Hugendubel.info - Die B2B Online-Buchhandlung 

Merkliste
Die Merkliste ist leer.
Bitte warten - die Druckansicht der Seite wird vorbereitet.
Der Druckdialog öffnet sich, sobald die Seite vollständig geladen wurde.
Sollte die Druckvorschau unvollständig sein, bitte schliessen und "Erneut drucken" wählen.

Nanocarbon-Inorganic Hybrids

E-BookEPUBDRM AdobeE-Book
555 Seiten
Englisch
De Gruytererschienen am20.08.20141. Auflage

This book covers a multidisciplinary research field that combines materials chemistry and physics with nanotechnology and applied energy sciences. On the one hand, it includes introductory chapters on carbon nanomaterials (including synthesis, modification and characterization) and on composites and hybrids (definition and principles). On the other hand, it also provides a critical overview of the present state of research, discussing materials challenges and various energy applications as well as fundamental topics, such as interfacial transfer processes.



Dominik Eder, Westfälische Wilhelms University Münster, Germany; Robert Schlögl, Fritz-Haber-Institute of the Max Planck Society, Berlin, Germany.
mehr
Verfügbare Formate
BuchGebunden
EUR194,95
E-BookPDFDRM AdobeE-Book
EUR210,00
E-BookEPUBDRM AdobeE-Book
EUR210,00

Produkt

Klappentext
This book covers a multidisciplinary research field that combines materials chemistry and physics with nanotechnology and applied energy sciences. On the one hand, it includes introductory chapters on carbon nanomaterials (including synthesis, modification and characterization) and on composites and hybrids (definition and principles). On the other hand, it also provides a critical overview of the present state of research, discussing materials challenges and various energy applications as well as fundamental topics, such as interfacial transfer processes.



Dominik Eder, Westfälische Wilhelms University Münster, Germany; Robert Schlögl, Fritz-Haber-Institute of the Max Planck Society, Berlin, Germany.
Details
Weitere ISBN/GTIN9783110377880
ProduktartE-Book
EinbandartE-Book
FormatEPUB
Format HinweisDRM Adobe
FormatE101
Erscheinungsjahr2014
Erscheinungsdatum20.08.2014
Auflage1. Auflage
Seiten555 Seiten
SpracheEnglisch
Illustrationen244 b/w ill., 150 b/w tbl.
Artikel-Nr.1461716
Rubriken
Genre9200

Inhalt/Kritik

Inhaltsverzeichnis
1;Contents;9
2;Preface;5
3;Contributing authors;17
4;Part I: Nanocarbon building blocks;21
4.1;1 A short introduction on carbon nanotubes;23
4.1.1;1.1 Introduction;23
4.1.1.1;1.2 Structural aspects;24
4.1.1.2;1.2.1 Chirality;24
4.1.1.3;1.2.2 Defects;25
4.1.1.4;1.2.3 Doping;26
4.1.2;1.3 Properties of CNTs;27
4.1.2.1;1.3.1 Mechanical properties;27
4.1.2.2;1.3.2 Electronic properties;28
4.1.2.3;1.3.3 Thermal properties;29
4.1.3;1.4 Characterization;30
4.1.4;1.5 Synthesis;31
4.1.4.1;1.5.1 Laser ablation;32
4.1.4.2;1.5.2 Arc discharge;32
4.1.4.3;1.5.3 Molten salt route / electrolytic process;33
4.1.4.4;1.5.4 Chemical vapor deposition (CVD);33
4.1.5;1.6 Post-synthesis treatments;34
4.1.5.1;1.6.1 Purification;34
4.1.5.2;1.6.2 Separation of metallic and semiconducting CNTs;35
4.1.5.3;1.6.3 Functionalization;36
4.1.5.4;1.6.4 Assembly;38
4.1.6;1.7 Summary;38
4.2;2 Synthesis, characterisation and properties of graphene;45
4.2.1;2.1 Introduction;45
4.2.2;2.2 Properties;45
4.2.3;2.3 Synthesis;46
4.2.3.1;2.3.1 Micromechanical cleavage;46
4.2.3.2;2.3.2 Liquid phase exfoliation;47
4.2.3.3;2.3.3 Precipitation frommetals/CVD;50
4.2.3.4;2.3.4 Epitaxial growth from SiC;51
4.2.4;2.4 Characterization;52
4.3;3 Functionalization of carbon nanotubes;63
4.3.1;3.1 Introduction;63
4.3.2;3.2 Functionalization.Why?;64
4.3.3;3.3 Types of functionalization;66
4.3.3.1;3.3.1 Covalent functionalization;66
4.3.3.2;3.3.2 Noncovalent functionalization;74
4.3.4;3.4 Functionalization with metals;81
4.3.5;3.5 Summary;85
4.4;4 The importance of defects and dopants within carbon nanomaterials during the fabrication of polymer composites;91
4.4.1;4.1 Introduction;91
4.4.1.1;4.1.1 Carbon nanostructures and their properties;92
4.4.1.2;4.1.2 Doped carbon nanostructures;94
4.4.1.3;4.1.3 Defects in carbon nanostructures;96
4.4.1.4;4.1.4 Functionalization of carbon nanostructures for nanocomposites;99
4.4.2;4.2 Incorporation of nanocarbons into polymer composites and hybrids;103
4.4.2.1;4.2.1 Types of polymer composites;103
4.4.2.2;4.2.2 Synthesis approaches;106
4.4.3;4.3 Properties;109
4.4.3.1;4.3.1 Mechanical properties;109
4.4.3.2;4.3.2 Thermal properties;113
4.4.3.3;4.3.3 Electrical properties;115
4.4.3.4;4.3.4 Optical properties;117
4.4.3.5;4.3.5 Biocompatibility;118
4.4.3.6;4.3.6 Biodegradation;119
4.4.3.7;4.3.7 Permeability;122
4.4.4;4.4 Summary;124
5;Part II: Synthesis and characterisation of hybrids;143
5.1;5 Synthesis strategies of nanocarbon hybrids;145
5.1.1;5.1 Introduction;145
5.1.2;5.2 Ex situ approaches;147
5.1.2.1;5.2.1 Covalent interactions;147
5.1.2.2;5.2.2 Noncovalent interactions;149
5.1.3;5.3 In situ approaches;154
5.1.3.1;5.3.1 In situ polymerization;155
5.1.3.2;5.3.2 Inorganic hybridization from metal salts;157
5.1.3.3;5.3.3 Electrochemical processes;162
5.1.3.4;5.3.4 Sol-gel processes;166
5.1.3.5;5.3.5 Gas phase deposition;168
5.1.4;5.4 Other nanocarbons;172
5.1.5;5.5 Comparison of synthesis techniques;173
5.1.6;5.6 Summary;174
5.2;6 Graphene and its hybrids with inorganic nanoparticles, polymers and other materials;191
5.2.1;6.1 Introduction;191
5.2.2;6.2 Synthesis;192
5.2.3;6.3 Nanocarbon (graphene/C60/SWNT) hybrids;195
5.2.4;6.4 Graphene-polymer composites;198
5.2.5;6.5 Functionalization of graphene and related aspects;202
5.2.6;6.6 Graphene-inorganic nanoparticle hybrids;205
5.2.7;6.7 Graphene hybrids with SnO2, MoS2 and WS2 as anodes in batteries;209
5.2.8;6.8 Graphene-MOF hybrids;212
5.2.9;6.9 Summary;215
5.3;7 Sustainable carbon hybrid materialsmade by hydrothermal carbonization and their use in energy applications;221
5.3.1;7.1 Introduction;221
5.3.2;7.2 Hydrothermal synthesis of carbonaceousmaterials;222
5.3.2.1;7.2.1 From pure carbohydrates;222
5.3.2.2;7.2.2 From complex biomass;229
5.3.2.3;7.2.3 Energy applications of hydrothermal carbons and their hybrids;230
5.3.3;7.3 Summary;241
5.4;8 Nanocarbon-based composites;247
5.4.1;8.1 Introduction;247
5.4.2;8.2 Integration routes: From filler to other more complex structures;248
5.4.2.1;8.2.1 Filler route;249
5.4.2.2;8.2.2 Evaluation of reinforcement;250
5.4.2.3;8.2.3 Other properties;252
5.4.3;8.3 Hierarchical route;255
5.4.3.1;8.3.1 Structure and improvement in properties;256
5.4.3.2;8.3.2 Other properties;258
5.4.4;8.4 Fiber route;260
5.4.4.1;8.4.1 Different assembly routes;261
5.4.4.2;8.4.2 Assembly properties and structure;263
5.4.4.3;8.4.3 Assembly composites;265
5.4.4.4;8.4.4 Other properties of nanocarbon assemblies;268
5.4.5;8.5 Summary;268
5.5;9 Carbon-Carbon Composites;275
5.5.1;9.1 Introduction;275
5.5.2;9.2 Typology of C3 materials;276
5.5.3;9.3 Synthesis;279
5.5.4;9.4 Identification of the structural features of C3 material;284
5.5.5;9.5 Surface chemistry;286
5.5.6;9.6 Summary;288
5.6;10 Graphite oxide-MOF hybrid materials;293
5.6.1;10.1 Introduction;293
5.6.2;10.2 Building blocks;294
5.6.2.1;10.2.1 Graphite oxide;294
5.6.2.2;10.2.2 Metal Organic Frameworks:MOF-5, HKUST-1 and MIL-100(Fe);295
5.6.3;10.3 Building the hybrid materials: Surface texture and chemistry;296
5.6.4;10.4 MOF-Graphite oxides composites as adsorbents of toxic gases;301
5.6.4.1;10.4.1 Ammonia;302
5.6.4.2;10.4.2 Nitrogen dioxide;304
5.6.4.3;10.4.3 Hydrogen sulfide;306
5.6.5;10.5 Beyond the MOF-Graphite oxides composites;308
5.6.6;10.6 Summary;309
6;Part III: Applications of nanocarbon hybrids;315
6.1;11 Batteries/Supercapacitors: Hybrids with CNTs;317
6.1.1;11.1 Introduction;317
6.1.2;11.2 Application of hybrids with CNTs for batteries;318
6.1.2.1;11.2.1 Lithium ion battery;318
6.1.2.2;11.2.2 Lithium sulfur battery;327
6.1.2.3;11.2.3 Lithium air battery;328
6.1.3;11.3 Application of hybrids with CNTs in supercapacitor;330
6.1.3.1;11.3.1 CNT-based carbon hybrid for supercapacitors;331
6.1.3.2;11.3.2 CNT-based inorganic hybrid for supercapacitors;333
6.1.4;11.4 Summary;334
6.2;12 Graphene-metal oxide hybrids for lithium ion batteries and electrochemical capacitors;339
6.2.1;12.1 Introduction;339
6.2.2;12.2 Graphene for LIBs and ECs;340
6.2.3;12.3 Graphene-metal oxide hybrids in LIBs and ECs;341
6.2.3.1;12.3.1 Typical structural models of graphene-metal oxide hybrids;341
6.2.3.2;12.3.2 Anchored model;343
6.2.3.3;12.3.3 Encapsulated model;347
6.2.3.4;12.3.4 Sandwich-like model;350
6.2.3.5;12.3.5 Layeredmodel;352
6.2.3.6;12.3.6 Mixed models;355
6.2.4;12.4 Summary;356
6.3;13 Nanocarbons for field emission devices;361
6.3.1;13.1 Introduction;361
6.3.2;13.2 Carbon nanotubes - general considerations;363
6.3.2.1;13.2.1 Field emission from nanocarbons;366
6.3.2.2;13.2.2 Emission from nanowalls and CNTs walls;366
6.3.3;13.3 Applications;367
6.3.3.1;13.3.1 Field emission electron guns for electronmicroscopes;367
6.3.3.2;13.3.2 Displays;368
6.3.3.3;13.3.3 Microtriodes and E-beam lithography;369
6.3.3.4;13.3.4 Microwave power amplifiers;371
6.3.3.5;13.3.5 Ionization gauges;372
6.3.3.6;13.3.6 Pulsed X-ray sources and tomography;372
6.3.4;13.4 Summary;373
6.4;14 Carbon, carbon hybrids and composites for polymer electrolyte fuel cells;377
6.4.1;14.1 Introduction;377
6.4.2;14.2 Carbon as electrode and electrocatalyst;377
6.4.2.1;14.2.1 Structure and properties;377
6.4.2.2;14.2.2 Electrochemical properties;380
6.4.2.3;14.2.3 Applications;382
6.4.3;14.3 Carbon, carbon hybrids and carbon composites in PEFCs;388
6.4.3.1;14.3.1 Carbon as structural component in PEFCs;388
6.4.3.2;14.3.2 Carbon as PEFC catalyst support;389
6.4.3.3;14.3.3 Carbon hybrids and composites as ORR electrocatalysts;399
6.4.4;14.4 Summary;405
6.5;15 Nanocarbon materials for heterogeneous catalysis;413
6.5.1;15.1 Introduction;413
6.5.2;15.2 Relevant properties of nanocarbons;414
6.5.2.1;15.2.1 Textural properties and macroscopic shaping;414
6.5.2.2;15.2.2 Surface chemistry and functionalization;417
6.5.2.3;15.2.3 Confinement effect;420
6.5.3;15.3 Nanocarbon-based catalysts;421
6.5.3.1;15.3.1 Dehydrogenation of Hydrocarbons;422
6.5.3.2;15.3.2 Dehydrogenations of alcohols;427
6.5.3.3;15.3.3 Other reactions;430
6.5.4;15.4 Nanocarbon as catalyst support;432
6.5.4.1;15.4.1 Catalyst preparation strategies;432
6.5.4.2;15.4.2 Applications in heterogeneous catalysis;436
6.5.5;15.5 Summary;442
6.6;16 Advanced photocatalytic materials by nanocarbon hybrid materials;449
6.6.1;16.1 Introduction;449
6.6.1.1;16.1.1 Hybrid vs. composite nanomaterials;450
6.6.1.2;16.1.2 Use of nanocarbon hybrid materials in photoreactions;452
6.6.2;16.2 Nanocarbon characteristics;453
6.6.2.1;16.2.1 The role of defects;455
6.6.2.2;16.2.2 Modification of nanocarbons;457
6.6.2.3;16.2.3 New aspects;457
6.6.2.4;16.2.4 Nanocarbon quantum dots;458
6.6.3;16.3 Mechanisms of nanocarbon promotion in photoactivated processes;460
6.6.4;16.4 Advantages of nanocarbon-semiconductor hybrid materials;463
6.6.5;16.5 Nanocarbon-semiconductor hybrid materials for sustainable energy;467
6.6.6;16.6 Summary;468
6.7;17 Electrochromic and photovoltaic applications of nanocarbon hybrids;475
6.7.1;17.1 Introduction;475
6.7.2;17.2 Nanocarbon Hybrids for electrochromicmaterials and devices;476
6.7.2.1;17.2.1 Intrinsic electrochromismof nanocarbons;476
6.7.2.2;17.2.2 Synthesis and electrochromic properties of nanocarbon-metal oxide hybrids;477
6.7.2.3;17.2.3 Electrochromic properties of nanocarbon-polymer hybrids;479
6.7.3;17.3 Nanocarbon hybrids for photovoltaic applications;481
6.7.3.1;17.3.1 Workingmechanisms of PECs and OPVs;481
6.7.3.2;17.3.2 Nanocarbon hybrids for PECs;482
6.7.3.3;17.3.3 Nanocarbon hybrids for OPVs;488
6.7.4;17.4 Summary;489
6.8;18 Carbon nanomaterials as integrative components in dye-sensitized solar cells;495
6.8.1;18.1 Today´s dye-sensitized solar cells. Definition and potential;495
6.8.2;18.2 Major challenges in improving the performance of DSSCs;497
6.8.3;18.3 Carbon nanomaterials as integrativematerials in semiconducting electrodes;499
6.8.3.1;18.3.1 Interlayers made out of carbon nanomaterials;499
6.8.3.2;18.3.2 Implementation of carbon nanomaterials into electrode networks;500
6.8.4;18.4 Carbon nanomaterials for solid-state electrolytes;504
6.8.4.1;18.4.1 Fullerene-based solid-state electrolytes;504
6.8.4.2;18.4.2 CNTs-based solid-state electrolytes;505
6.8.4.3;18.4.3 Graphene-based solid-state electrolytes;507
6.8.5;18.5 Versatility of carbon nanomaterials-based hybrids as novel type of dyes;508
6.8.5.1;18.5.1 Fullerene-baseddyes;508
6.8.5.2;18.5.2 Graphene-based dyes;510
6.8.6;18.6 Photoelectrodes prepared by nanographene hybrids;512
6.8.6.1;18.6.1 Preparation of photoelectrodes by using noncovalently functionalized graphene;512
6.8.6.2;18.6.2 Preparation of photoelectrodes by preparing nanographene-based building blocks via electrostatic interactions;514
6.8.7;18.7 Summary;516
6.9;19 Importance of edge atoms;523
6.9.1;19.1 Introduction;523
6.9.2;19.2 External edges;525
6.9.3;19.3 Internal edges;535
6.9.4;19.4 Edge reconstruction;539
6.9.5;19.5 Summary;542
7;Index;547
mehr

Autor


Dominik Eder, Westfälische Wilhelms University Münster, Germany; Robert Schlögl, Fritz-Haber-Institute of the Max Planck Society, Berlin, Germany.