of Male-Sterile Plants;276
16.4.2;Reversible Male Sterility;276
16.4.3;Use of Maintainermaintainer Lines;277
16.5;Commercial Use of Male Sterility;277
16.6;Conclusions and Future Perspectives;277
16.7;References;278
17;Part C: Transgenic Plants in Breeding and Crop Production;282
18;Chapter 16: Triticeae Cereals;300
18.1;Introduction;300
18.1.1;The Generation of Transgenic Triticeae Plants;301
18.1.2;Transgene Expression Systems;302
18.2;Tolerance to Abiotic Stressabiotic stress;303
18.2.1;DroughtDrought and Salinitysalinity;304
18.2.2;Aluminium Toxicity;305
18.3;Resistance to Fungal Infection;305
18.3.1;Regulators of Plant Defence;306
18.3.2;Pathogenesis-Related Proteins;306
18.3.3;R Proteins;308
18.3.4;Fungal Proteins;309
18.3.5;Viral Proteins;309
18.4;Resistance to Viral Infection;309
18.5;Resistance to Insects;310
18.6;Grain Quality;310
18.6.1;Production of Recombinant Proteins;312
18.7;References;313
19;Chapter 17: Fruit CropsFruit Crops;320
19.1;Introduction;320
19.2;Temperate Fruit CropsTemperate fruit crops;321
19.2.1;Top FruitTop fruit;321
19.2.1.1;MalusMalus Species (AppleApple);321
19.2.1.2;PyrusPyrus Species (PearPear);327
19.2.1.3;PrunusPrunus Species (AlmondAlmond, Apricotapricot, Sweet and Sour Cherrycherry, Cherry Rootstockscherry rootstocks, Peachpeac;329
19.2.2;Small FruitSmall fruit;332
19.2.2.1;FragariaFragaria Species (StrawberryStrawberry);332
19.2.2.2;GrapevineGrapevine;333
19.2.2.3;RibesRibes Species (Blackcurrantblackcurrant, Redcurrantredcurrant, Gooseberrygooseberry);336
19.2.2.4;RubusRubus Species (RaspberryRaspberry, Blackberryblackberry);336
19.2.2.5;VacciniumVaccinium Species (BlueberryBlueberry, Cranberrycranberry);336
19.3;Tropical and Subtropical Fruit CropsTropical and subtropical fruit crops;337
19.3.1;AvocadoAvocado;337
19.3.2;BananaBanana;337
19.3.3;CitrusCitrus Species;338
19.3.4;KiwifruitKiwifruit;340
19.3.5;MangoMango;340
19.3.6;PapayaPapaya;341
19.3.7;PersimmonPersimmon;342
19.3.8;PineapplePineapple;342
19.4;References;343
20;Chapter 18: Maize;362
20.1;Introduction;362
20.2;Culture MediaCulture Media and Supplements;363
20.3;GenotypeGenotype;364
20.4;Explant;364
20.5;Transformation;365
20.5.1;Free DNA DeliveryFree DNA Delivery in Protoplasts;365
20.5.2;Intact Tissue Electroporation;366
20.5.3;Silicon Carbide;366
20.5.4;Microprojectile BombardmentMicroprojectile Bombardment;367
20.5.5;AgrobacteriumAgrobacterium;371
20.6;BenefitsBenefits;374
20.7;References;376
21;Chapter 19: Ornamentals;381
21.1;Introduction;381
21.2;Flower Colour ModificationsFlower colour modifications;382
21.2.1;Red and Pink Flowers;384
21.2.2;Yellow and Orange Flowers;384
21.2.3;Blue Flowers;385
21.2.4;White Flowers;385
21.2.5;Pigmentation PatternsPigmentation patterns;385
21.3;Postharvest QualityPostharvest quality;386
21.4;Plant ArchitecturePlant architecture;388
21.5;Disease ResistanceDisease resistance;390
21.5.1;Virus ResistanceVirus resistance;391
21.5.2;Resistance Against Fungi and BacteriaResistance against fungi and bacteria;392
21.5.3;Insect ResistanceInsect resistance;393
21.6;Flowering TimeFlowering time;394
21.7;Modification of Flower Structureflower structure;394
21.8;Improvement of Abiotic Stress Toleranceabiotic stress tolerance;395
21.9;Modification of Floral Scentfloral scent;396
21.10;Conclusion;397
21.11;References;397
22;Chapter 20: Potato;404
22.1;Introduction;404
22.2;Pathogen Resistance;405
22.2.1;InsectsInsect resistance;405
22.2.2;VirusesVirus resistance;406
22.2.3;Phytophthora infestansPhytophthora infestans;407
22.3;Tuber Quality Traits;408
22.3.1;Blackspot Bruise;408
22.3.2;Cold-Induced SweeteningCold-induced sweetening;408
22.4;Nutritional Value;409
22.4.1;Amino Acids/Protein;409
22.4.2;Carotenoids;410
22.4.3;Fructan/Inulin;411
22.5;Production of Biopolymers;412
22.5.1;Starch;412
22.5.2;Polyhydroxyalkanoates;412
22.5.3;Cyanophycin/Poly-Aspartate;413
22.5.4;Spider Silk;414
22.6;Conclusions;414
22.7;References;415
23;Chapter 21: Rapeseed/Canola;420
23.1;Introduction;420
23.2;Transformation Using Direct Gene Transfer Methods;421
23.3;Transformation Using Agrobacterium tumefaciens;421
23.3.1;Explant Type, Additives and Genotype Dependance;421
23.3.2;Agrobacterium Strains;422
23.3.3;Transformation Using Protoplasts;423
23.3.4;Transformation Using Haploids;423
23.3.5;Transformation Avoiding Tissue Culture;424
23.3.6;Plant-Selectable Marker Genes and Marker Gene-Free Transgenic Plants;424
23.4;Employment of Transgenic Oilseed Rape in Breeding;425
23.5;Employment of Transgenic Oilseed Rape in Crop Production;428
23.6;Conclusions;430
23.7;References;430
24;Chapter 22: Rice;434
24.1;Introduction;434
24.2;Rice Transformation Technology and Functional GenomicsFunctional genomics;435
24.3;Insecticidal Rice;436
24.3.1;Bt Rice;436
24.3.2;GNA Rice;437
24.4;Disease-Resistant Rice;438
24.4.1;Resistance to Bacterial Blight;438
24.4.2;Resistance to Fungal Diseases;438
24.4.3;Resistance to Viral Diseases;439
24.5;Abiotic Stress ToleranceAbiotic stress tolerance;440
24.6;Quality ImprovementQuality improvement;444
24.7;Nutrient-Use Efficiency;445
24.7.1;Nitrogen-Use EfficiencyNitrogen-use efficiency;445
24.7.2;Phosphorus-Use EfficiencyPhosphorus-use efficiency;446
24.8;Yield;448
24.9;Herbicide-Tolerant Rice;450
24.10;Prospects;451
24.11;References;452
25;Chapter 23: Sugarcane;463
25.1;Introduction;463
25.2;Origin;463
25.3;Sugarcane Breeding, Biotechnology and Biosafety;464
25.4;In Vitro Culture;465
25.4.1;In Vitro Culture for Sugarcane Improvement;465
25.4.2;Sugarcane Somatic Embryogenesis;466
25.4.3;Sugarcane Organogenesis;466
25.5;Genetic Engineering of Sugarcane;467
25.5.1;Methods of Transformation;467
25.5.2;Selection of the Transformed Tissues;471
25.5.3;Traits of Interest;471
25.5.3.1;Herbicide Resistance;471
25.5.3.2;Biotic Stress Tolerance;472
25.5.3.3;Abiotic Stress Tolerance;474
25.5.3.4;Metabolic Engineering of the Carbohydrate Metabolism and Value-Added Products;475
25.6;Future Trends;476
25.7;References;477
26;Chapter 24: Soybean;483
26.1;Introduction;483
26.2;Methodology;484
26.2.1;Cot Node and other Organogenic Transformation Systems;484
26.2.1.1;Cot Node;484
26.2.1.2;Stem Node;484
26.2.1.3;Bombardment of the Shoot Tip;485
26.2.2;Embryogenic Culture Transformation System;485
26.2.3;Whole-Plant Transformation Systems;486
26.2.3.1;Floral Dip;486
26.2.3.2;Pollen Tube Pathway;486
26.2.3.3;Composite Plants;486
26.2.3.4;Virus-Induced Gene Silencing;487
26.2.4;Other Considerations for Transformation;487
26.2.5;Multi-Gene InsertionsMulti-gene insertions and Marker-Free PlantsMarker-free plants;487
26.2.6;Selectable Markers;488
26.2.7;Homozygosity DeterminationHomozygosity determination;489
26.3;Applications of Transformation Technology;490
26.3.1;Herbicide ResistanceHerbicide Resistance;490
26.3.2;Modification of Oil CompositionOil Composition;490
26.3.3;Nematode ResistanceNematode Resistance;492
26.3.4;Isoflavones;493
26.3.5;Insect ResistanceInsect Resistance;493
26.3.6;Disease Resistance;494
26.3.7;PhytasePhytase;494
26.3.8;Seed Protein Compositionprotein composition;495
26.4;Gene Discovery and Promoters;496
26.4.1;Genomic Resources for Selection of Promoters and Genes for Modification;496
26.4.2;Promoter EvaluationPromoter Evaluation;497
26.4.2.1;Characterization of Soybean Promoters;499
26.5;Future of Soybean Transformation;500
26.6;References;501
27;Chapter 25: Vegetables;509
27.1;Introduction;509
27.2;Economically Important Vegetable Families;525
27.2.1;SolanaceaeSolanaceae;525
27.2.1.1;Solanum lycopersicon L.SolanaceaeSolanum lycopersicon L.;525
27.2.1.2;Solanum melongena L.SolanaceaeSolanum melongena L.;526
27.2.1.3;Capsicum annuum L.SolanaceaeCapsicum annuum L.;528
27.2.2;BrassicaceaeBrassicaceae (Brassica oleracea L.BrassicaceaeBrassica oleracea L., B. rapa L.BrassicaceaeBrassica rapa L., Raphan;529
27.2.3;FabaceaeFabaceae (Pisum sativum L.FabaceaePisum sativum L., Phaseolus vulgaris L.FabaceaePhaseolus vulgaris L.);531
27.2.4;CucurbitaceaeCucurbitaceae [Cucumis sativus L.CucurbitaceaeCucumis sativus L., C. melo L.CucurbitaceaeCucumis melo L., Cucurbi;533
27.2.5;AsteraceaeAsteraceae;534
27.2.5.1;Lactuca sativa L.AsteraceaeLactuca sativa L.;534
27.2.5.2;CichoriumAsteraceaeCichorium ssp. intybus L., C. spinosum L., C. endivia L.;535
27.2.6;ApiaceaeApiaceae (Daucus carota L.)ApiaceaeDaucus carota L.;536
27.2.7;Chenopodiaceae (Spinacia oleracea L.Spinacia oleracea L.);537
27.2.8;LiliaceaeLiliaceae;537
27.2.8.1;AlliumLiliaceaeAllium ssp. cepa L., A. porrum L., A. sativum L.;537
27.2.8.2;Asparagus officinalis L.LiliaceaeAsparagus officinalis L.;538
27.3;Conclusions;538
27.4;References;539
28;Part D: Risk Assessment and Economic Applications;561
29;Chapter 26: Regulatory Oversight and Safety Assessment of Plants with Novel Traits;562
29.1;Introduction - From Foragers to Genetic Modification in a Genomic Era;562
29.2;Regulatory Oversight of GM Plants and Their Derived Food and Feed Products;564
29.2.1;Process-Based Versus Product-Based Approach;564
29.2.2;Regulatory Framework for GMOs in the EU;565
29.3;Risk Assessment Principles;566
29.3.1;Interplay of Risk Assessment, Risk Management and Risk Communication;566
29.3.2;Risk Assessment Methodology and Terminology;567
29.3.3;Problem Formulation;568
29.3.3.1;Assessment Endpoints;568
29.3.3.2;Conceptual Model;569
29.3.3.3;Analysis Plan;570
29.3.4;Risk Assessment Principles and Concepts;571
29.3.4.1;Comparative Risk Assessment and Familiarity Concept;571
29.3.4.2;Case-by-Case Principle;572
29.3.4.3;Iterative and Adaptive;572
29.3.4.4;Tiered Approach;573
29.4;EFSA GMO Panel Guidance and Further Prospectives;574
29.4.1;EFSA Scientific Colloquium on Environmental Risk Assessment of GM Plants;575
29.4.2;Self-Tasking Working Group on NTO Testing;576
29.4.3;Update of Environment Sections of the EFSA Guidance on the Risk Assessment of GM Plants and Derived Food and Feed Products;576
29.5;Discussion and Conclusions;577
29.6;References;580
30;Chapter 27: Environmental Impact of Genetically Modified Maize Expressing Cry1 Proteins;584
30.1;Introduction;584
30.2;Potential Unintended Effects on Plant Fitness Due to the Genetic Modification;585
30.3;Potential for Gene Transfer;586
30.3.1;Plant to Micro-Organism Gene Transfergene transfer;586
30.3.2;Plant to Plant Gene Transfer;586
30.4;Potential Interactions of the GM Plant with Target Organisms;587
30.5;Potential Interactions of the GM Plant with Non-Target Organisms;590
30.5.1;Persistence of Cry1 Proteins in Soil: ExposureAssessment;590
30.5.2;Biological Effects in Soil: General Impact Assessment;592
30.5.3;Assessment of Impact on Earthworms;593
30.5.4;Assessment of Impact on Isopods;594
30.5.5;Assessment of Impact on Nematodes;595
30.5.6;Assessment of Impact on Collembolans;596
30.5.7;Cry1 Genes in Water: Exposure Assessment in Aquatic Environments;597
30.5.8;Presence of Cry1 Proteins in Water: Impact Assessment in Aquatic Environmentsaquatic environments;598
30.5.9;Exposure and Impacts on Non-Target LepidopteraLepidoptera;599
30.5.10;Global Analysis of Impacts on Non-TargetEntomofauna;602
30.5.11;Trophic Chain Effects on Predators;603
30.5.12;Trophic Chain Effects on Parasitoids;605
30.5.13;Assessment of Impacts on Pollinating Insects;606
30.6;Potential Impacts on Human and Animal Health;608
30.7;Potential Interaction with the Abiotic Environment and Biogeochemical Cycles;608
30.8;Impacts of the Specific Cultivation, Management and Harvesting Techniques;610
30.9;Monitoring;611
30.10;Conclusions;612
30.11;References;613
31;Chapter 28: Benefits of Transgenic Plants: A Socioeconomic Perspective;624
31.1;Introduction;624
31.2;Impacts of Insect-Resistant Crops;625
31.2.1;Agronomic Effects;625
31.2.2;Economic Effects;627
31.2.3;Povertypoverty effects and Distribution Effects;628
31.2.4;Environmental and Health Effects;628
31.3;Impacts of Herbicide-Tolerant Crops;631
31.3.1;Agronomic and Economic Effects;631
31.3.2;Environmental Effects;633
31.4;Potential Impacts of Future Transgenic Crops;633
31.4.1;Crops with Improved Agronomic Traits;633
31.4.2;Crops with Improved Nutritional Traits;634
31.5;Conclusions;635
31.6;References;636
32;Chapter 29: Risk Assessment and Economic Applications - the Cartagena Protocol on BiosafetyCartagena Protocol on Biosafety: GMO;639
32.1;29.1Introduction;639
32.2;29.2The Cartagena Protocol on Biological Safety;640
32.2.1;29.2.1The Convention on Biological Diversity as the Basis for the Cartagena Protocol on Biological Safety;640
32.2.2;29.2.2The Cartagena Protocol on Biosafety and the Biosafety Clearing HouseBiosafety Clearing House;641
32.3;29.3GMO ApprovalGMO approval;645
32.3.1;29.3.1European Union;645
32.3.1.1;29.3.1.1Authorisation of Genetically Modified Food and Feed in the EU;648
32.3.1.2;29.3.1.2Placing on the MarketPlacing on the Market of Genetically Modified Organisms According to Directive 2001/18/EC;651
32.3.2;29.3.2United States of America;652
32.4;29.4GMO Approval, GMO Labelling and GMO Trade;653
32.5;29.5Conclusions;654
32.6;References;654
33;Chapter 30: Public Perceptions of Modern Biotechnology and the Necessity to Improve Communication;657
33.1;Introduction;657
33.2;Societal Debate and Its Problems;658
33.2.1;Statistic Data on Public Attitudesattitudes Towards Biotechnology;659
33.2.2;Frames of Reference by Promotors and Critics;661
33.2.2.1;Risk Perception and the Role of Confidenceconfidence and Trusttrust;661
33.2.2.2;Scepticism Against Technology and Progress?;663
33.3;Insufficient Approaches;664
33.4;Improvements of Communicationcommunication with the Public;665
33.4.1;Respect to Sustainabilitysustainability and Ethics;667
33.4.2;InvolvementInvolvement of Consumersconsumers;667
33.5;References;669
34;: Index;670
mehr