Hugendubel.info - Die B2B Online-Buchhandlung 

Merkliste
Die Merkliste ist leer.
Bitte warten - die Druckansicht der Seite wird vorbereitet.
Der Druckdialog öffnet sich, sobald die Seite vollständig geladen wurde.
Sollte die Druckvorschau unvollständig sein, bitte schliessen und "Erneut drucken" wählen.

Advanced Microsystems for Automotive Applications 2006

E-BookPDF1 - PDF WatermarkE-Book
516 Seiten
Englisch
Springer Berlin Heidelbergerschienen am31.07.20062006
This stimulating and inspiring book explores the present and anticipates the future of Automotive Microsystems. The past decade has seen enormous progress in the use of automotive microsysems; their effect has been dramatic in reducing casualties, controlling emissions and increasing passenger comfort and vehicle performance. The book is a snapshot of new technological priorities in microsystems-based smart devices that offers a mid-term perspective on coming smart systems applications in automobiles.mehr
Verfügbare Formate
E-BookPDF1 - PDF WatermarkE-Book
EUR212,93
Book on DemandKartoniert, Paperback
EUR219,98

Produkt

KlappentextThis stimulating and inspiring book explores the present and anticipates the future of Automotive Microsystems. The past decade has seen enormous progress in the use of automotive microsysems; their effect has been dramatic in reducing casualties, controlling emissions and increasing passenger comfort and vehicle performance. The book is a snapshot of new technological priorities in microsystems-based smart devices that offers a mid-term perspective on coming smart systems applications in automobiles.
Details
Weitere ISBN/GTIN9783540334101
ProduktartE-Book
EinbandartE-Book
FormatPDF
Format Hinweis1 - PDF Watermark
FormatE107
Erscheinungsjahr2006
Erscheinungsdatum31.07.2006
Auflage2006
Seiten516 Seiten
SpracheEnglisch
IllustrationenXVIII, 516 p. 340 illus. in color.
Artikel-Nr.1423243
Rubriken
Genre9200

Inhalt/Kritik

Inhaltsverzeichnis
1;Preface;5
2;Table of Contents;10
3;Market;16
3.1; Prospects for MST Sensors in Automotive Applications;18
3.1.1;1 Introduction;18
3.1.2;2 MST Sensor Applications;19
3.1.3;3 MST Sensor Markets;21
3.1.4;4 Conclusion;27
3.1.5;5 Acknowledgements;27
3.2;Future Architecture for Inertial Sensors in Cars;28
3.2.1;1 Automotive Gyros are likely to generate 600M$ Value in 2010;28
3.2.2;2 Accelerometers for Automotive Applications: a 320M$ Industry in 2010;30
3.2.3;3 A Path through the Automotive Inertial Measurement Unit?;32
3.2.4;4 Conclusions;34
4;Safety;36
4.1;Three-Dimensional CMOS Image Sensor for Pedestrian Protection and Collision Mitigation;38
4.1.1;1 Introduction;38
4.1.2;2 3D Sensor Technology;39
4.1.3;3 Road Safety Applications;44
4.1.4;4 Car Evaluation Results;47
4.1.5;5 Outlook;53
4.1.6;6 Acknowledgements;53
4.2;EVENT-ONLINE - A Service Concept for large scale Events based on FCD Technology;56
4.3;Advanced Pressure Sensors with high Flexibility for Side Crash Detection;60
4.3.1;1 Introduction;60
4.3.2;2 Side Impact Tests;61
4.3.3;3 Operational Principle;62
4.3.4;4 Special Pressure Sensors for Side Crash Detection;63
4.4;Detection of Road Users in Fused Sensor Data Streams for Collision Mitigation;68
4.4.1;1 Introduction;68
4.4.2;2 Sensor Configuration;69
4.4.3;3 Collision Mitigation Application;71
4.4.4;4 Perception System;71
4.4.5;5 Conclusion;78
4.4.6;6 Further Work;79
4.4.7;7 Acknowledgement;79
4.5;Dynamic Pass Prediction - A New Driver Assistance System for Superior and Safe Overtaking;82
4.5.1;1 Introduction;82
4.5.2;2 Map Database;84
4.5.3;3 Electronic Horizon and Most-Probable-Path;85
4.5.4;4 DPP Driving Dynamics;86
4.5.5;5 HMI, Visualization and Results from real Test Drives;89
4.5.6;6 Conclusion;91
4.6;Requirement Engineering for Active Safety Pedestrian Protection Systems based on Accident Research;94
4.6.1;1 Introduction;94
4.6.2;1 Accident Research;95
4.6.3;2 Assessment of Pedestrian Compatibility with VERPS+;101
4.6.4;3 Collision Speed Reduction of Different Brake Assist Strategies;110
4.6.5;4 Deriving Sensor Specification from Accident Data;116
4.6.6;5 Summary;119
4.7;Biologically Inspired Multi-Sensor Fusion for Adaptive Camera Stabilization in Driver-Assistance Systems;122
4.7.1;1 Introduction;122
4.7.2;2 Biological Analogy;123
4.7.3;3 General System Description;123
4.7.4;4 Experimental Evaluation under Laboratory Conditions;131
4.7.5;5 Verification in Road Trials;133
4.7.6;7 Conclusions;135
4.8;Low Speed Collision Avoidance System;138
4.8.1;1 Introduction;138
4.8.2;2 The Measurement System;138
4.8.3;3 Low Speed Collision Avoidance Application;139
4.8.4;4 Typical Traffic Scenes;141
4.8.5;5 Conclusion and Outlook;143
4.9;Laserscanner for Multiple Applications in Passenger Cars and Trucks;144
4.9.1;1 Introduction;144
4.9.2;2 ADAS Applications Overview;145
4.9.3;3 Environmental Robustness of the Laserscanner System;146
4.9.4;4 Vehicle Integration;147
4.9.5;5 Applications;148
4.9.6;6. Conclusion;155
4.10;A new Approach for Obstacle Detection Based on Dynamic Vehicle Behaviour;158
4.10.1;1 Introduction;158
4.10.2;2 Scope and Objectives;159
4.10.3;3 Related Work and Contribution;160
4.10.4;4 Obstacle Detection;161
4.10.5;5 Prototype;167
4.10.6;6 Evaluation;167
4.10.7;7 Conclusion;168
4.11;Far Infrared Detection Algorithms for Vulnerable Road Users Protection;170
4.11.1;1 Introduction;170
4.11.2;2 Scope and Practical Context;171
4.11.3;3 General Properties of Detection-by-Learning Schemes;174
4.11.4;4 Boosting Techniques;176
4.11.5;5 Support Vector Machines;181
4.11.6;6 Conclusion;182
4.12;iBolt Technology - A Weight Sensing System for Advanced Passenger Safety;186
4.12.1;1 Introduction;186
4.12.2;2 System Design;187
4.12.3;3 Working Principle;189
4.12.4;4 Influences of Lateral Forces and Moments;192
4.12.5;5 Seat Integration and Performance;194
4.12.6;6 Summary and Outlook;200
4.13;Object Classification exploiting High Level Maps of Intersections;202
4.13.1;1 Introduction;202
4.13.2;2 Sensor Configuration;203
4.13.3;3 Preprocessing and Tracking;204
4.13.4;4 Precise Ego-Localization using Precise Digital Maps;208
4.13.5;5 System Evaluation;215
4.13.6;6 Conclusions;217
4.14;Performance of a Time-of-Flight Range Camera for Intelligent Vehicle Safety Applications;220
4.14.1;1 Introduction;220
4.14.2;2 Safety Applications and Sensor Requirements;221
4.14.3;3 Principles of Operation;226
4.14.4;4 Performance Characterization;229
4.14.5;5 Conclusions;233
5;Powertrain;236
5.1;Coordinated Cylinder Pressure Based Control for Reducing Diesel Emissions Dispersion;238
5.1.1;1 Introduction;238
5.1.2;2 Engine Application;240
5.1.3;3 Sensor Feasibility Study;240
5.1.4;4 Control Strategy Development;243
5.1.5;5 Control Strategy Implementation and Testing;247
5.1.6;6 Test Results;249
5.1.7;7 Conclusions;252
5.2;A High Temperature Floating Gate MOSFET Driver for on the Engine Injector Control;254
5.2.1;1 Introduction;254
5.2.2;2 System Overview;254
5.2.3;3 System Measurement;257
5.2.4;4 Conclusion;259
6;Comfort and HMI;262
6.1;Distributed Pressure Sensor Based on Electroactive Materials for Automotive Application;264
6.1.1;1 Introduction;264
6.1.2;2 Sensor Construction: Experimental;267
6.1.3;3 Results and Discussion;268
6.1.4;4 Conclusion;273
6.1.5;5 Acknowledgements;273
6.2;Intelligent Infrared Comfort Sensors for the Automotive Environment;276
6.2.1;1 Introduction;276
6.2.2;2 Automotive Comfort Sensing Application with Infrared Thermometers;277
6.2.3;3 Automotive Comfort Sensing Requirements on Infrared Sensors;279
6.2.4;4 Automotive Comfort Sensing Solutions;279
6.2.5;5 Possibilities of Infrared Arrays in Automotive Comfort Sensing;285
6.2.6;6 Practical Aspects of Automotive Comfort Sensing;285
6.2.7;7 Safety Applications;289
6.2.8;8 Conclusion;294
6.3;Gesture Recognition Using Novel Efficient and Robust 3D Image Processing;296
6.3.1;1 Introduction;296
6.3.2;2 The Proposed Gesture Recognition System;298
6.3.3;3 Experiments;305
6.3.4;4 Conclusions;306
6.4;Network of Excellence HUMANIST - Human Centred Design for Information Society Technologies INRETS & ERT;310
6.4.1;1 Introduction;310
6.4.2;2 Context;311
6.4.3;3 Joint Research Activities;312
6.4.4;4 Integration;315
7;Networked Vehicle;320
7.1;High Speed 1Gbit/s Video Transmission with Fiber Optic Technology;322
7.1.1;1 Introduction;323
7.1.2;2 Fiber Optic Transceivers;325
7.1.3;3 Transmission Performance;329
7.1.4;4 Optical Video Link;331
7.1.5;5 Conclusion;332
8;Components and Generic Sensor Technologies;336
8.1;Integrated Giant Magneto Resistors - a new Sensor Technology for Automotive Applications;338
8.1.1;1 Introduction;338
8.1.2;2 The GMR Effect;339
8.1.3;3 GMR Spin Valve System for Sensor Application;341
8.1.4;4. Technology;346
8.1.5;5 Incremental Position Sensors;349
8.1.6;6 Angular Sensors;352
8.1.7;7 Conclusion;356
8.2;Simulating Microsystems in the Context of an Automotive Drive Application;358
8.2.1;1 Introduction;358
8.2.2;2 System Modeling;359
8.2.3;3 Simulation Results and Conclusion;365
8.3;Miniaturized Wireless Sensors for Automotive Applications;368
8.3.1;1 Introduction;368
8.3.2;2 Requirements;369
8.3.3;3 Selecting Components;371
8.3.4;4 Integration Technology Selection;376
8.3.5;5 Prototypes;380
8.3.6;6 Conclusion and Future Work;381
8.3.7;7 Acknowledgements;381
8.4;3D-MID - Multifunctional Packages for Sensors in Automotive Applications;384
8.4.1;1 MID Technology Overview;384
8.4.2;2 Advantages of MID Technology for Automotive Applications;384
8.4.3;3 Examples of MID Sensor Packages in Automotive Applications;387
8.4.4;4 Qualification Status;389
9;PReVENT;392
9.1;Towards the Automotive HMI of the Future: Mid-Term Results of the AIDE Project;394
9.1.1;1 Introduction;394
9.1.2;2 Project Structure;397
9.1.3;3 Review of Mid-Term Results;398
9.1.4;4 Discussion: Towards the Future Automotive HMI;414
9.2;Accidentology as a Basis for Requirements and System Architecture of Preventive Safety Applications;422
9.2.1;1 Introduction and Background;422
9.2.2;2 From Accident Scenarios to Requirements;424
9.2.3;From Requirements to System Architectures for Preventive Safety Functions;427
9.2.4;4 Towards an Integrated Preventive Safety;434
9.2.5;5 Conclusions and Discussion;437
9.3;ADAS Horizon - How Digital Maps can contribute to Road Safety;442
9.3.1;1 Introduction;442
9.3.2;2 Functional Architecture;444
9.3.3;3 Functional Structure on Application Side of ADAS-Interface;445
9.3.4;4 First Test Results;450
9.4;Intersection Safety - the EC Project INTERSAFE;452
9.4.1;1 Introduction;453
9.4.2;2 Object Detection, Tracking and Classification;454
9.4.3;3 Localisation of the Host Vehicle;456
9.4.4;4 Functionality in the Test Vehicle;458
9.4.5;5 Scenario Interpretation;458
9.4.6;6 Risk Assessment;460
9.4.7;7 Warning/HMI;461
9.4.8;8 Conclusions;462
9.4.9;9 Acknowledgement;463
9.5;ProFusion2 - towards a Modular, Robust and Reliable Fusion Architecture for Automotive Environment Perception;466
9.5.1;1 Introduction;466
9.5.2;2 The Fusion Architecture;467
9.5.3;3 Conclusion;482
9.5.4;4 Acknowledgement;482
9.6;Integrating Lateral and Longitudinal Active and Preventive Safety Functions;486
9.6.1;1 Introduction;486
9.6.2;2 INSAFES System Design Layers;488
9.6.3;3 PReVENT Functions as a Starting Point of INSAFES;489
9.6.4;4 INSAFES Functions;491
9.6.5;5 Conclusions;498
9.7;Lane Detection for a Situation Adaptive Lane keeping Support System, the SAFELANE System;500
9.7.1;1 Introduction;500
9.7.2;2 System Components;501
9.7.3;3 System Requirements and Specification;501
9.7.4;4 Main Lane Recognition;502
9.7.5;5 Neighbour Lane Recognition;510
9.7.6;6 Lane Marking Classification;511
9.7.7;7 Object Mask Generation;513
9.7.8;8 Use of Digital Map Data;514
9.7.9;9 Conclusions;514
9.7.10;10 Acknowledgements;515
10;Appendix A List of Contributors;517
11;Appendix B List of Keywords;524
mehr
Leseprobe
3 Review of Mid-Term Results (p. 383-384)

After about 2 years of work, the project is in the middle of its most intense development and experimental phase. The present chapter provides an overview of the results achieved to date. Naturally, due to the limited space, only general descriptions can be provided here. However, references are provided to sources where more detailed information can be obtained, in particular the AIDE deliverables most of which are available on www.aide-eu.org (where also summaries of the confidential deliverables can be found).

3.1 Sub Project 1: Behavioural Effects of Driving Support Systems and Driver- Vehicle-Environment Modelling
The main goal of SP1 is to develop a detailed understanding about the mechanisms that govern the interaction between the driver, the vehicle (in particular with IVIS and ADAS) and the environment, to be embodied in testable models as well as a computer simulations. The model development is supported by empirical studies on behavioural effects of different types of support systems. Below, the main results to achieved so far are reviewed.

3.1.1 Driver-Vehicle-Environment Modeling and Simulation

The main expected result from this activity is a testable model of the DVE, implemented in a computer simulation, which can be used to investigate potential behavioural effects early in the design process. The results of this work is also an important input to the DVE monitoring module development in SP3 (see section 3.3.6). The development of the AIDE DVE model is an iterative, incremental procedure which is based on data collected in the AIDE empirical studies on behavioural effects of driver support systems (see next section) as well existing results in the literature. The basic requirements on the model and a preliminary model structure were outlined in Cacciabue et al., [3].

The modelling is based on the general SHELL architecture [4], which is a suitable framework for representing interactions between humans and other elements in the working environment such as support systems and other humans. A major focus so far has been on the identification of the key parameters of the model. At the current stage of development, the following parameters have been identified: (1) Attitudes/personality, (2) experience/competence, (3) task demand, (4) driver state, (5) situation awareness and (6) driver intention/goals. For each parameter, the correlation to measurable variables and other parameters are investigated. The results are documented in Cacciabue et al. [5]. (It could be noted that these parameters correspond roughly to the output vector of the DVE monitoring modules developed in SP3 - see below)

Moreover, a first high-level specification of the simulation software architecture has been developed. The DVE simulation architecture is intended as a generic tool where different types of driver, environment and vehicle models could be implemented and tested. For a further description of the initial DVE simulation specification, see Carusi [6].
mehr

Autor