Hugendubel.info - Die B2B Online-Buchhandlung 

Merkliste
Die Merkliste ist leer.
Bitte warten - die Druckansicht der Seite wird vorbereitet.
Der Druckdialog öffnet sich, sobald die Seite vollständig geladen wurde.
Sollte die Druckvorschau unvollständig sein, bitte schliessen und "Erneut drucken" wählen.

Physiology and Genetics

E-BookPDF1 - PDF WatermarkE-Book
410 Seiten
Englisch
Springer Berlin Heidelbergerschienen am18.09.20092009
In the last decade the discipline of mycology has been substantially changed by new research technologies. In particular DNA-based tools for the investigation of fungal taxonomy, signal transduction and regulation, and biosynthetic potential have accelerated advances in mycological knowledge. This volume presents a selection of exciting issues on basic and applied aspects of fungal physiology and genetics. In 18 chapters renowned experts provide an overview of traditional as well as current and future aspects of potential application of fungi in biotechnology. The contributions can be used by scientists to keep up-to-date on the latest developments in the corresponding research area, and by students to familiarize themselves with the different topics.mehr
Verfügbare Formate
E-BookPDF1 - PDF WatermarkE-Book
EUR277,13
E-BookPDF1 - PDF WatermarkE-Book
EUR234,33

Produkt

KlappentextIn the last decade the discipline of mycology has been substantially changed by new research technologies. In particular DNA-based tools for the investigation of fungal taxonomy, signal transduction and regulation, and biosynthetic potential have accelerated advances in mycological knowledge. This volume presents a selection of exciting issues on basic and applied aspects of fungal physiology and genetics. In 18 chapters renowned experts provide an overview of traditional as well as current and future aspects of potential application of fungi in biotechnology. The contributions can be used by scientists to keep up-to-date on the latest developments in the corresponding research area, and by students to familiarize themselves with the different topics.
Details
Weitere ISBN/GTIN9783642002861
ProduktartE-Book
EinbandartE-Book
FormatPDF
Format Hinweis1 - PDF Watermark
FormatE107
Erscheinungsjahr2009
Erscheinungsdatum18.09.2009
Auflage2009
Reihen-Nr.15
Seiten410 Seiten
SpracheEnglisch
IllustrationenXXI, 410 p. 149 illus., 5 illus. in color.
Artikel-Nr.1440536
Rubriken
Genre9200

Inhalt/Kritik

Inhaltsverzeichnis
1;Series Preface;7
2;It is Time to Retire;10
3;Volume Preface;11
4;Contents;13
5;Chapter 1: Recent Developments in the Molecular Taxonomy of Fungi;20
5.1;I. Introduction;20
5.2;II. Non-Fungal Organisms Studied by Mycologists;21
5.2.1;A. Slime Moulds;21
5.2.2;B. Plasmodiophora and Related Species;22
5.2.3;C. Straminipila;23
5.2.4;D. Haptoglossa;24
5.3;III. The `Basal Fungi´;24
5.3.1;A. Microsporidia;24
5.3.2;B. Chytrids;25
5.3.3;C. Zygomycete-Type Fungi;25
5.3.4;D. Glomeromycota;26
5.4;IV. Ascomycota;26
5.4.1;A. Taphrinomycotina;26
5.4.2;B. Saccharomycotina;26
5.4.3;C. Pezizomycotina;26
5.5;V. Basidiomycota;28
5.5.1;A. Pucciniomycotina;28
5.5.2;B. Ustilaginomycotina;30
5.5.3;C. Agaricomycotina;30
5.6;VI. Conclusions;32
5.7;References;32
6;Chapter 2: Sordaria macrospora, a Model System for Fungal Development;35
6.1;I. Introduction;35
6.1.1;A. Fungal Organisms as Model Systems for Developmental Biology;35
6.1.2;B. Why Choose Sordaria macrospora?;36
6.2;II. Biology;37
6.2.1;A. Life Cycle;37
6.2.2;B. Homothallism;38
6.3;III. Phylogeny;40
6.4;IV. Mutants and Morphology;40
6.5;V. Molecular and Genetic Tools;42
6.5.1;A. Tetrad Analysis;43
6.5.2;B. DNA-Mediated Transformations and Gene Libraries;44
6.5.3;C. Tools for Fluorescence Microscopy;45
6.5.4;D. Functional Genomics;48
6.5.5;VI. Developmental Biology and Components of Signalling Pathways;48
6.5.6;A. Pheromones and Pheromone Receptors;49
6.5.7;B. Heterotrimeric G Proteins;49
6.5.8;C. Adenylyl Cyclase;50
6.5.9;D. Transcription Factors;51
6.5.10;E. Novel Developmental Proteins;52
6.6;VII Conclusions;54
6.7;References;54
7;Chapter 3: Inteins - Selfish Elements in Fungal Genomes;58
7.1;I. Introduction;58
7.1.1;A. General Characteristics of Inteins;59
7.1.2;B. Protein Splicing MechanismProtein splicing mechanism;61
7.2;II. Inteins in Fungi;63
7.2.1;A. VMA1 InteinsVMA1 inteins of Saccharomycete Yeasts;63
7.2.2;B. PRP8 Inteins in Fungi;63
7.2.2.1;1. Distribution of PRP8 InteinsPRP8 inteins in Fungi;63
7.2.2.2;2. Activity of Fungal PRP8 Inteins;66
7.2.3;C. Other Fungal Inteins;67
7.3;III. Mobility, Evolution, and Domestication of Inteins;69
7.3.1;A. Mobility of Fungal InteinsMobility of fungal inteins;69
7.3.2;B. Evolution of Fungal InteinsEvolution of fungal inteins;70
7.3.3;C. Domestication of Fungal Inteins;71
7.4;IV. Application of Inteins;71
7.4.1;A. Inteins and Their Application in Protein-Protein Interactionprotein-protein interaction Studies;71
7.4.2;B. Regulation of Protein-Splicing Activity;72
7.4.3;C. Intein-Mediated Protein Purificationprotein purification;73
7.4.4;D. Screening Systems for Protein-Splicing Inhibitorssplicing inhibitors;73
7.5;V. Conclusions;74
7.6;References;74
8;Chapter 4: Apoptosis in Fungal Development and Ageing;79
8.1;I. General Description of Apoptosis;79
8.1.1;A. Apoptosis in Mammals;79
8.1.2;B. Apoptosis in Fungi;81
8.1.3;C. Differences Between Fungal and Mammalian Apoptosis;82
8.2;II. Apoptosis in Fungal Development;82
8.2.1;A. Apoptosis in Host-Pathogen and Antagonistic Interactions;82
8.2.2;B. Apoptosis During Fungal Reproduction;85
8.2.3;C. The Role of Apoptosis in Fungal Lifespan Control;87
8.3;III. Concluding Remarks and Future Directions;89
8.4;References;90
9;Chapter 5: Communication of Fungi on Individual, Species, Kingdom, and Above Kingdom Levels;95
9.1;I. Introduction;95
9.2;II. Communication Within and Between Fungal Colonies - Vegetative Interactions;96
9.2.1;A. Communication in Mediating Vegetative Fusions Within Fungal Colonies;96
9.2.2;B. Communication in Mediating Vegetative Fusions Between Different Individuals of Filamentous Ascomycetes;97
9.2.3;C. Communication in Mediating Vegetative Fusions Between Different Individuals of Basidiomycetes;97
9.2.4;D. Communication in Population Growth Control and Germination;100
9.2.5;E. Communication in Dimorphism and Asexual Reproduction;102
9.3;III. Communication Between Fungi in Sexual Interactions;103
9.3.1;A. Communication in Mating;103
9.3.2;B. Communication in Fruiting Body Development;104
9.4;IV. Communication Between Fungi and Bacteria;107
9.5;V. Communication Between Fungi and Plants;108
9.6;VI. Communication Between Fungi and Animals;109
9.7;VII. Conclusions;111
9.8;References;113
10;Chapter 6: Yeast Killer Toxins: Fundamentals and Applications;123
10.1;I. Introduction;123
10.2;II. Chromosomally Encoded Killer Toxins;123
10.2.1;A. Williopsis;123
10.2.2;B. Pichia;126
10.2.3;C. Kluyveromyces;128
10.3;III. Extrachromosomally Encoded Toxins;128
10.3.1;A. dsRNA Virus Toxins;128
10.3.1.1;1. K1;130
10.3.1.2;2. K28;131
10.3.1.3;3. Other dsRNA Virus Toxins;132
10.3.2;B. Linear Plasmid-Encoded Toxins;132
10.3.2.1;1. Group I;133
10.3.2.2;2. Group II;135
10.4;IV. Applications;136
10.4.1;A. Antifungals for Human Therapy;136
10.4.2;B. Antifungals in Agriculture, Food and Feed Industry;137
10.4.3;C. Killer Toxins in Biotyping;139
10.5;V. Concluding Remarks;139
10.6;References;140
11;Chapter 7: Evolutionary and Ecological Interactions of Mould and Insects;147
11.1;I. Introduction;147
11.2;II. Genetics of Secondary Metabolites in Mycelial Fungi;148
11.2.1;A. Different Types of Fungal Secondary Metabolites;148
11.2.1.1;1. Alkaloids;148
11.2.1.2;2. Non-Ribosomal Peptides;148
11.2.1.3;3. Polyketides;149
11.2.1.4;4. Terpenes;149
11.2.2;B. Fungal Secondary Metabolite Clusters;149
11.2.2.1;1. Aflatoxin and Sterigmatocystin Clusters;149
11.2.2.2;2. Epipolythiodioxopiperazine clusters;151
11.2.3;C. Regulation of Secondary Metabolite Synthesis;151
11.2.3.1;1. Pathway-Specific Regulation;151
11.2.3.2;2. Global Regulation;151
11.2.3.3;3. Regulation by Signal Transduction;154
11.2.3.4;4. Activation of Silent Secondary Metabolite Clusters;155
11.3;III. Three Types of Fungus-Insect Interactions and the Role of Secondary Metabolites;155
11.3.1;A. Host-Pathogen;156
11.3.2;B. Predator-Prey;157
11.3.3;C. Interspecific Competition;159
11.4;IV. Melding Ecology and Molecular Biology;162
11.5;V. Conclusions;163
11.6;References;163
12;Chapter 8: Endophytic Fungi, Occurrence and Metabolites;168
12.1;I. Introduction;169
12.2;II. The Ecological Relevance of Endophytic Fungi;169
12.3;III. Metabolites Isolated from Host Plants and Their Endophytic Fungi;171
12.3.1;A. Taxol;171
12.3.2;B. Camptothecin;172
12.3.3;C. Ergot Alkaloids;172
12.3.4;D. Mycotoxins in Baccharis Species;172
12.3.5;E. Hypericin;173
12.3.6;F. Podophyllotoxin;173
12.4;IV. Metabolites from Endophytic Fungi;174
12.4.1;A. Metabolites from Endophytic Xylariaceous Fungi;174
12.4.1.1;1. 7-Amino-4-Methylcoumarin from Xylaria sp. of Ginkgo biloba;174
12.4.1.2;2. Metabolites from Xylaria sp. from Sandoricum koetjape;174
12.4.1.3;3. Sesquiterpenoids from a Xylariaceous Fungus;178
12.4.1.4;4. Metabolites from Xylaria sp.;178
12.4.2;B. Metabolites from Endophytic Phomopsis or Diaporthe Species;179
12.4.2.1;1. Lactones from Phomopsis sp. from Azadirachata indica;179
12.4.2.2;2. Metabolites from Diaporthe sp. from Camellia sinensis L.;180
12.4.2.3;3. Metabolites from Phomopsis sp. from Camptotheca acuminata;181
12.4.2.4;4. Sesquiterpenoids from Phomopsis cassiae from Cassia spectabilis;181
12.4.2.5;5. Metabolites from Phomopsis spp. from Erythrina crista-galli;181
12.4.2.6;6. Metabolites from Phomopsis sp. from Eupatorium arnottianum;184
12.4.2.7;7. Cytosporone D from Phomopsis sp. of Phytolacca dioica;185
12.4.2.8;8. Xanthone Dimers from Phomopsis sp. from Tectona grandis L.;185
12.4.2.9;9. Dicerandrols from Phomopsis longicolla from the Mint Dicerandra frutescens;185
12.4.3;C. Metabolites from Endophytic Penicillium Species;185
12.4.3.1;1. Metabolites from Penicillium sp. from Aegiceras corniculatum L.;185
12.4.3.2;2. Metabolites from Penicillium chrysogenum from Cistanche deserticola;185
12.4.3.3;3. Metabolites from Penicillium spp. from Prumnopitys andina;186
12.4.3.4;4. Penicidones from Penicillium sp. from Quercus variabilis;189
12.4.4;D. Metabolites from Endophytic Alternaria Species;189
12.4.4.1;1. Metabolites from Alternaria sp. from Polygonum senegalense;189
12.4.4.2;2. Metabolites from Alternaria spp. from Vinca minor and Euonymus europaeus;190
12.4.5;E. Xanthones from Emericella variecolor from Croton oblongifolius;190
12.4.6;F. Cyclopentenons from Dothideomycete sp. from Leea rubra;190
12.4.7;G. Metabolites from Endophytic Chaetomium Species;191
12.4.7.1;1. Metabolites from Chaetomium sp. from Nerium oleander L.;191
12.4.7.2;2. Cytochalasan Alkaloids from Chaetomium globosum from Imperata cylindrica;192
12.4.8;H. Metabolites from Endophytic Pestalotiopsis Species;193
12.4.8.1;1. Isopestacin from Pestalotiopsis microspora from Terminalia morobensis;193
12.4.8.2;2. Sesquiterpenes from Pestalotiopsis sp. from Pinus taeda;193
12.4.8.3;3. Metabolites from Pestalotiopsis foedan;194
12.4.8.4;4. Metabolites from Pestalotiopsis theae;194
12.4.9;J. Metabolites from Phyllosticta spinarum from Platycladus orientalis;195
12.4.10;K. Metabolites from Endophytic Fusarium Species;196
12.4.10.1;1. CR377 from Fusarium sp. from Selaginella pallescens;196
12.4.10.2;2. Lipopeptides from Fusarium sp. from Maackia chinensis;196
12.4.11;L. Epichlicin from Epichloe typhina from Phleum pretense L.;196
12.4.12;M. Metabolite from Colletotrichum dematium from Pteromischum sp.;196
12.4.13;N. Hormonemate from Hormonema dematioides from Pinus sp.;197
12.4.14;O. Brefeldin A from Phoma medicaginis from Medicago lupulina;198
12.4.15;P. Phaeosphaerides from an Endophytic Fungus;198
12.4.16;Q. Metabolites from Nodulisporium sp. from Junipercus cedre;198
12.4.17;R. Metabolites from Ascochyta sp. from Meliotus dentatus;198
12.4.18;S. Metabolites from Endophytic Fungi from Garcinia Species;199
12.4.19;T. Metabolites from Endophytic Fungi from Artemisia species;202
12.4.20;U. Metabolites from Endophytes from Schinus molle;204
12.5;V. Conclusion;204
12.6;References;204
13;Chapter 9: Fungal Origin of Ergoline Alkaloids Present in Dicotyledonous Plants (Convolvulaceae);211
13.1;I. The Ecological Role of Natural Products;211
13.2;II. The Symbiosis Between Poaceae and Clavicipitaceous Fungi;212
13.3;III. Epibiotic Clavicipitaceous Fungi Associated with Convolvulaceae;213
13.3.1;A. Identification of Clavicipitaceous Fungi;213
13.3.1.1;1. Microscopic and Electron Microscopic Characterization;213
13.3.1.2;2. Phylogenetic Trees;216
13.3.2;B. Fungicidal Treatment;216
13.3.3;C. Plant Growth Under Germ-Free Conditions;217
13.3.4;D. Biosynthesis and Accumulation of Ergoline Alkaloids in the Fungus/Plant Symbiotum;218
13.3.5;E. Seed Transmittance of Epibiotic Fungi Colonizing Convolvulaceae;218
13.4;IV. Additional Fungus/Plant Symbiota in Dicotyledonous Plants;219
13.5;V. Conclusions;220
13.6;References;220
14;Chapter 10: Secondary Metabolites of Basidiomycetes;223
14.1;I. Introduction;224
14.2;II. Secondary Metabolites and Their Biological Activities;224
14.2.1;A. Terpenoids;225
14.2.1.1;1. Sesquiterpenoids;225
14.2.1.1.1;a) Resupinatus leightonii (Tricholomataceae);225
14.2.1.1.2;b) Conocybe siliginea (Bolbitiaceae);226
14.2.1.1.3;c) Ripartites tricholoma and R. metrodii (Paxillaceae);226
14.2.1.1.4;d) Omphalotus olearius, O. nidiformis (Omphalotaceae);227
14.2.1.1.5;e) Radulomyces confluens (Corticiaceae s. lat.);227
14.2.1.1.6;f) Gloeophyllum sp. (Gloephyllaceae);228
14.2.1.1.7;g) Bovista sp. (Lycoperdaceae);228
14.2.1.1.8;h) Marasmius sp. (Tricholomataceae);228
14.2.1.1.9;i) Dichomitus squalens (Polyporaceae);228
14.2.1.1.10;j) Macrocystidia cucumis (Tricholomataceae);228
14.2.1.1.11;k) Creolophus cirrhatus (Hericiaceae);230
14.2.1.1.12;l) Coprinus sp. (Coprinaceae);230
14.2.1.1.13;m) Dacrymyces sp. (Dacrymycetaceae);230
14.2.1.1.14;n) Limacella illinita (Amanitaceae);231
14.2.1.1.15;o) Boletus calopus (Boletaceae);231
14.2.1.1.16;p) Russula lepida (Russulaceae);231
14.2.1.2;2. Diterpenoids;231
14.2.1.2.1;a) Sarcodon scabrosus (Thelephoraceae);231
14.2.1.2.2;b) Mycena tintinnabulum (Tricholomataceae);231
14.2.1.3;3. Triterpenoids;232
14.2.1.3.1;a) Irpex sp. (Steccherinaceae);232
14.2.1.3.2;b) Favolaschia spp. (Favolaschiaceae);232
14.2.1.3.3;c) Fomitella fraxinea (Polyporaceae);233
14.2.1.3.4;d) Grifola frondosa (Polyporaceae s. lat.);233
14.2.1.3.5;e) Leucopaxillus gentianeus (Tricholomataceae);233
14.2.1.3.6;f) Clavariadelphus truncatus (Clavariaceae);234
14.2.2;B. Polyketides, Fatty Acid Derivatives;234
14.2.3;C. Compounds of Unclear Biogenetic Origin;237
14.2.3.1;HeadingsSec44_10;237
14.2.3.1.1;a) Tremella aurantialba (Tremellaceae);237
14.2.3.1.2;b) Stereum hirsutum (Stereaceae);238
14.2.3.1.3;c) Antrodia serialis (Polyporaceae s. lat.);238
14.2.3.1.4;d) Aporpium caryae (Tremellaceae);238
14.2.3.1.5;e) Bondarzewia montana (Bondarzewiaceae);238
14.2.3.1.6;f) Cortinarius sp. (Cortinariaceae);238
14.2.3.1.7;g) Chamonixia pachydermis (Boletaceae);239
14.2.3.1.8;h) Serpula himantoides (Coniophoraceae);239
14.2.3.1.9;i) Pholiota spumosa (Strophariaceae);239
14.2.4;D. Amino Acid Derivatives;240
14.3;III. Conclusions;240
14.4;References;242
15;Chapter 11: Identification of Fungicide Targets in Pathogenic Fungi;246
15.1;I. Introduction;246
15.2;II. Currently Deployed Fungicides;246
15.3;III. What Are the Ideal Attributes of the Fungicides of the Future?;247
15.4;IV. The Role of Traditional Screening Approaches Used in Fungicide Development;247
15.5;V. Determining the Mode of Action of an Anti-Fungal Compound;248
15.6;VI. Genome-Wide Approaches;248
15.6.1;A. Transcriptomics: Microarrays;248
15.6.2;B. Studying Genome-Wide Transcriptional Changes Which Accompany Differentiation;251
15.6.3;C. Cross-Species Comparisons: Comparative Genomic;252
15.6.4;D. Identifying Possible Drug Targets by Comparison of the Transcriptome of Mutant and Wild-Type Cells;252
15.6.5;E. Exploring Drug Resistance Using Transcriptome Analysis: Candida albicans;253
15.6.6;F. MPSS and SAGE;254
15.6.7;G. Transcriptomics: Outlook;255
15.6.8;H. Other `omics´;255
15.7;VII. Conclusions/Outlook;256
15.8;References;256
16;Chapter 12: Helminth Electron Transport Inhibitors Produced by Fungi;259
16.1;I. Introduction;259
16.2;II. Inhibitors of Complex I;262
16.3;III. Inhibitors of Helminth Complex I;263
16.3.1;A. NADH-Fumarate Reductase;263
16.3.2;B. Nafuredin;263
16.3.2.1;1. Producing Strain and Fermentation;263
16.3.2.2;2. Structure;264
16.3.2.3;3. Enzyme Inhibition and Biological Activity;265
16.3.2.4;4. Nafuredin-gamma and its Analogs;266
16.3.3;C. Paecilaminol;266
16.3.4;D. Verticipyrone;267
16.3.5;E. Ukulactones;269
16.4;IV. Inhibitors of Complex II;270
16.4.1;A. Atpenins and Harzianopyridone;270
16.4.1.1;1. Structures;270
16.4.1.2;2. Enzyme Inhibition and Biological Activity;273
16.4.2;B. Other Complex II Inhibitors;273
16.5;V. Other Electron Transport Inhibitors;274
16.5.1;A. Inhibitors of Complex III;274
16.5.2;B. Inhibitors of Complex V;275
16.5.3;C. Uncouplers;277
16.6;VI. Conclusions;278
16.7;References;279
17;Chapter 13: Cyclic Peptides and Depsipeptides from Fungi;284
17.1;I. Introduction;284
17.2;II. Occurrence of Cyclic Peptides and Depsipeptides Within the Kingdom Eumycota (True Fungi);285
17.2.1;A. Siderophores;285
17.2.2;B. Diketopiperazines;285
17.2.3;C. Cyclic Peptides;289
17.2.4;D. Cyclic Depsipeptides;293
17.3;III. Chemical and Biological Diversity of Cyclic Peptides and Depsipeptides;296
17.3.1;A. Diversity of Building Blocks;296
17.3.2;B. Diversity of Structures;297
17.3.3;C. Diversity of Biological Activities;298
17.4;IV. Ecological Role of Cyclic Peptides and Depsipeptides;300
17.5;V. Conclusions;301
17.6;References;301
18;Chapter 14: Fungal Genome Mining and Activation of Silent Gene Clusters;308
18.1;I. Introduction;308
18.2;II. Fungal Genome Miningand Activation of SilentGene Clusters;308
18.2.1;A. Genetic Potential for Secondary Metabolism Biosynthesis of Fungi;308
18.2.2;B. Genome Mining;309
18.2.3;C. Activation of Silent Gene Clusters;310
18.3;III. Conclusions;313
18.4;References;313
19;Chapter 15: Non-Ribosomal Peptide Synthetases of Fungi;315
19.1;I. Introduction;315
19.2;II. Non-Ribosomal Peptide Synthetases;316
19.2.1;A. Structure of NRPSs;316
19.2.2;B. Module Arrangement;317
19.2.3;C. Domain Types of Non-Ribosomal Peptide Synthetases;319
19.2.3.1;1. Adenylation Domain;319
19.2.3.1.1;a) Functions of Adenylation Domains;319
19.2.3.1.2;b) Substrate Specificity;320
19.2.3.2;2. Thiolation Domains and 4-Phosphopantetheine Transferases;321
19.2.3.3;3. Condensation Domains;323
19.2.3.4;4. Modifying Domains;323
19.2.3.4.1;a) n-Methylation Domain;324
19.2.3.4.2;b) Epimerization Domains and Amino Acid Racemases;324
19.2.3.5;5. Termination Domains;325
19.2.3.5.1;a) Thioesterase Domain;325
19.2.3.5.2;b) Reductase Domain;325
19.2.3.5.3;c) Condensation Domain;325
19.3;III. Distinctions Between Fungal and Bacterial NRPSs;325
19.4;IV. Non-Ribosomal Peptide Synthesis in Basidiomycetes;327
19.5;V. Physiological Significance of Peptides;328
19.6;VI. Examples for NRPS Gene Clusters and Cluster Evolution;329
19.6.1;A. Penicillin and Cephalosporin Biosynthesis;330
19.6.2;B. Ergot Alkaloid Biosynthetic Gene Clusters;331
19.7;VII. Conclusions;333
19.7.1;A. Approaches to Identify New NRPSs;333
19.7.2;B. Combinatorial Biosynthesis of New NRPs;334
19.8;References;334
20;Chapter 16: Biosynthesis of Fungal Polyketides;341
20.1;I. Introduction;341
20.2;II. Ecological Importance and Pharmaceutical Use of Fungal Polyketides;341
20.3;III. Biosynthesis of Polyketides;343
20.4;IV. Fungal Polyketide Synthase Classes;344
20.4.1;A. Non-Reducing PKS;345
20.4.2;B. Partially Reducing PKS;347
20.4.3;C. Highly Reducing PKS;347
20.4.4;D. Polyketide Synthase-Non-Ribosomal Peptide Synthetase Hybrids;349
20.5;V. Post-PKS Modifications;351
20.6;VI. Phylogeny;352
20.7;VII. Functional Analysis and Engineering of Fungal Polyketide Biosynthesis;354
20.7.1;A. Inactivation of PKS Genes;355
20.7.1.1;1. Knockout;355
20.7.1.2;2. Knockdown;356
20.7.2;B. Heterologous Expression of PKS Genes;356
20.7.3;C. PKS Pathway Regulation;357
20.8;VIII. Conclusions;357
20.9;References;358
21;Chapter 17: Physiological and Molecular Aspects of Ochratoxin A Biosynthesis;362
21.1;I. Introduction;362
21.2;II. Ochratoxin A-Producing Fungal Species;362
21.3;III. Structure and Biosynthesis of Ochratoxin A;364
21.4;IV. Physiological Conditions for Production and Occurrence of Ochratoxin A;366
21.5;V. Molecular Biology of Ochratoxin A Biosynthesis;369
21.6;VI. Regulation of Expression of Ochratoxin A Biosynthesis Genes in Penicillium in Relation to Environmental Factors;372
21.7;VII. Regulation of Ochratoxin A Biosynthesis in Penicillium in Relation to Light;377
21.8;VIII. Conclusions;380
21.9;References;382
22;Chapter 18: Genetic and Metabolic Engineering in Filamentous Fungi;386
22.1;I. Introduction;386
22.2;II. Fungal Genomics: Advances in Exploring Sequence Data;387
22.3;III. Post-Genomic Approaches to Unravel the Metabolism of Filamentous Fungi;388
22.3.1;A. Transcriptomics;389
22.3.2;B. Proteomics;389
22.3.3;C. Metabolomics;390
22.4;IV. Metabolic Engineering: Finding the Optimum Genetic Strategy;390
22.4.1;A. Choosing the Right Transformation Technique;391
22.5;V. Enhancing Gene-Targeting Efficiency;392
22.5.1;A. RNA-Based Tools for Metabolic Engineering;392
22.6;VI. Concluding Remarks and Prospects;395
22.7;References;395
23;Chapter : Biosystematic Index;402
mehr