Hugendubel.info - Die B2B Online-Buchhandlung 

Merkliste
Die Merkliste ist leer.
Bitte warten - die Druckansicht der Seite wird vorbereitet.
Der Druckdialog öffnet sich, sobald die Seite vollständig geladen wurde.
Sollte die Druckvorschau unvollständig sein, bitte schliessen und "Erneut drucken" wählen.

Nanoscience and Engineering in Superconductivity

E-BookPDF1 - PDF WatermarkE-Book
395 Seiten
Englisch
Springer Berlin Heidelbergerschienen am10.11.20102010
For emerging energy saving technologies superconducting materials with superior performance are needed. Such materials can be developed by manipulating the 'elementary building blocks' through nanostructuring. For superconductivity the 'elementary blocks' are Cooper pair and fluxon (vortex). This book presents new ways how to modify superconductivity and vortex matter through nanostructuring and the use of nanoscale magnetic templates. The basic nano-effects, vortex and vortex-antivortex patterns, vortex dynamics, Josephson phenomena, critical currents, and interplay between superconductivity and ferromagnetism at the nanoscale are discussed. Potential applications of nanostructured superconductors are also presented in the book.mehr
Verfügbare Formate
BuchGebunden
EUR160,49
BuchKartoniert, Paperback
EUR160,49
E-BookPDF1 - PDF WatermarkE-Book
EUR149,79

Produkt

KlappentextFor emerging energy saving technologies superconducting materials with superior performance are needed. Such materials can be developed by manipulating the 'elementary building blocks' through nanostructuring. For superconductivity the 'elementary blocks' are Cooper pair and fluxon (vortex). This book presents new ways how to modify superconductivity and vortex matter through nanostructuring and the use of nanoscale magnetic templates. The basic nano-effects, vortex and vortex-antivortex patterns, vortex dynamics, Josephson phenomena, critical currents, and interplay between superconductivity and ferromagnetism at the nanoscale are discussed. Potential applications of nanostructured superconductors are also presented in the book.
Details
Weitere ISBN/GTIN9783642151378
ProduktartE-Book
EinbandartE-Book
FormatPDF
Format Hinweis1 - PDF Watermark
FormatE107
Erscheinungsjahr2010
Erscheinungsdatum10.11.2010
Auflage2010
Seiten395 Seiten
SpracheEnglisch
IllustrationenXVIII, 395 p.
Artikel-Nr.1533926
Rubriken
Genre9200

Inhalt/Kritik

Inhaltsverzeichnis
1;Preface;6
2;Contents;10
3;Contributors;16
4;1 Guided Vortex Motion and Vortex Ratchets in Nanostructured Superconductors;20
4.1;1.1 Introduction;20
4.2;1.2 Equation of Motion;21
4.3;1.3 Guided Vortex Motion;24
4.3.1;1.3.1 Transverse Electric Field and Guided Vortex Motion;24
4.3.1.1;1.3.1.1 Pinning-Free Superconductors;24
4.3.1.2;1.3.1.2 Superconductors with One-Dimensional Pinning;24
4.3.2;1.3.2 Experimental Results and Theoretical Investigations;25
4.3.2.1;1.3.2.1 Superconductors with One-Dimensional Pinning;25
4.3.2.2;1.3.2.2 Superconductors with Two-Dimensional Pinning;28
4.4;1.4 Ratchets;30
4.4.1;1.4.1 Basic Ingredients;32
4.4.2;1.4.2 Experimental Considerations;32
4.4.3;1.4.3 Experimental Results and Theoretical Investigations;34
4.4.3.1;1.4.3.1 Temperature Dependence;35
4.4.3.2;1.4.3.2 Sign Reversals at High Particle Densities;36
4.4.3.3;1.4.3.3 Single Vortex Rectifiers;37
4.4.3.4;1.4.3.4 Magnetic Vortex Rectifiers;38
4.4.3.5;1.4.3.5 Breaking the Time Reversal Symmetry;39
4.5;1.5 Conclusion;39
4.6;References;40
5;2 High-Tc Films: From Natural Defects to Nanostructure Engineering of Vortex Matter;44
5.1;2.1 Introduction;44
5.2;2.2 Vortex Matter in High-Tc Superconductors;48
5.2.1;2.2.1 Vortex Motion in Ideal Superconductors;48
5.2.2;2.2.2 Flux Pinning and Summation Theories;49
5.2.3;2.2.3 Pinning Mechanism in HTS;54
5.3;2.3 Vortex Manipulation in HTS Films;54
5.3.1;2.3.1 Vortex Manipulation via Artificial Structures;55
5.3.2;2.3.2 Theoretical Considerations of Vortex Manipulation via Antidots;58
5.3.3;2.3.3 Experimental Demonstration;64
5.3.3.1;2.3.3.1 Vortex-Antidot Interaction and Multi-Quanta Formation;65
5.3.3.2;2.3.3.2 Guided Vortex Motion via Antidots;69
5.4;2.4 Vortex Matter in Superconducting Devices;75
5.4.1;2.4.1 Low-Frequency Noise in SQUIDs;77
5.4.1.1;2.4.1.1 Manipulation of the Low-Frequency Noise via Antidot Arrays;81
5.4.1.2;2.4.1.2 Noise Reduction via Strategically Positioned Antidots;83
5.4.2;2.4.2 Vortex Matter in Microwave Devices;85
5.4.2.1;2.4.2.1 Impact of Vortices on the Microwave Properties;87
5.4.2.2;2.4.2.2 Concepts for HTS Fluxonic Devices;91
5.5;2.5 Conclusions;93
5.6;References;94
6;3 Ion Irradiation of High-Temperature Superconductors and Its Application for Nanopatterning;99
6.1;3.1 Introduction;99
6.2;3.2 Defect Creation by Ion Irradiation;101
6.2.1;3.2.1 Methods;101
6.2.2;3.2.2 Ion Species;102
6.2.3;3.2.3 Ion Energy Dependence;103
6.2.4;3.2.4 Angle Dependence;106
6.2.5;3.2.5 Experimental Results;107
6.3;3.3 Electrical Properties after Ion Irradiation;108
6.3.1;3.3.1 Brief Review;108
6.3.2;3.3.2 Experimental Techniques;109
6.3.3;3.3.3 Resistivity;109
6.3.4;3.3.4 Hall Effect;111
6.3.5;3.3.5 Long-term Stability;114
6.4;3.4 Nano-patterning by Masked Ion Beam Irradiation;116
6.4.1;3.4.1 Previous Attempts to Nanopatterning of HTS;116
6.4.2;3.4.2 Computer Simulation Results;117
6.4.3;3.4.3 Experimental Patterning Tests;118
6.5;3.5 Conclusions and Outlook;119
6.6;References;120
7;4 Frontiers Problems of the Josephson Effect: From Macroscopic Quantum Phenomena Decayto High-TC Superconductivity;123
7.1;4.1 Introduction;123
7.2;4.2 Grain Boundary Junctions: The Tool;124
7.3;4.3 Retracing d-wave Order Parameter Symmetryin Josephson Structures;128
7.4;4.4 Macroscopic Quantum Phenomena in Josephson Systems: Fundamentals and Low Critical Temperature Superconductor Junctions;132
7.4.1;4.4.1 Resistively and Capacitively Shunted Junction Model and the ``Washboard'' Potential;132
7.4.2;4.4.2 Macroscopic Quantum Tunnelling (MQT) and Energy Level Quantization (ELQ);134
7.4.3;4.4.3 Developments of Quantum Measurements for Macroscopic Quantum Coherence Experiments;136
7.5;4.5 Macroscopic Quantum Effects in High-TC Josephson Junctions and in Unconventional Conditions;138
7.5.1;4.5.1 Macroscopic Quantum Phenomena in High-TC Josephson Junctions;138
7.5.2;4.5.2 Switching Current Statistics in Moderately Damped Josephson Junctions;143
7.5.3;4.5.3 MQT Current Bias Modulation;144
7.6;4.6 Mesoscsopic Effects and Coherence in HTSNanostructures;145
7.7;4.7 Conclusions;147
7.8;References;148
8;5 Intrinsic Josephson Tunneling in High-TemperatureSuperconductors;154
8.1;5.1 Introduction;154
8.2;5.2 Sample Fabrication;157
8.2.1;5.2.1 Simple Mesa;157
8.2.2;5.2.2 Flip-Chip Zigzag Bridges;158
8.2.3;5.2.3 Other Methods;159
8.3;5.3 Electrical Characterization;160
8.3.1;5.3.1 I-V Curves of Intrinsic Josephson Junctions in Bi2212;160
8.3.2;5.3.2 Critical Current Density of Individual CuO Plane;161
8.3.3;5.3.3 Superconducting Critical Current of Individual CuO Planes in Bi2212;161
8.3.4;5.3.4 Tunneling Spectroscopy;166
8.3.5;5.3.5 THz Radiation;169
8.3.6;5.3.6 Joule Heating in Mesas;172
8.3.7;5.3.7 The C-Axis Positive and Negative Magneto-Resistance in a Perpendicular Magnetic Field;174
8.4;5.4 Summary;176
8.5;References;176
9;6 Stacked Josephson Junctions;179
9.1;6.1 Introduction;179
9.2;6.2 Model;179
9.2.1;6.2.1 Numerical Method;184
9.2.2;6.2.2 Analytic Solutions;185
9.3;6.3 Bunching of Fluxons;186
9.3.1;6.3.1 Bunching due to Coupling Between Equations;186
9.3.2;6.3.2 Bunching due to Boundary Conditions;191
9.3.3;6.3.3 External Microwave Signal;194
9.3.4;6.3.4 External Cavity;195
9.4;6.4 Experimental Work;200
9.5;6.5 Summary;201
9.6;References;201
10;7 Point-Contact Spectroscopy of Multigap Superconductors;203
10.1;7.1 Point-Contact Andreev Reflexion Spectroscopy;204
10.2;7.2 Two Gaps in MgB2 and Doped MgB2 Systems;205
10.2.1;7.2.1 MgB2;205
10.2.2;7.2.2 Aluminum and Carbon-Doped MgB2;211
10.3;7.3 Multiband Superconductivity in the 122-type Iron Pnictides;219
10.4;7.4 Conclusions;224
10.5;References;224
11;8 Nanoscale Structures and Pseudogap in Under-doped High-Tc Superconductors;227
11.1;8.1 Introduction;227
11.2;8.2 Microscopic Origin of Two Types of Charge Carriers;230
11.3;8.3 Pseudogap and Two Types of Charge Carriers;236
11.4;8.4 Nanostructures in STM Measurements;241
11.5;8.5 Conclusions;244
11.6;References;244
12;9 Scanning Tunneling Spectroscopy of High Tc Cuprates;246
12.1;9.1 Introduction;246
12.2;9.2 Basic Principles of the STM/STS Technique;247
12.2.1;9.2.1 Operating Principles;247
12.2.2;9.2.2 Topography;248
12.2.3;9.2.3 Local Tunneling Spectroscopy;249
12.2.4;9.2.4 STS of Superconductors;250
12.3;9.3 Spectral Characteristics of HTS Cuprates;251
12.3.1;9.3.1 General Spectral Features of HTS Cuprates;251
12.3.2;9.3.2 Superconducting Gap and Pseudogap;253
12.4;9.4 Revealing Vortices and the Structureof their Cores by STS;255
12.4.1;9.4.1 Vortex Matter in Conventional Superconductors;256
12.4.2;9.4.2 Vortex Matter in HTS;257
12.4.2.1;9.4.2.1 Y-123;257
12.4.2.2;9.4.2.2 Bi-2212;258
12.4.3;9.4.3 Electronic Structure of the Cores;258
12.4.3.1;9.4.3.1 BCS Superconductors;258
12.4.3.2;9.4.3.2 High-Temperature Superconductors;259
12.5;9.5 Local Electronic Modulations seen by STM;261
12.5.1;9.5.1 Local Modulations of the Superconducting Gap;262
12.5.2;9.5.2 Local Modulations of the DOS;264
12.5.2.1;9.5.2.1 Modulations in the Superconducting and Pseudogapped Regimes;264
12.5.2.2;9.5.2.2 Modulations in the Vortex Cores;265
12.5.3;9.5.3 Summary;266
12.6;References;267
13;10 Scanning Tunnelling Spectroscopy of Vortices with Normal and Superconducting tips;271
13.1;10.1 Introduction;271
13.2;10.2 Experimental: Low Temperature STM with Superconducting tips;273
13.2.1;10.2.1 Low Temperature STM;273
13.2.2;10.2.2 Tips Preparation and Characterization;274
13.2.3;10.2.3 Spectroscopic Advantages of Superconducting tips;276
13.3;10.3 Vortices Studied by STS;279
13.3.1;10.3.1 The Vortex Lattice: General Propertiesand Visualization;279
13.3.2;10.3.2 NbSe2 Studied with Normal and Superconducting tips;280
13.3.3;10.3.3 NbSe2 vs. NbS2;283
13.3.4;10.3.4 The Vortex Lattice in thin Films: A 2D Vortex Lattice;285
13.4;10.4 Other Scenarios for the Interplay of Magnetism and Superconductivity;287
13.5;10.5 Summary and Prospects;291
13.6;References;292
14;11 Surface Superconductivity Controlled by Electric Field;295
14.1;11.1 Introduction;295
14.2;11.2 Limit of Large Thomas-Fermi Screening Length;296
14.3;11.3 de Gennes Approach to the Boundary Condition;298
14.4;11.4 Link to the Limit of Large Screening Length;301
14.5;11.5 Electric Field Effect on Surface Superconductivity;303
14.5.1;11.5.1 Nucleation of Surface Superconductivity;303
14.5.2;11.5.2 Solution in Dimensionless Notation;304
14.5.3;11.5.3 Surface Energy;307
14.6;11.6 Magneto-capacitance;308
14.6.1;11.6.1 Discontinuity in Magneto-capacitance;309
14.6.2;11.6.2 Estimates of Magnitude;309
14.7;11.7 Summary;310
14.8;References;311
15;12 Polarity-Dependent Vortex Pinning and Spontaneous Vortex-Antivortex Structures in Superconductor/Ferromagnet Hybrids;312
15.1;12.1 Introduction;312
15.2;12.2 Theoretical Description of F-S Hybrids;313
15.2.1;12.2.1 Ginzburg-Landau Theory;313
15.2.2;12.2.2 London Theory;317
15.3;12.3 Experimental Results;320
15.3.1;12.3.1 Scanning Hall Probe Imaging;320
15.3.2;12.3.2 Low Moment Dot Arrays with Perpendicular Magnetisation;321
15.3.3;12.3.3 High Moment Dot Arrays with Perpendicular Magnetisation;324
15.3.4;12.3.4 High Moment Arrays with In-Plane Magnetisation;328
15.3.4.1;12.3.4.1 Arrays of Rectangular Nanobars;328
15.3.4.2;12.3.4.2 Arrays of Nanoscale Ferromagnetic Rings;331
15.4;12.4 Conclusions;333
15.5;References;334
16;13 Superconductor/Ferromagnet Hybrids: Bilayersand Spin Switching;336
16.1;13.1 Introduction;336
16.2;13.2 Some History of the Field;337
16.3;13.3 Sample Preparation and Ferromagnet Characteristics;340
16.4;13.4 Interface Transparency;342
16.5;13.5 Domain Walls in S/F Bilayers;346
16.5.1;13.5.1 Domain Walls in Nb/Cu43Ni57;347
16.5.2;13.5.2 Domain Walls in Nb/Py;349
16.6;13.6 On the Superconducting Spin Switch;352
16.6.1;13.6.1 Spin Switch Effects with CuNi;353
16.6.2;13.6.2 Spin Switch Effects with Py;354
16.7;13.7 Concluding Remarks;356
16.8;References;358
17;14 Interplay Between Ferromagnetism and Superconductivity;361
17.1;14.1 Introduction;361
17.2;14.2 Artifical Synthesis: FS Hybrid Structures;363
17.2.1;14.2.1 Basic Physics;363
17.2.1.1;14.2.1.1 Proximity Effect and Andreev Reflection;364
17.2.1.2;14.2.1.2 Non-monotonous Decay of Superconductivity;364
17.2.1.3;14.2.1.3 Spin-dependent Interfacial Phase-shifts;365
17.2.1.4;14.2.1.4 Odd-frequency Pairing;366
17.2.2;14.2.2 Quasiclassical Theory;367
17.2.2.1;14.2.2.1 Green's Functions and Equations of Motion;367
17.2.2.2;14.2.2.2 Boundary Conditions;370
17.2.3;14.2.3 FS Bilayers;373
17.2.4;14.2.4 SFS Josephson Junctions;377
17.2.4.1;14.2.4.1 0- Oscillations of Critical Current;377
17.2.4.2;14.2.4.2 Inhomogeneous Magnetization Textures;379
17.2.4.3;14.2.4.3 Spin-Josephson Current;381
17.2.5;14.2.5 FSF Spin-valves;381
17.2.5.1;14.2.5.1 Controlling Tc by a Spin-switch;381
17.2.5.2;14.2.5.2 Crossed Andreev Reflection and Entanglement;383
17.2.6;14.2.6 Future Prospects;385
17.3;14.3 Intrinsic Coexistence: Ferromagnetic Superconductors;386
17.3.1;14.3.1 Experimental Results;386
17.3.2;14.3.2 Phenomenological Framework;388
17.3.3;14.3.3 Probing the Pairing Symmetry;395
17.3.4;14.3.4 Future Prospects;396
17.4;References;397
18;Index;401
mehr