Hugendubel.info - Die B2B Online-Buchhandlung 

Merkliste
Die Merkliste ist leer.
Bitte warten - die Druckansicht der Seite wird vorbereitet.
Der Druckdialog öffnet sich, sobald die Seite vollständig geladen wurde.
Sollte die Druckvorschau unvollständig sein, bitte schliessen und "Erneut drucken" wählen.

Science of Synthesis: Houben-Weyl Methods of Molecular Transformations Vol. 25

Aldehydes
Georg Thieme Verlag KGerschienen am01.07.2014

Science of Synthesis: Houben-Weyl Methods of Molecular Transformations is the entirely new edition of the acclaimed reference series Houben-Weyl, the standard synthetic chemistry resource since 1909. This new edition is published in English and will comprise 48 volumes published between the years 2000 and 2008.

Science of Synthesis is a quality reference work developed by a highly esteemed editorial board to provide a comprehensive and critical selection of reliable organic and organometallic synthetic methods. This unique resource is designed to be the first point of reference when searching for a synthesis strategy.
Contains the expertise of presently 400 leading chemists worldwide Critically evaluates the preparative applicability and significance of the synthetic methods Discusses relevant background information and provides detailed experimental procedures
For full information on the Science of Synthesis series, visit the Science of Synthesis Homepage


Houben-Weyl
mehr
Verfügbare Formate
EUR2.199,99

Produkt

Klappentext
Science of Synthesis: Houben-Weyl Methods of Molecular Transformations is the entirely new edition of the acclaimed reference series Houben-Weyl, the standard synthetic chemistry resource since 1909. This new edition is published in English and will comprise 48 volumes published between the years 2000 and 2008.

Science of Synthesis is a quality reference work developed by a highly esteemed editorial board to provide a comprehensive and critical selection of reliable organic and organometallic synthetic methods. This unique resource is designed to be the first point of reference when searching for a synthesis strategy.
Contains the expertise of presently 400 leading chemists worldwide Critically evaluates the preparative applicability and significance of the synthetic methods Discusses relevant background information and provides detailed experimental procedures
For full information on the Science of Synthesis series, visit the Science of Synthesis Homepage


Houben-Weyl
Details
Weitere ISBN/GTIN9783131719911
ProduktartE-Book
EinbandartE-Book
FormatPDF
Erscheinungsjahr2014
Erscheinungsdatum01.07.2014
Seiten902 Seiten
SpracheEnglisch
Dateigrösse12103
Artikel-Nr.1551496
Rubriken
Genre9200

Inhalt/Kritik

Inhaltsverzeichnis
1;Science of Synthesis - Volume 25: Aldehydes;1
1.1;Title page;3
1.2;Imprint;5
1.3;Preface;6
1.4;Volume Editor's Preface;8
1.5;Overview;10
1.6;Table of Contents;14
1.7;Introduction;34
1.8;25.1 Product Class 1: Aliphatic and Alicyclic Aldehydes;50
1.8.1;25.1.1 Synthesis by Oxidative Cleavage;50
1.8.1.1;25.1.1.1 Method 1: Oxidative Cleavage of Alkenes;50
1.8.1.1.1;25.1.1.1.1 Variation 1: By Ozonolysis;50
1.8.1.1.2;25.1.1.1.2 Variation 2: By Dihydroxylation/Glycol Cleavage;52
1.8.1.2;25.1.1.2 Method 2: Oxidative Cleavage of Glycols and Related Compounds;53
1.8.1.2.1;25.1.1.2.1 Variation 1: Using Lead(IV) Acetate;53
1.8.1.2.2;25.1.1.2.2 Variation 2: Using Sodium Periodate;54
1.8.2;25.1.2 Synthesis by Oxidation;58
1.8.2.1;25.1.2.1 Method 1: Oxidation of Halides and 4-Toluenesulfonates;58
1.8.2.1.1;25.1.2.1.1 Variation 1: Oxidation with Dimethyl Sulfoxide and Related Species;58
1.8.2.1.2;25.1.2.1.2 Variation 2: Oxidation with N-Oxides;59
1.8.2.2;25.1.2.2 Method 2: Oxidation of Primary Alcohols;60
1.8.2.2.1;25.1.2.2.1 Variation 1: Oxidation with Metal Salts in High Oxidation States;61
1.8.2.2.2;25.1.2.2.2 Variation 2: Oxidation with Activated Dimethyl Sulfoxide and Related Species;66
1.8.2.2.3;25.1.2.2.3 Variation 3: Oxidation with Hypervalent Iodine Reagents;71
1.8.2.2.4;25.1.2.2.4 Variation 4: Oxidation of Alcohols with a Nitroxide and a Co-oxidant;74
1.8.2.2.5;25.1.2.2.5 Variation 5: Oxidation with Oxygen and a Catalyst;76
1.8.2.3;25.1.2.3 Method 3: Oxidation of Primary Silyl Ethers;77
1.8.2.4;25.1.2.4 Method 4: Oxidation of Sulfur Compounds;79
1.8.2.5;25.1.2.5 Method 5: Oxidation of Amines;81
1.8.2.6;25.1.2.6 Method 6: Oxidation at the Terminal Carbon Atom of an Alk-1-ene;82
1.8.2.6.1;25.1.2.6.1 Variation 1: Oxidation of Terminal Alkenes with Oxygen under Palladium Catalysis;83
1.8.2.6.2;25.1.2.6.2 Variation 2: Hydroboration of Alk-1-enes and Subsequent Oxidation of the Boranes;83
1.8.3;25.1.3 Synthesis by Isomerization;90
1.8.3.1;25.1.3.1 Method 1: Transition-Metal-Catalyzed Isomerization of Allylic Alcohols;90
1.8.3.1.1;25.1.3.1.1 Variation 1: Enantioselective Transition-Metal-Catalyzed Isomerization of Allylic Alcohols;92
1.8.3.2;25.1.3.2 Method 2: Transition-Metal-Catalyzed Isomerization of Allylic Amines and Subsequent Hydrolysis;92
1.8.3.2.1;25.1.3.2.1 Variation 1: Enantioselective Transition-Metal-Catalyzed Isomerization of Allylic Amines and Subsequent Hydrolysis;94
1.8.4;25.1.4 Synthesis by Reduction or by Reduction Followed by Hydrolysis;98
1.8.4.1;25.1.4.1 Reduction of Carboxylic Acid Chlorides;99
1.8.4.1.1;25.1.4.1.1 Method 1: Rosenmund Reduction;100
1.8.4.1.2;25.1.4.1.2 Method 2: Reduction Using Complex Aluminum Hydrides;100
1.8.4.1.3;25.1.4.1.3 Method 3: Reduction Using Complex Borohydrides;102
1.8.4.1.4;25.1.4.1.4 Method 4: Reduction Using Triethylsilane;103
1.8.4.1.5;25.1.4.1.5 Method 5: Reduction Using Tributyltin Hydride;103
1.8.4.2;25.1.4.2 Reduction of Carboxylic Acids;104
1.8.4.2.1;25.1.4.2.1 Method 1: Reduction Using Complex Aluminum Hydrides;104
1.8.4.2.1.1;25.1.4.2.1.1 Variation 1: Using Lithium Aluminum Hydride;104
1.8.4.2.1.2;25.1.4.2.1.2 Variation 2: Using Lithium Bis(N-methylpiperazinyl)aluminum Hydride;105
1.8.4.2.1.3;25.1.4.2.1.3 Variation 3: Using Lithium Tri-tert-butoxyaluminum Hydride;106
1.8.4.2.2;25.1.4.2.2 Method 2: Reduction Using Boranes;108
1.8.4.2.3;25.1.4.2.3 Method 3: Reduction Using Formic Acid or Formates;109
1.8.4.2.4;25.1.4.2.4 Method 4: Reduction Using Alkali Metals;109
1.8.4.2.5;25.1.4.2.5 Method 5: Reduction Using Two-Step, One-Pot Procedures;109
1.8.4.2.5.1;25.1.4.2.5.1 Variation 1: Reduction of Carboxylic Acids through Silyl Esters;109
1.8.4.2.5.2;25.1.4.2.5.2 Variation 2: Reduction of Carboxylic Acids through an Imidazolide;110
1.8.4.2.5.3;25.1.4.2.5.3 Variation 3: Reduction of Carboxylic Acids through a Triazinyl Ester;111
1.8.4.2.5.4;25.1.4.2.5.4 Variation 4: One-Pot Reduction--Oxidation of Carboxylic Acids;112
1.8.4.3;25.1.4.3 Reduction of Esters;112
1.8.4.3.1;25.1.4.3.1 Method 1: Reduction Using Diisobutylaluminum Hydride;113
1.8.4.3.2;25.1.4.3.2 Method 2: Reduction Using Sodium Bis(2-methoxyethoxy)aluminum Hydride;117
1.8.4.3.3;25.1.4.3.3 Method 3: Reduction Using Other Complex Aluminum Hydrides;118
1.8.4.3.3.1;25.1.4.3.3.1 Variation 1: Using Lithium Aluminum Hydride;118
1.8.4.3.3.2;25.1.4.3.3.2 Variation 2: Using Lithium Tri-tert-butoxyaluminum Hydride;119
1.8.4.3.3.3;25.1.4.3.3.3 Variation 3: Using Lithium Bis(diethylamino)aluminum Hydride;119
1.8.4.3.4;25.1.4.3.4 Method 4: Reduction Using Alkali Metal Amalgam;120
1.8.4.4;25.1.4.4 Reduction of Thioesters;120
1.8.4.4.1;25.1.4.4.1 Method 1: Reduction Using Raney Nickel;121
1.8.4.4.2;25.1.4.4.2 Method 2: Reduction Using Triethylsilane;121
1.8.4.4.3;25.1.4.4.3 Method 3: Reduction Using Diisobutylaluminum Hydride;123
1.8.4.5;25.1.4.5 Reduction of Amides;123
1.8.4.5.1;25.1.4.5.1 Method 1: Reduction Using Lithium Aluminum Hydride;125
1.8.4.5.1.1;25.1.4.5.1.1 Variation 1: Reduction of Weinreb Amides;125
1.8.4.5.1.2;25.1.4.5.1.2 Variation 2: Reduction of Other Amides;127
1.8.4.5.2;25.1.4.5.2 Method 2: Reduction Using Diisobutylaluminum Hydride;128
1.8.4.5.2.1;25.1.4.5.2.1 Variation 1: Reduction of Weinreb Amides;128
1.8.4.5.2.2;25.1.4.5.2.2 Variation 2: Reduction of Other Amides;129
1.8.4.5.3;25.1.4.5.3 Method 3: Reduction Using Other Complex Aluminum Hydrides;130
1.8.4.5.3.1;25.1.4.5.3.1 Variation 1: Using Sodium Bis(2-methoxyethoxy)aluminum Hydride;130
1.8.4.5.3.2;25.1.4.5.3.2 Variation 2: Using Lithium Alkoxyaluminum Hydrides;131
1.8.4.5.3.3;25.1.4.5.3.3 Variation 3: Using Lithium Tris(dialkylamino)aluminum Hydrides;132
1.8.4.5.4;25.1.4.5.4 Method 4: Reduction Using Boranes or Complex Borohydrides;132
1.8.4.5.5;25.1.4.5.5 Method 5: Reduction Using Chlorobis(.
5-cyclopentadienyl)hydridozirconium(IV);133
1.8.4.6;25.1.4.6 Reduction of Lactones and Lactams;134
1.8.4.6.1;25.1.4.6.1 Method 1: Reduction Using Complex Aluminum Hydrides;134
1.8.4.6.1.1;25.1.4.6.1.1 Variation 1: Using Lithium Aluminum Hydride;134
1.8.4.6.1.2;25.1.4.6.1.2 Variation 2: Using Sodium Bis(2-methoxyethoxy)aluminum Hydride;134
1.8.4.6.1.3;25.1.4.6.1.3 Variation 3: Using Lithium Tri-tert-butoxyaluminum Hydride;135
1.8.4.6.1.4;25.1.4.6.1.4 Variation 4: Using Diisobutylaluminum Hydride;135
1.8.4.6.2;25.1.4.6.2 Method 2: Reduction Using Boranes;138
1.8.4.6.3;25.1.4.6.3 Method 3: Reduction Using Alkali Metal Amalgam;139
1.8.4.6.4;25.1.4.6.4 Method 4: Reduction of Lactams;139
1.8.4.7;25.1.4.7 Reduction of Heterocyclic Derivatives of Carboxylic Acids;140
1.8.4.7.1;25.1.4.7.1 Method 1: Reduction of 5,6-Dihydro-4H-1,3-oxazines and 4,5-Dihydrooxazoles Using Sodium Borohydride;140
1.8.4.8;25.1.4.8 Reduction of Nitriles Followed by Hydrolysis;143
1.8.4.8.1;25.1.4.8.1 Method 1: Reduction Using Diisobutylaluminum Hydride;144
1.8.4.8.2;25.1.4.8.2 Method 2: Reduction Using Complex Aluminum Hydrides;151
1.8.4.8.2.1;25.1.4.8.2.1 Variation 1: Using Lithium Aluminum Hydride;151
1.8.4.8.2.2;25.1.4.8.2.2 Variation 2: Using Lithium Triethoxyaluminum Hydride;151
1.8.4.8.2.3;25.1.4.8.2.3 Variation 3: Using Sodium Tris(dialkylamino)aluminum Hydrides;152
1.8.4.8.3;25.1.4.8.3 Method 3: Reduction Using Raney Nickel;152
1.8.4.8.4;25.1.4.8.4 Method 4: Reduction Using Tin(II) Chloride;153
1.8.4.9;25.1.4.9 Reduction of Enals;154
1.8.4.9.1;25.1.4.9.1 Method 1: Hydrogenation;154
1.8.4.9.2;25.1.4.9.2 Method 2: Hydrostannylation;155
1.8.4.9.3;25.1.4.9.3 Method 3: Hydrosilylation;156
1.8.4.9.4;25.1.4.9.4 Method 4: Reduction Using Copper Reagents;157
1.8.4.9.5;25.1.4.9.5 Method 5: Reduction Using Inorganic Salts;158
1.8.5;25.1.5 Synthesis by Elimination or Rearrangement;170
1.8.5.1;25.1.5.1 Method 1: Synthesis from Halohydrins;170
1.8.5.2;25.1.5.2 Method 2: Synthesis from Glycols;172
1.8.5.3;25.1.5.3 Method 3: Semipinacol Rearrangement;173
1.8.5.4;25.1.5.4 Method 4: Synthesis from Epoxides;175
1.8.6;25.1.6 Synthesis by Protonation;180
1.8.6.1;25.1.6.1 Method 1: Protonation of Enol Ethers;180
1.8.6.2;25.1.6.2 Method 2: Asymmetric Protonation;181
1.8.7;25.1.7 Synthesis by Hydrolysis;184
1.8.7.1;25.1.7.1 Hydrolysis of Imines and Derivatives;184
1.8.7.1.1;25.1.7.1.1 Method 1: Hydrolysis of Imines;184
1.8.7.1.2;25.1.7.1.2 Method 2: Hydrolysis of Oximes and Derivatives;186
1.8.7.1.3;25.1.7.1.3 Method 3: Hydrolysis of Sulfonated Imines;187
1.8.7.1.4;25.1.7.1.4 Method 4: Hydrolysis of N-Alkylimines;188
1.8.7.1.5;25.1.7.1.5 Method 5: Hydrolysis of Hydrazones;189
1.8.7.1.5.1;25.1.7.1.5.1 Variation 1: Hydrolysis of N-Arylhydrazones;189
1.8.7.1.5.2;25.1.7.1.5.2 Variation 2: Hydrolysis of N-Alkylhydrazones;191
1.8.7.1.6;25.1.7.1.6 Method 6: Hydrolysis of Hydrazides and Derivatives;192
1.8.7.1.7;25.1.7.1.7 Method 7: Hydrolysis of Semicarbazones and Related Compounds;192
1.8.7.2;25.1.7.2 Hydrolysis of Acetals and Their Derivatives;193
1.8.7.2.1;25.1.7.2.1 Method 1: Hydrolysis of O,O-Acetals and Hemiacetals;193
1.8.7.2.1.1;25.1.7.2.1.1 Variation 1: Hydrolysis of Acyclic Hemiacetals;193
1.8.7.2.1.2;25.1.7.2.1.2 Variation 2: Hydrolysis of Carbohydrates and Higher Cyclic Hemiacetals;194
1.8.7.2.1.3;25.1.7.2.1.3 Variation 3: Hydrolysis of Acyclic Dialkyl Acetals;197
1.8.7.2.1.4;25.1.7.2.1.4 Variation 4: Hydrolysis of gem-Diacetates;198
1.8.7.2.1.5;25.1.7.2.1.5 Variation 5: Hydrolysis of Alkoxytetrahydrofurans and -pyrans;199
1.8.7.2.1.6;25.1.7.2.1.6 Variation 6: Hydrolysis of Cyclic Acetals;200
1.8.7.2.2;25.1.7.2.2 Method 2: Hydrolysis of O,S-Acetals;202
1.8.7.2.2.1;25.1.7.2.2.1 Variation 1: Hydrolysis of a-Hydroxy Sulfonic Acids;202
1.8.7.2.2.2;25.1.7.2.2.2 Variation 2: Hydrolysis of Hemithioacetals;202
1.8.7.2.2.3;25.1.7.2.2.3 Variation 3: Hydrolysis of Acyclic O,S-Acetals;203
1.8.7.2.2.4;25.1.7.2.2.4 Variation 4: Hydrolysis of Alkyl Thiolactols or Alkoxythiopyrans and Related Compounds;205
1.8.7.2.3;25.1.7.2.3 Method 3: Hydrolysis of O,N-Acetals;207
1.8.7.2.3.1;25.1.7.2.3.1 Variation 1: Hydrolysis of Acyclic O,N-Hemiacetals;207
1.8.7.2.3.2;25.1.7.2.3.2 Variation 2: Hydrolysis of Cyclic O,N-Hemiacetals;208
1.8.7.2.3.3;25.1.7.2.3.3 Variation 3: Hydrolysis of Acyclic O,N-Acetals;209
1.8.7.2.3.4;25.1.7.2.3.4 Variation 4: Hydrolysis of Cyclic O,N-Acetals;209
1.8.7.2.4;25.1.7.2.4 Method 4: Hydrolysis of S,S-Acetals;210
1.8.7.2.4.1;25.1.7.2.4.1 Variation 1: Hydrolysis of Acyclic S,S-Acetals;210
1.8.7.2.4.2;25.1.7.2.4.2 Variation 2: Hydrolysis of Cyclic S,S-Acetals;213
1.8.7.2.5;25.1.7.2.5 Method 5: Hydrolysis of S,N-Acetals;216
1.8.7.2.6;25.1.7.2.6 Method 6: Hydrolysis of N,N-Acetals;217
1.8.7.3;25.1.7.3 Hydrolysis of Enol Ethers and Their Heteroatom Analogues;218
1.8.7.3.1;25.1.7.3.1 Method 1: Hydrolysis of Enol Ethers and Their O-Derivatives;218
1.8.7.3.1.1;25.1.7.3.1.1 Variation 1: Hydrolysis of O-Alkyl and O-Silyl Enol Ethers;218
1.8.7.3.1.2;25.1.7.3.1.2 Variation 2: Hydrolysis of Vinyl Carboxylates;220
1.8.7.3.2;25.1.7.3.2 Method 2: Hydrolysis of Enamines and Derivatives;221
1.8.7.3.2.1;25.1.7.3.2.1 Variation 1: Hydrolysis of N,N-Dialkylenamines;221
1.8.7.3.2.2;25.1.7.3.2.2 Variation 2: Hydrolysis of Enamides;222
1.8.7.3.3;25.1.7.3.3 Method 3: Hydrolysis of Vinyl Halides;223
1.8.8;25.1.8 Synthesis by Hydration of Alkynes;232
1.8.8.1;25.1.8.1 Synthesis by Direct Hydration;233
1.8.8.1.1;25.1.8.1.1 Method 1: Ruthenium(II)-Catalyzed Hydration;234
1.8.8.1.1.1;25.1.8.1.1.1 Variation 1: Simple Ruthenium(II) Catalysis;234
1.8.8.1.1.2;25.1.8.1.1.2 Variation 2: Ruthenium(II) Catalysis Assisted by Hydrogen Bonding;235
1.8.8.1.1.3;25.1.8.1.1.3 Variation 3: Ruthenium(II) Catalysis Using a Bifunctional Catalyst;237
1.8.8.1.1.4;25.1.8.1.1.4 Variation 4: Ruthenium(II) Catalysis Using a Self-Assembled Catalyst;238
1.8.8.2;25.1.8.2 Synthesis by Indirect Hydration;239
1.8.8.2.1;25.1.8.2.1 Method 1: Hydroboration Followed by Oxidation;239
1.8.8.2.1.1;25.1.8.2.1.1 Variation 1: Hydroboration with Sterically Hindered Boranes;239
1.8.8.2.1.2;25.1.8.2.1.2 Variation 2: Hydroboration with Catecholborane;240
1.8.8.2.1.3;25.1.8.2.1.3 Variation 3: Hydroboration with Haloboranes;240
1.8.8.2.2;25.1.8.2.2 Method 2: Hydrosilylation Followed by Oxidation;241
1.8.8.2.3;25.1.8.2.3 Method 3: Hydroamination Followed by Hydrolysis;242
1.8.9;25.1.9 Synthesis by Formylation of Enolates;246
1.8.9.1;25.1.9.1 Method 1: Crossed Claisen Condensations with Formates;246
1.8.9.1.1;25.1.9.1.1 Variation 1: Using Ketones or Esters and an Alkali Metal Alkoxide as the Base;246
1.8.9.1.2;25.1.9.1.2 Variation 2: Using Ketones or Esters and Sodium Metal as the Base;250
1.8.9.1.3;25.1.9.1.3 Variation 3: Using Ketones or Esters and Sodium Hydride as the Base;252
1.8.9.1.4;25.1.9.1.4 Variation 4: Using Preformed Lithium Enolates of Ketones or Esters;255
1.8.9.2;25.1.9.2 Method 2: Vilsmeier Formylation of Carbonyl Compounds, Enols, or Enol Ethers;256
1.8.9.3;25.1.9.3 Method 3: Condensation of Ketones, Esters, or Active Methylene Compounds with Dimethylformamide Acetals;260
1.8.9.4;25.1.9.4 Method 4: Condensation of Enol Ethers with Orthoformates;262
1.8.9.5;25.1.9.5 Method 5: Condensation of Esters with Formyl Acetate;262
1.8.9.6;25.1.9.6 Method 6: Synthesis from Enols by the Reimer--Tiemann Reaction;263
1.8.9.7;25.1.9.7 Method 7: Synthesis from Enol Ethers and Related Compounds by Mukaiyama Condensation;263
1.8.9.8;25.1.9.8 Method 8: Formylation of Pyranones with Dichloromethyl Methyl Ether;264
1.8.9.9;25.1.9.9 Method 9: Synthesis from Reformatsky Enolates;265
1.8.9.10;25.1.9.10 Methods 10: Additional Syntheses;265
1.8.10;25.1.10 Synthesis by Homologation of Aldehydes;270
1.8.10.1;25.1.10.1 Method 1: Homologation via the Darzens Reaction;270
1.8.10.2;25.1.10.2 Method 2: Homologation via the Nef Reaction;272
1.8.10.3;25.1.10.3 Method 3: Homologation via the Formation of a Nitrile Intermediate;275
1.8.10.4;25.1.10.4 Method 4: Homologation with Dihalomethane;279
1.8.10.5;25.1.10.5 Method 5: Homologation with Diazomethane;281
1.8.10.6;25.1.10.6 Method 6: Homologation with Phosphorus Reagents;282
1.8.10.6.1;25.1.10.6.1 Variation 1: Via 1-Heteroatom-Substituted Alkene Intermediates;282
1.8.10.6.2;25.1.10.6.2 Variation 2: Via Terminal Acetylene Intermediates;290
1.8.10.7;25.1.10.7 Method 7: Homologation with Boron Reagents;293
1.8.10.8;25.1.10.8 Method 8: Homologation with Silicon Reagents;295
1.8.10.8.1;25.1.10.8.1 Variation 1: Via 1-Heteroatom-Substituted Alkene Intermediates;295
1.8.10.8.2;25.1.10.8.2 Variation 2: Via a,ß-Epoxide Intermediates;300
1.8.10.9;25.1.10.9 Method 9: Homologation with Sulfur Reagents;301
1.8.10.9.1;25.1.10.9.1 Variation 1: Via 1-Heteroatom-Substituted Alkene Intermediates;301
1.8.10.9.2;25.1.10.9.2 Variation 2: Via Epoxide Intermediates;302
1.8.11;25.1.11 Synthesis by Hydroformylation of Alkenes;310
1.8.11.1;25.1.11.1 Method 1: Regioselective Hydroformylation: Substrate Control;316
1.8.11.2;25.1.11.2 Method 2: Regioselective Hydroformylation: Catalyst Control;323
1.8.11.3;25.1.11.3 Method 3: Isomerizing Hydroformylation;326
1.8.11.4;25.1.11.4 Method 4: Diastereoselective Hydroformylation: Passive Substrate Control;327
1.8.11.4.1;25.1.11.4.1 Variation 1: Cyclic Alkenes;328
1.8.11.4.2;25.1.11.4.2 Variation 2: Acyclic and Exocyclic Alkenes;329
1.8.11.5;25.1.11.5 Method 5: Diastereoselective Hydroformylation: Active Substrate Control;330
1.8.11.6;25.1.11.6 Method 6: Diastereoselective Hydroformylation: Catalyst Control;337
1.8.11.7;25.1.11.7 Method 7: Enantioselective Hydroformylation;339
1.8.11.7.1;25.1.11.7.1 Variation 1: Vinylarenes;340
1.8.11.7.2;25.1.11.7.2 Variation 2: Aliphatic Alkenes and Dienes;344
1.8.11.7.3;25.1.11.7.3 Variation 3: Functionalized Alkenes;346
1.8.12;25.1.12 Synthesis by C1-Extension of Alkyl Halides;352
1.8.12.1;25.1.12.1 Method 1: Synthesis from Formyl Anion Equivalents;352
1.8.12.1.1;25.1.12.1.1 Variation 1: Synthesis Using 1,3-Dithiane or Bis(phenylsulfanyl)methane;354
1.8.12.1.2;25.1.12.1.2 Variation 2: Synthesis Using 1,3,5-Trithiane;354
1.8.12.1.3;25.1.12.1.3 Variation 3: Synthesis Using 5-Methyl-1,3,5-dithiazinane;355
1.8.12.1.4;25.1.12.1.4 Variation 4: Synthesis Using Sulfur(VI) Reagents;356
1.8.12.1.5;25.1.12.1.5 Variation 5: Synthesis Using (Diethylamino)acetonitrile;357
1.8.12.1.6;25.1.12.1.6 Variation 6: Synthesis Using Silicon, Selenium, and Tellurium Reagents;358
1.8.12.2;25.1.12.2 Method 2: Reductive Carbonylation;359
1.8.12.2.1;25.1.12.2.1 Variation 1: Using Hydrogen and a Platinum Catalyst;359
1.8.12.2.2;25.1.12.2.2 Variation 2: Using Tributyltin Hydride and a Palladium Catalyst;360
1.8.12.2.3;25.1.12.2.3 Variation 3: Using Stoichiometric Amounts of Tetracarbonylhydridoferrate Salts;361
1.8.12.2.4;25.1.12.2.4 Variation 4: Using Stoichiometric Amounts of Carbonylferrate Salts and an Acidic Workup;362
1.8.12.2.5;25.1.12.2.5 Variation 5: Using Stannanes by a Free-Radical Pathway;363
1.8.12.3;25.1.12.3 Method 3: Reduction with Lithium Metal in the Presence of N,N-Disubstituted Formamides;364
1.8.12.4;25.1.12.4 Method 4: Synthesis Using Triphenylphosphine and Alkyl Formates;365
1.8.13;25.1.13 Synthesis by C1-Extension of Organometallics;370
1.8.13.1;25.1.13.1 Method 1: Reaction with Formamides;371
1.8.13.1.1;25.1.13.1.1 Variation 1: Reaction with Dimethylformamide;371
1.8.13.1.2;25.1.13.1.2 Variation 2: Reaction with Piperidine-1-carbaldehyde;375
1.8.13.1.3;25.1.13.1.3 Variation 3: Reaction with N-Methyl-N-phenylformamide;377
1.8.13.1.4;25.1.13.1.4 Variation 4: Reaction with N-Methyl-N-(2-pyridyl)formamide;378
1.8.13.2;25.1.13.2 Method 2: Reaction with Ortho Esters;378
1.8.13.2.1;25.1.13.2.1 Variation 1: Reaction with Triethyl Orthoformate;379
1.8.13.2.2;25.1.13.2.2 Variation 2: Reaction with Diethyl Phenyl Orthoformate;380
1.8.13.3;25.1.13.3 Method 3: Reaction of Organoboranes with Carbon Monoxide and Hydride Reagents, Followed by Oxidative Workup;382
1.8.13.4;25.1.13.4 Method 4: Reaction of Organomagnesium Compounds with Carbon Monoxide from Pentacarbonyliron(0);382
1.8.13.5;25.1.13.5 Method 5: Reaction of Organometallic Compounds with Isocyanides;383
1.8.14;25.1.14 Synthesis by C2-Elongation;388
1.8.14.1;25.1.14.1 Method 1: Alkylation of Enolates;388
1.8.14.2;25.1.14.2 Method 2: Alkylation and Michael Addition of Silyl Enol Ethers;390
1.8.14.3;25.1.14.3 Method 3: Alkylation and Michael Addition of Enamines;391
1.8.14.4;25.1.14.4 Method 4: Alkylation and Michael Addition of Azaenolates;393
1.8.14.4.1;25.1.14.4.1 Variation 1: Alkylation and Michael Addition of Imine Enolates;393
1.8.14.4.2;25.1.14.4.2 Variation 2: Alkylation of Oxime Enolates;394
1.8.14.4.3;25.1.14.4.3 Variation 3: Alkylation and Michael Addition of Achiral Hydrazone Enolates;395
1.8.14.4.4;25.1.14.4.4 Variation 4: Alkylation and Michael Addition of Enantiomerically Pure Hydrazone Enolates;396
1.8.14.5;25.1.14.5 Method 5: Arylation of Heterosubstituted Ethenes;399
1.8.15;25.1.15 Synthesis by C3-Elongation;402
1.8.15.1;25.1.15.1 Method 1: 1,4-Addition to a,ß-Unsaturated Aldehydes;402
1.8.15.1.1;25.1.15.1.1 Variation 1: Base-Induced Michael Addition;402
1.8.15.1.2;25.1.15.1.2 Variation 2: Organocatalytic Michael Addition;405
1.8.15.1.3;25.1.15.1.3 Variation 3: Michael Additions Catalyzed by Metal Complexes;407
1.8.15.2;25.1.15.2 Method 2: Conjugate Addition Reactions of Organometallic Compounds;407
1.8.15.2.1;25.1.15.2.1 Variation 1: Addition of Organocopper Reagents;407
1.8.15.2.2;25.1.15.2.2 Variation 2: Addition of Organozinc Reagents;412
1.8.15.2.3;25.1.15.2.3 Variation 3: Addition Reactions of Other Organometallic Reagents;414
1.8.15.2.4;25.1.15.2.4 Variation 4: Transition-Metal-Catalyzed Additions;416
1.8.15.3;25.1.15.3 Method 3: Addition to a,ß-Unsaturated Aldehydes via Radicals;417
1.8.15.3.1;25.1.15.3.1 Variation 1: Addition of Organoboranes;417
1.8.15.3.2;25.1.15.3.2 Variation 2: The Meerwein Arylation;420
1.8.15.4;25.1.15.4 Method 4: Reactions of Homoenolates;421
1.8.15.4.1;25.1.15.4.1 Variation 1: Protected Aldehydes;421
1.8.15.4.2;25.1.15.4.2 Variation 2: Heteroatom-Substituted Allyl Anions;422
1.8.15.4.3;25.1.15.4.3 Variation 3: The Carbamate Approach;425
1.8.15.5;25.1.15.5 Method 5: Aldehydes through [3,3]-Rearrangements;428
1.8.15.5.1;25.1.15.5.1 Variation 1: The Claisen Rearrangement;428
1.8.15.5.2;25.1.15.5.2 Variation 2: Aza-Claisen Rearrangement;431
1.8.15.5.3;25.1.15.5.3 Variation 3: Oxy-Cope Rearrangement;431
1.8.16;25.1.16 Synthesis by Diels--Alder Reactions with Enals or Their Acetals;438
1.8.16.1;25.1.16.1 Method 1: Thermal Diels--Alder Reactions;438
1.8.16.2;25.1.16.2 Method 2: Lewis Acid Catalyzed Diels--Alder Reactions;439
1.8.16.3;25.1.16.3 Method 3: Brønsted Acid Catalyzed Diels--Alder Reactions (Cationic Diels--Alder Reactions);441
1.8.16.4;25.1.16.4 Method 4: Stepwise Diels--Alder Reactions of p
-Complexed 1,3-Dienes;442
1.8.16.5;25.1.16.5 Method 5: Enantioselective Diels--Alder Reactions Catalyzed by Chiral Lewis Acids;443
1.8.16.6;25.1.16.6 Method 6: Enantioselective Organocatalytic Diels--Alder Reactions;447
1.8.16.7;25.1.16.7 Method 7: Heterogeneously Catalyzed and Polymer-Supported Diels--Alder Reactions;450
1.8.16.8;25.1.16.8 Method 8: Diels--Alder Reactions Accelerated by High Pressure;452
1.8.16.9;25.1.16.9 Method 9: Diels--Alder Reactions in Aqueous Media;452
1.9;25.2 Product Class 2: 2-Oxoaldehydes and Heteroatom Analogues;456
1.9.1;25.2.1 Product Subclass 1: 2-Oxoaldehydes;456
1.9.1.1;25.2.1.1 Synthesis of Product Subclass 1;457
1.9.1.1.1;25.2.1.1.1 Method 1: Oxidation of Activated C--H Bonds by Selenium Dioxide;457
1.9.1.1.2;25.2.1.1.2 Method 2: Oxidation via Bromomethyl Ketones;459
1.9.1.1.3;25.2.1.1.3 Method 3: Oxidation of a-Diazo Ketones;460
1.9.1.1.4;25.2.1.1.4 Method 4: Oxidation of Hydroxymethyl Ketones;461
1.9.1.1.5;25.2.1.1.5 Method 5: Hydrolysis of Glyoxal Dialkyl Acetals and Related Compounds;462
1.9.1.1.6;25.2.1.1.6 Method 6: Reduction of Glyoxylic Acid Chlorides;463
1.9.1.1.7;25.2.1.1.7 Method 7: Cleavage of C==C Bonds;463
1.9.1.1.8;25.2.1.1.8 Method 8: C--C Bond Formation;464
1.9.2;25.2.2 Product Subclass 2: 2-Imino-, 2-(Hydroxyimino)-, 2-Hydrazono-, and 2-Diazoaldehydes;464
1.9.2.1;25.2.2.1 Synthesis of Product Subclass 2;464
1.9.2.1.1;25.2.2.1.1 Method 1: Formylation of Imine Derivatives;464
1.9.2.1.2;25.2.2.1.2 Method 2: Functionalization of Enamines with N-Electrophiles;465
1.9.2.1.3;25.2.2.1.3 Method 3: Addition of Azides to ß-Amino Acroleins;466
1.9.2.1.4;25.2.2.1.4 Method 4: Nitrosation of Enals and Alkynes;467
1.9.3;25.2.3 Product Subclass 3: 2-Thioxoaldehydes;467
1.9.3.1;25.2.3.1 Synthesis of Product Subclass 3;467
1.9.3.1.1;25.2.3.1.1 Method 1: Retro Pericyclic Reactions;467
1.9.4;25.2.4 Product Subclass 4: 2-Phosphoranylidenealdehydes;468
1.9.4.1;25.2.4.1 Synthesis of Product Subclass 4;468
1.9.4.1.1;25.2.4.1.1 Method 1: Formylation of Phosphoranes;468
1.9.4.1.2;25.2.4.1.2 Method 2: Electrophilic Substitution in Phosphoranylideneacetaldehyde;469
1.10;25.3 Product Class 3: 2,2-Diheteroatom-Substituted Aldehydes;474
1.10.1;25.3.1 Product Subclass 1: 2,2-Dihaloaldehydes;474
1.10.1.1;25.3.1.1 Synthesis of Product Subclass 1;474
1.10.1.1.1;25.3.1.1.1 Method 1: Synthesis by Halogenation;474
1.10.1.1.1.1;25.3.1.1.1.1 Variation 1: Bromination of an Acetal;474
1.10.1.1.1.2;25.3.1.1.1.2 Variation 2: Halogenation of Enamines;475
1.10.1.1.1.3;25.3.1.1.1.3 Variation 3: Chlorination of Tetrahydrofuran;475
1.10.1.1.1.4;25.3.1.1.1.4 Variation 4: Chlorination of Aldehydes;475
1.10.1.1.2;25.3.1.1.2 Method 2: Synthesis by Acylation;478
1.10.1.1.3;25.3.1.1.3 Method 3: Synthesis by Rearrangement;481
1.10.1.1.4;25.3.1.1.4 Method 4: Synthesis by Oxidation or Reduction;482
1.10.1.1.5;25.3.1.1.5 Method 5: Synthesis by Radical Addition;484
1.10.1.1.6;25.3.1.1.6 Methods 6: Miscellaneous Procedures;485
1.10.2;25.3.2 Product Subclass 2: 2,2-Dialkoxyaldehydes and Related Species;486
1.10.2.1;25.3.2.1 Synthesis of Product Subclass 2;486
1.10.2.1.1;25.3.2.1.1 Method 1: Synthesis by Oxidation or Reduction;486
1.10.2.1.2;25.3.2.1.2 Method 2: Synthesis by Formation of Acetals or Ketals;487
1.10.2.1.3;25.3.2.1.3 Method 3: Synthesis by Rearrangement;488
1.10.3;25.3.3 Product Subclass 3: 2,2-Disulfanylaldehydes and Related Species;488
1.10.3.1;25.3.3.1 Synthesis of Product Subclass 3;488
1.10.3.1.1;25.3.3.1.1 Method 1: Synthesis by Sulfanylation or Selanylation;488
1.10.3.1.2;25.3.3.1.2 Method 2: Synthesis by Formylation;489
1.10.3.1.3;25.3.3.1.3 Method 3: Synthesis by Substitution and Alkylation;490
1.10.3.1.4;25.3.3.1.4 Method 4: Synthesis by Oxidation or Reduction;491
1.11;25.4 Product Class 4: 2-Heteroatom-Substituted Aldehydes and Sugar Aldehydes;496
1.11.1;25.4.1 Product Subclass 1: 2-Haloaldehydes;496
1.11.1.1;25.4.1.1 Synthesis of Product Subclass 1;497
1.11.1.1.1;25.4.1.1.1 2-Fluoroaldehydes;497
1.11.1.1.1.1;25.4.1.1.1.1 Method 1: Fluorination of Aldehydes;497
1.11.1.1.2;25.4.1.1.2 2-Chloroaldehydes;499
1.11.1.1.2.1;25.4.1.1.2.1 Method 1: Chlorination of Aldehydes;499
1.11.1.1.2.1.1;25.4.1.1.2.1.1 Variation 1: Chlorination under Acidic Conditions;499
1.11.1.1.2.1.2;25.4.1.1.2.1.2 Variation 2: Amine-Catalyzed Chlorination;500
1.11.1.1.3;25.4.1.1.3 2-Bromoaldehydes;501
1.11.1.1.3.1;25.4.1.1.3.1 Method 1: Bromination of Aldehydes;501
1.11.1.1.3.1.1;25.4.1.1.3.1.1 Variation 1: Bromination under Neutral and Acidic Conditions;502
1.11.1.1.3.1.2;25.4.1.1.3.1.2 Variation 2: Amine-Catalyzed Bromination;504
1.11.1.1.4;25.4.1.1.4 2-Iodoaldehydes;505
1.11.1.1.4.1;25.4.1.1.4.1 Method 1: Iodination of Aldehydes;505
1.11.1.1.4.2;25.4.1.1.4.2 Method 2: Iodination of Preformed Enolates;506
1.11.2;25.4.2 Product Subclass 2: 2-Oxyaldehydes;507
1.11.2.1;25.4.2.1 Synthesis of Product Subclass 2;507
1.11.2.1.1;25.4.2.1.1 Method 1: Aminoxylation of Aldehydes;507
1.11.2.1.2;25.4.2.1.2 Method 2: Oxidation of Enol Ethers and Silyl Enol Ethers;510
1.11.2.1.3;25.4.2.1.3 Method 3: Oxidative C--C Bond Cleavage of Glycols;510
1.11.2.1.4;25.4.2.1.4 Method 4: Oxidation/Aminoxylation of Primary Alcohols;513
1.11.2.1.5;25.4.2.1.5 Method 5: Addition of Formyl Anion Equivalents to Aldehydes;514
1.11.2.1.5.1;25.4.2.1.5.1 Variation 1: Via 2-(Trimethylsilyl)thiazole;514
1.11.2.1.5.2;25.4.2.1.5.2 Variation 2: Using Carbon Monoxide and a Silane;518
1.11.2.1.5.3;25.4.2.1.5.3 Variation 3: Via Dialkylhydrazones;519
1.11.2.1.5.4;25.4.2.1.5.4 Variation 4: Via Acetals;522
1.11.3;25.4.3 Product Subclass 3: 2-Aminoaldehydes;525
1.11.3.1;25.4.3.1 Synthesis of Product Subclass 3;526
1.11.3.1.1;25.4.3.1.1 Method 1: a-Amination of Aldehydes;526
1.11.3.1.2;25.4.3.1.2 Method 2: Oxidative C--C Bond Cleavage of Glycols;528
1.11.3.1.3;25.4.3.1.3 Method 3: Addition of Formyl Anion Equivalents to Aldimines and Their Derivatives;529
1.11.3.1.3.1;25.4.3.1.3.1 Variation 1: Via Thiazoles;529
1.11.3.1.3.2;25.4.3.1.3.2 Variation 2: Via Thioacetals;534
1.12;25.5 Product Class 5: Ynals;540
1.12.1;25.5.1 Synthesis of Product Class 5;541
1.12.1.1;25.5.1.1 Method 1: Substitution Reactions with Alk-1-ynes;541
1.12.1.1.1;25.5.1.1.1 Variation 1: Direct Formylation;541
1.12.1.1.2;25.5.1.1.2 Variation 2: Two-Step Protocol via Formation of an Acetal;541
1.12.1.1.3;25.5.1.1.3 Variation 3: Two-Step Protocol via Formation of an Alcohol;543
1.12.1.2;25.5.1.2 Method 2: Functionalization of 3,3-Diethoxypropyne and Subsequent Acidic Treatment;544
1.12.1.3;25.5.1.3 Method 3: Oxidation of Propargyl Alcohols;545
1.12.1.3.1;25.5.1.3.1 Variation 1: With Chromium(VI) Oxide;545
1.12.1.3.2;25.5.1.3.2 Variation 2: With Dess--Martin Periodinane;545
1.12.1.3.3;25.5.1.3.3 Variation 3: Swern--Moffatt Reaction;546
1.12.1.3.4;25.5.1.3.4 Variation 4: With Titanium(IV) Chloride--Triethylamine;546
1.12.1.4;25.5.1.4 Method 4: Bromination--Dehydrobromination of Enals;547
1.12.1.5;25.5.1.5 Method 5: Fritsch--Buttenberg--Wiechell Rearrangement of 1,1-Dibromoalkenes and Subsequent Formylation;548
1.12.1.6;25.5.1.6 Method 6: Unmasking of Carbonyl Derivatives;548
1.12.1.6.1;25.5.1.6.1 Variation 1: Cleavage of Acetals;548
1.12.1.6.2;25.5.1.6.2 Variation 2: Synthesis of But-2-ynedial;549
1.12.1.6.3;25.5.1.6.3 Variation 3: Deprotection of Tosylhydrazones, Oximes, or Semicarbazones with Chlorotrimethylsilane--Dimethyl Sulfoxide;550
1.12.1.7;25.5.1.7 Method 7: Vacuum Pyrolysis;551
1.13;25.6 Product Class 6: Arenecarbaldehydes;556
1.13.1;25.6.1 Synthesis by Oxidative Cleavage of Carbon--Carbon Bonds;556
1.13.1.1;25.6.1.1 Method 1: Cleavage of Arene-Substituted Alkenes;556
1.13.1.1.1;25.6.1.1.1 Variation 1: Ozonolysis;556
1.13.1.1.2;25.6.1.1.2 Variation 2: Osmium-Catalyzed Cleavage;557
1.13.1.1.3;25.6.1.1.3 Variation 3: Cleavage by Permanganate and Periodate;559
1.13.1.2;25.6.1.2 Method 2: Cleavage of Arylacetic Acids;560
1.13.1.3;25.6.1.3 Method 3: Cleavage of a-Aryl-Substituted a-Hydroxycarboxylic Acids;561
1.13.1.4;25.6.1.4 Method 4: Cleavage of a-Aryl-Substituted a-Aminocarboxylic Acids;562
1.13.2;25.6.2 Synthesis by Oxidation;564
1.13.2.1;25.6.2.1 Method 1: Oxidation of Methylarenes;564
1.13.2.1.1;25.6.2.1.1 Variation 1: Aerobic Oxidation;564
1.13.2.1.2;25.6.2.1.2 Variation 2: Oxidation with Cerium Compounds;565
1.13.2.1.3;25.6.2.1.3 Variation 3: Electrochemical Oxidation;566
1.13.2.1.4;25.6.2.1.4 Variation 4: Oxidation by Halogenation;567
1.13.2.1.5;25.6.2.1.5 Variation 5: Oxidation by Hypervalent Iodine Compounds;568
1.13.2.1.6;25.6.2.1.6 Variation 6: Additional Procedures;568
1.13.2.2;25.6.2.2 Method 2: Oxidation of Arylmethanols;570
1.13.2.2.1;25.6.2.2.1 Variation 1: Oxidation with Oxygen or Hydrogen Peroxide;570
1.13.2.2.2;25.6.2.2.2 Variation 2: Oxidation with Sodium Hypochlorite;571
1.13.2.2.3;25.6.2.2.3 Variation 3: Oxidation with Cerium Compounds;572
1.13.2.2.4;25.6.2.2.4 Variation 4: Oxidation with Hypervalent Iodine Compounds;572
1.13.2.2.5;25.6.2.2.5 Variation 5: Oxidation with Chromium Compounds;574
1.13.2.2.6;25.6.2.2.6 Variation 6: Oxidation with Manganese Compounds;576
1.13.2.2.7;25.6.2.2.7 Variation 7: Oxidation with Perruthenates;576
1.13.2.2.8;25.6.2.2.8 Variation 8: Oxidation with Sulfoxides (Swern and Pfitzner--Moffat Oxidations);578
1.13.2.2.9;25.6.2.2.9 Variation 9: Oxidation with N-Oxoammonium Salts;580
1.13.2.2.10;25.6.2.2.10 Variation 10: Additional Procedures;581
1.13.2.3;25.6.2.3 Method 3: Oxidation of Benzylic Ethers Including Silyl Ethers;584
1.13.2.4;25.6.2.4 Method 4: Oxidation of Benzylic Halides;585
1.13.2.4.1;25.6.2.4.1 Variation 1: Kornblum Oxidation;585
1.13.2.4.2;25.6.2.4.2 Variation 2: Sommelet Reaction;587
1.13.2.4.3;25.6.2.4.3 Variation 3: Additional Procedures;587
1.13.2.5;25.6.2.5 Method 5: Oxidation of Benzylic Nitrogen Compounds;590
1.13.2.5.1;25.6.2.5.1 Variation 1: C==N Bond Migration in Schiff Bases;590
1.13.2.5.2;25.6.2.5.2 Variation 2: Oxidation of Benzylic Nitro Compounds (The Nef Reaction);591
1.13.2.5.3;25.6.2.5.3 Variation 3: Additional Procedures;592
1.13.3;25.6.3 Synthesis by Reduction;596
1.13.3.1;25.6.3.1 Method 1: Reduction of Arenecarboxylic Acids;596
1.13.3.2;25.6.3.2 Method 2: Reduction of Arenecarboxylic Acid Chlorides;597
1.13.3.2.1;25.6.3.2.1 Variation 1: Reduction by Hydrogenation (Rosenmund Reduction);597
1.13.3.2.2;25.6.3.2.2 Variation 2: Reduction by Metal Hydrides;599
1.13.3.3;25.6.3.3 Method 3: Reduction of Arenecarboxylic Acid Anhydrides;600
1.13.3.4;25.6.3.4 Method 4: Reduction of Arenecarboxylic Acid Esters;601
1.13.3.5;25.6.3.5 Method 5: Reduction of Carboxylic Acid Amides and Hydrazides;603
1.13.3.6;25.6.3.6 Method 6: Reduction of Arenecarbonitriles;604
1.13.3.6.1;25.6.3.6.1 Variation 1: Reduction by Hydrogenation;604
1.13.3.6.2;25.6.3.6.2 Variation 2: Hydride Reductions;606
1.13.4;25.6.4 Synthesis by Hydrolysis of Aldehyde Derivatives;608
1.13.4.1;25.6.4.1 Method 1: Hydrolysis of a,a-Dihalo Compounds;608
1.13.4.2;25.6.4.2 Method 2: Hydrolysis of O,O-Acetals;610
1.13.4.3;25.6.4.3 Method 3: Hydrolysis of S,S-Acetals;611
1.13.4.4;25.6.4.4 Method 4: Hydrolysis of Oximes;613
1.13.4.5;25.6.4.5 Method 5: Hydrolysis of Hydrazones and Semicarbazones;614
1.13.5;25.6.5 Synthesis by Formylation of Arylmetal Reagents;618
1.13.5.1;25.6.5.1 Formylation of Aryllithium Reagents;618
1.13.5.1.1;25.6.5.1.1 Method 1: Formylation of Aryllithium Reagents Generated by Metalation of Arenes;618
1.13.5.1.1.1;25.6.5.1.1.1 Variation 1: ortho-Lithiation Followed by Formylation with Dimethylformamide or Related Reagents;619
1.13.5.1.1.2;25.6.5.1.1.2 Variation 2: ortho-Lithiation Followed by Formylation with Pentacarbonyliron(0);625
1.13.5.1.1.3;25.6.5.1.1.3 Variation 3: Metalation of Arenes Using the Lochmann--Schlosser Base Followed by Formylation with Dimethylformamide;626
1.13.5.1.2;25.6.5.1.2 Method 2: Formylation of Aryllithium Reagents Generated by Lithium--Halogen Exchange;626
1.13.5.2;25.6.5.2 Formylation of Arylmagnesium Compounds;629
1.13.5.2.1;25.6.5.2.1 Method 1: Formylation of Arylmagnesium Compounds Generated by Reductive Magnesiation or Magnesium--Halogen Exchange;629
1.13.5.2.2;25.6.5.2.2 Method 2: Formylation of Arylmagnesium Reagents Generated by Addition of Magnesium Thiolates or Amides to Benzyne;634
1.13.6;25.6.6 Synthesis by Formylation of Arene--Hydrogen Bonds;638
1.13.6.1;25.6.6.1 Method 1: Formylation with Formic Acid;639
1.13.6.2;25.6.6.2 Method 2: Intramolecular Formylation with Formic Esters: Lewis Acid Mediated Formylation of Phenols by Fries Rearrangement of Aryl Formates;639
1.13.6.3;25.6.6.3 Method 3: Formylation with Formyl Fluoride;641
1.13.6.4;25.6.6.4 Method 4: The Vilsmeier--Haack Reaction;642
1.13.6.4.1;25.6.6.4.1 Variation 1: Using Dimethylformamide and Pyrophosphoryl Chloride;651
1.13.6.4.2;25.6.6.4.2 Variation 2: Formylation in Solvent-Free Conditions Using Microwaves;652
1.13.6.4.3;25.6.6.4.3 Variation 3: Vilsmeier--Haack Formylation on Solid Support;653
1.13.6.4.4;25.6.6.4.4 Variation 4: Formylation with Polymer-Bound Vilsmeier--Haack Reagent;653
1.13.6.4.5;25.6.6.4.5 Variation 5: Vilsmeier--Haack Formylation in a Fluorous/Organic Amphiphilic Ether Solvent;654
1.13.6.5;25.6.6.5 Method 5: Lewis Acid Mediated Formylation of Aromatic Compounds with Other Formamides;655
1.13.6.5.1;25.6.6.5.1 Variation 1: Lewis Acid Catalyzed Formylation of Aromatic Compounds with Triformamide;656
1.13.6.5.2;25.6.6.5.2 Variation 2: Formylation of Aromatic Compounds with Tris(diformylamino)methane;659
1.13.6.6;25.6.6.6 Method 6: Formylation of Aromatic Compounds with Tris(dichloromethyl)amine;661
1.13.6.7;25.6.6.7 Method 7: Formylation of Aromatic Compounds with Hexamethylenetetramine;663
1.13.6.8;25.6.6.8 Method 8: Gross Formylation with Dichloromethyl Methyl Ether;665
1.13.6.9;25.6.6.9 Method 9: Formylation with Triethyl Orthoformate;669
1.13.6.10;25.6.6.10 Method 10: The Gattermann Reaction;669
1.13.6.10.1;25.6.6.10.1 Variation 1: In Situ Generation of Hydrogen Cyanide from Zinc(II) Cyanide;672
1.13.6.10.2;25.6.6.10.2 Variation 2: In Situ Generation of Hydrogen Cyanide from 1,3,5-Triazine (Kreutzberger Modification);673
1.13.6.11;25.6.6.11 Method 11: The Gattermann--Koch Reaction;675
1.13.6.12;25.6.6.12 Method 12: Formylation of Arenes with Formaldehyde;676
1.13.6.12.1;25.6.6.12.1 Variation 1: Synthesis of Aromatic Aldehydes by Oxidative Hydroxymethylation with Formaldehyde and 2,3-Dichloro-5,6-dicyanobenzo-1,4-quinone;678
1.13.6.13;25.6.6.13 Method 13: The Reimer--Tiemann Reaction;678
1.13.7;25.6.7 Synthesis by Carbonylation of Arylpalladium Intermediates;688
1.13.7.1;25.6.7.1 Method 1: Reductive Carbonylation of Haloarenes and Related Compounds Using Carbon Monoxide;688
1.13.7.2;25.6.7.2 Method 2: Reductive Carbonylation of Iodoarenes Using Acetic Formic Anhydride as a Carbon Monoxide Source;696
1.13.8;25.6.8 Synthesis by C--C Bond Formation;700
1.13.8.1;25.6.8.1 Electrophilic Aromatic Substitution of Unprotected Arenecarbaldehydes;701
1.13.8.1.1;25.6.8.1.1 Method 1: Aminomethylation (Mannich Reaction);701
1.13.8.1.2;25.6.8.1.2 Method 2: Chloromethylation;703
1.13.8.1.3;25.6.8.1.3 Method 3: Friedel--Crafts Acylation;703
1.13.8.2;25.6.8.2 Directed ortho-Metalation of In Situ Formed a-Amino Alkoxides Derived from Unprotected Arenecarbaldehydes;704
1.13.8.3;25.6.8.3 ortho-Claisen Rearrangement of (Allyloxy)arenecarbaldehydes;705
1.13.8.4;25.6.8.4 Transition-Metal-Catalyzed Cross-Coupling Reactions of Electrophilic or Nucleophilic Arenecarbaldehydes;706
1.13.8.4.1;25.6.8.4.1 Method 1: sp²--sp Cross-Coupling Reactions of Electrophilic Arenecarbaldehydes (Sonogashira Coupling);706
1.13.8.4.2;25.6.8.4.2 Method 2: sp²--sp²
Cross-Coupling Reactions of Electrophilic or Nucleophilic Arenecarbaldehydes;708
1.13.8.4.2.1;25.6.8.4.2.1 Variation 1: Classic Suzuki--Miyaura Coupling Reactions Using Electrophilic Arenecarbaldehydes;708
1.13.8.4.2.2;25.6.8.4.2.2 Variation 2: Ligand-Free Palladium Catalysis and Transition-Metal-Free Suzuki--Miyaura-Type Cross Coupling Using Electrophilic Arenecarbaldehydes;710
1.13.8.4.2.3;25.6.8.4.2.3 Variation 3: Nickel(0)-Catalyzed Suzuki--Miyaura Cross-Coupling Reactions Using Electrophilic Arenecarbaldehydes;710
1.13.8.4.2.4;25.6.8.4.2.4 Variation 4: Suzuki--Miyaura-Type Cross-Coupling Reactions Using Dihydroxyborylated Arenecarbaldehydes;711
1.13.8.4.2.5;25.6.8.4.2.5 Variation 5: Stille-Type Cross-Coupling Reactions Using Electrophilic Arenecarbaldehydes;712
1.13.8.4.2.6;25.6.8.4.2.6 Variation 6: Stille-Type Cross-Coupling Reactions Using Trialkylstannylated Arenecarbaldehydes;713
1.13.8.4.2.7;25.6.8.4.2.7 Variation 7: Negishi-Type Cross-Coupling Reactions Using Electrophilic Arenecarbaldehydes;714
1.13.8.4.2.8;25.6.8.4.2.8 Variation 8: Hiyama-Type Cross-Coupling Reactions Using Electrophilic Arenecarbaldehydes;714
1.13.8.5;25.6.8.5 Palladium-Catalyzed Arylation of Alkenes Using Electrophilic Arenecarbaldehydes (Heck Reaction);715
1.13.8.6;25.6.8.6 Transition-Metal-Catalyzed Cyanation of Haloarenecarbaldehydes;716
1.13.8.7;25.6.8.7 Transition-Metal-Catalyzed Homocoupling of 4-Halobenzaldehydes (Ullmann-Type Reactions) or Dihydroxyborylated Arenecarbaldehydes;716
1.13.9;25.6.9 Synthesis by C--X Bond Formation;722
1.13.9.1;25.6.9.1 Synthesis by Electrophilic Aromatic Substitution: Hydrogen--Heteroatom Exchange;723
1.13.9.1.1;25.6.9.1.1 Halogenation of Arenecarbaldehydes;723
1.13.9.1.1.1;25.6.9.1.1.1 Method 1: Fluorination;723
1.13.9.1.1.2;25.6.9.1.1.2 Method 2: Chlorination;724
1.13.9.1.1.3;25.6.9.1.1.3 Method 3: Bromination;725
1.13.9.1.1.4;25.6.9.1.1.4 Method 4: Iodination;726
1.13.9.1.2;25.6.9.1.2 Nitration of Arenecarbaldehydes;727
1.13.9.2;25.6.9.2 Synthesis by Nucleophilic Aromatic Substitution: Heteroatom--Heteroatom Exchange;728
1.13.9.2.1;25.6.9.2.1 Halogen--Heteroatom Exchange Reactions;728
1.13.9.2.1.1;25.6.9.2.1.1 Method 1: Halogen--Nitrogen Exchange;729
1.13.9.2.1.1.1;25.6.9.2.1.1.1 Variation 1: Halogen--Nitrogen Exchange in the Absence of a Transition Metal;729
1.13.9.2.1.1.2;25.6.9.2.1.1.2 Variation 2: Palladium-Mediated Halogen--Nitrogen Exchange;731
1.13.9.2.1.2;25.6.9.2.1.2 Method 2: Halogen--Phosphorus Exchange;732
1.13.9.2.1.3;25.6.9.2.1.3 Method 3: Halogen--Oxygen Exchange;733
1.13.9.2.1.3.1;25.6.9.2.1.3.1 Variation 1: Halogen--Oxygen Exchange in the Absence of a Transition Metal;733
1.13.9.2.1.3.2;25.6.9.2.1.3.2 Variation 2: Copper-Mediated Halogen--Oxygen Exchange;734
1.13.9.2.1.3.3;25.6.9.2.1.3.3 Variation 3: Palladium- and Nickel-Mediated Halogen--Oxygen Exchange;735
1.13.9.2.1.4;25.6.9.2.1.4 Method 4: Halogen--Sulfur Exchange;736
1.13.9.2.1.4.1;25.6.9.2.1.4.1 Variation 1: Halogen--Sulfur Exchange in the Absence of a Transition Metal;736
1.13.9.2.1.4.2;25.6.9.2.1.4.2 Variation 2: Copper-Mediated Halogen--Sulfur Exchange;737
1.13.9.2.1.5;25.6.9.2.1.5 Method 5: Halogen--Fluorine Exchange;738
1.13.9.2.2;25.6.9.2.2 Diazonium--Heteroatom Exchange Reactions;738
1.13.9.3;25.6.9.3 Functionalization of ortho-Lithiated a-Amino Alkoxides Derived from Arenecarbaldehydes;740
1.14;25.7 Product Class 7: Polyenals;744
1.14.1;25.7.1 Synthesis of Product Class 7;744
1.14.1.1;25.7.1.1 Method 1: Oxidation of Alcohols;744
1.14.1.2;25.7.1.2 Method 2: Ring-Opening Reactions of Heterocycles;745
1.14.1.2.1;25.7.1.2.1 Variation 1: Addition of a-Oxocarbenes to Furans;746
1.14.1.2.2;25.7.1.2.2 Variation 2: Addition of Organolithium Reagents to Pyrylium Salts;747
1.14.1.2.3;25.7.1.2.3 Variation 3: Addition of Amines or Hydroxide Ion to Pyridinium Salts;748
1.14.1.3;25.7.1.3 Method 3: Reduction of Carboxylic Acid Derivatives;749
1.14.1.4;25.7.1.4 Method 4: Synthesis by Elimination;750
1.14.1.5;25.7.1.5 Method 5: Formylation of Dienes;752
1.14.1.6;25.7.1.6 Method 6: Addition of Enolates and Derivatives to Carbonyl Compounds;754
1.14.1.6.1;25.7.1.6.1 Variation 1: Addition of Enolates and Silyl Enol Ethers to Carbonyl Compounds;754
1.14.1.6.2;25.7.1.6.2 Variation 2: Addition of Metalated Vinyl Ethers to Carbonyl Compounds;756
1.14.1.7;25.7.1.7 Method 7: Wittig and Horner--Wadsworth--Emmons Reactions;757
1.14.1.8;25.7.1.8 Method 8: Cross-Coupling Reaction of Enals and Polyenals;759
1.14.1.9;25.7.1.9 Methods 9: Additional Methods;761
1.15;25.8 Product Class 8: a,ß-Unsaturated Aldehydes;766
1.15.1;25.8.1 Product Subclass 1: Nonheteroatom-Substituted a,ß-Unsaturated Aldehydes;766
1.15.1.1;25.8.1.1 Synthesis of Product Subclass 1;766
1.15.1.1.1;25.8.1.1.1 Method 1: Oxidative Cleavage of Alkenes;766
1.15.1.1.2;25.8.1.1.2 Method 2: Oxidation of Allylic Alcohols;767
1.15.1.1.3;25.8.1.1.3 Method 3: Oxidation of Allylic Methyl Groups;769
1.15.1.1.4;25.8.1.1.4 Method 4: Unsaturation of Saturated Aldehydes;769
1.15.1.1.4.1;25.8.1.1.4.1 Variation 1: Unsaturation of Silyl Enol Ethers with Lead(IV) Acetate;769
1.15.1.1.4.2;25.8.1.1.4.2 Variation 2: Unsaturation of Alkenyl Allyl Carbonates or Methyl Enol Ethers by Palladium Catalysis;770
1.15.1.1.4.3;25.8.1.1.4.3 Variation 3: Conversion of Saturated Primary Alcohols or Aldehydes into a,ß-Unsaturated Aldehydes;771
1.15.1.1.5;25.8.1.1.5 Method 5: Synthesis by Reduction;772
1.15.1.1.6;25.8.1.1.6 Method 6: Synthesis by Elimination;774
1.15.1.1.7;25.8.1.1.7 Method 7: Synthesis by Hydrolysis of Acetals or Imines;775
1.15.1.1.8;25.8.1.1.8 Method 8: One-Carbon-Atom Extension;775
1.15.1.1.8.1;25.8.1.1.8.1 Variation 1: By Formylation of Alkenes;776
1.15.1.1.8.2;25.8.1.1.8.2 Variation 2: One-Carbon-Atom Extension of Alkenyl Halides Using Organometallic Reagents;776
1.15.1.1.8.3;25.8.1.1.8.3 Variation 3: Formation of a,ß-Unsaturated Aldehydes by Rearrangement of ß-Hydroxy Alcohols;777
1.15.1.1.9;25.8.1.1.9 Method 9: Cross Metathesis of Terminal Alkenes with Acrolein;778
1.15.1.1.10;25.8.1.1.10 Method 10: Aldol Condensations;780
1.15.1.1.11;25.8.1.1.11 Method 11: Cross Aldolization of Aldehydes with Vinyl Acetate;781
1.15.1.1.12;25.8.1.1.12 Method 12: Addition of Organometallic Reagents to Carbonyl Compounds;782
1.15.1.1.12.1;25.8.1.1.12.1 Variation 1: Addition of Vinyllithium Reagents to Carbonyl Compounds;782
1.15.1.1.12.2;25.8.1.1.12.2 Variation 2: Wittig Reaction;783
1.15.1.1.12.3;25.8.1.1.12.3 Variation 3: Combined Alcohol Oxidation and Wittig Reaction;784
1.15.1.1.12.4;25.8.1.1.12.4 Variation 4: Peterson Alkenation;784
1.15.1.1.13;25.8.1.1.13 Method 13: Double Bond Migration;785
1.15.1.1.13.1;25.8.1.1.13.1 Variation 1: Isomerization of ß,.- to a,ß-Unsaturated Aldehydes;785
1.15.1.1.13.2;25.8.1.1.13.2 Variation 2: Opening of Vinyl Epoxides;786
1.15.1.1.13.3;25.8.1.1.13.3 Variation 3: Isomerization of Alkynols by Meyer--Schuster--Rupe Reactions;786
1.15.1.1.14;25.8.1.1.14 Method 14: Three-Carbon-Atom Elongation;788
1.15.1.1.14.1;25.8.1.1.14.1 Variation 1: Heck Reaction;788
1.15.1.1.14.2;25.8.1.1.14.2 Variation 2: Vinylogous-Vilsmeier Formylation;789
1.15.1.1.15;25.8.1.1.15 Method 15: Diels--Alder Reactions;790
1.15.1.1.16;25.8.1.1.16 Method 16: Modification of a,ß-Unsaturated Aldehydes;790
1.15.1.1.16.1;25.8.1.1.16.1 Variation 1: Substitution of an Alkoxy or Siloxy Group by Nucleophiles;790
1.15.1.1.16.2;25.8.1.1.16.2 Variation 2: Cross-Coupling Reactions;791
1.15.1.1.17;25.8.1.1.17 Methods 17: Additional Methods;792
1.15.1.1.17.1;25.8.1.1.17.1 Variation 1: Formylalkenation;793
1.15.1.1.17.2;25.8.1.1.17.2 Variation 2: Two-Carbon-Atom Homologation with a,a-Disilylated Aldimines;793
1.15.1.1.17.3;25.8.1.1.17.3 Variation 3: Kharasch Addition;794
1.15.1.1.17.4;25.8.1.1.17.4 Variation 4: Four-Carbon-Atom Extension of Grignard Reagents;795
1.15.2;25.8.2 Product Subclass 2: Heteroatom-Substituted a,ß-Unsaturated Aldehydes;796
1.15.2.1;25.8.2.1 Synthesis of Product Subclass 2;796
1.15.2.1.1;25.8.2.1.1 Method 1: Addition of Organometallic Reagents to Carbonyl Compounds;796
1.15.2.1.2;25.8.2.1.2 Method 2: Cyclopropanation with Halogenated Carbenes, Followed by Ring Opening of the Halogenated Cyclopropanes;797
1.15.2.1.3;25.8.2.1.3 Method 3: Reactions of 1,3-Dicarbonyl Compounds with Nitrogen Nucleophiles;798
1.15.2.1.4;25.8.2.1.4 Method 4: Formylation Reactions;798
1.15.2.1.4.1;25.8.2.1.4.1 Variation 1: Vilsmeier--Haack--Arnold Formylation;798
1.15.2.1.4.2;25.8.2.1.4.2 Variation 2: Formylation of Electron-Rich Double Bonds;800
1.15.2.1.4.3;25.8.2.1.4.3 Variation 3: Sulfanylformylation of Alkynes;801
1.15.2.1.5;25.8.2.1.5 Method 5: a-Halogenation, Selenation, or Methoxylation of a,ß-Unsaturated Aldehydes;801
1.15.2.1.6;25.8.2.1.6 Method 6: Substitution of the Halogen Atom of a-Halogenated a,ß-Unsaturated Aldehydes;803
1.15.2.1.7;25.8.2.1.7 Methods 7: Additional Methods;803
1.15.2.1.7.1;25.8.2.1.7.1 Variation 1: Addition to Acetylene Aldehydes;803
1.16;25.9 Product Class 9: 3-Heteroatom-Substituted Aldehydes;812
1.16.1;25.9.1 Product Subclass 1: 3-Silicon-Substituted Aldehydes;812
1.16.1.1;25.9.1.1 Synthesis of Product Subclass 1;812
1.16.2;25.9.2 Product Subclass 2: 3-Tin-Substituted Aldehydes;813
1.16.2.1;25.9.2.1 Synthesis of Product Subclass 2;813
1.16.3;25.9.3 Product Subclass 3: 3-Boron-Substituted Aldehydes;814
1.16.3.1;25.9.3.1 Synthesis of Product Subclass 3;814
1.16.4;25.9.4 Product Subclass 4: 3-Halogen-Substituted Aldehydes;815
1.16.4.1;25.9.4.1 Synthesis of Product Subclass 4;815
1.16.5;25.9.5 Product Subclass 5: 3-Oxygen-Substituted Aldehydes;815
1.16.5.1;25.9.5.1 Synthesis of Product Subclass 5;815
1.16.5.1.1;25.9.5.1.1 Method 1: Oxidative Cleavage of Homoallylic Alcohols;815
1.16.5.1.1.1;25.9.5.1.1.1 Variation 1: By Ozonolysis;816
1.16.5.1.1.2;25.9.5.1.1.2 Variation 2: By Dihydroxylation/Diol Cleavage;817
1.16.5.1.2;25.9.5.1.2 Method 2: Wacker Oxidation of Homoallylic Alcohols;818
1.16.5.1.3;25.9.5.1.3 Method 3: Hydroboration of Allylic or Propargylic Alcohols;819
1.16.5.1.4;25.9.5.1.4 Method 4: Ruthenium-Catalyzed Anti-Markovnikov Hydration of Terminal Alkynes;820
1.16.5.1.5;25.9.5.1.5 Method 5: Ring Opening of Epoxides and 1,3-Dithianes;821
1.16.5.1.6;25.9.5.1.6 Method 6: Synthesis from 4,5-Dihydroisoxazoles;823
1.16.5.1.7;25.9.5.1.7 Method 7: Hydroformylation of Enol Ethers;824
1.16.5.1.8;25.9.5.1.8 Method 8: 1,4-Addition of Oxygen Nucleophiles to a,ß-Unsaturated Aldehydes;825
1.16.6;25.9.6 Product Subclass 6: 3-Sulfur-Substituted Aldehydes;825
1.16.6.1;25.9.6.1 Synthesis of Product Subclass 6;825
1.16.7;25.9.7 Product Subclass 7: 3-Nitrogen-Substituted Aldehydes;826
1.16.7.1;25.9.7.1 Synthesis of Product Subclass 7;826
1.16.7.1.1;25.9.7.1.1 Method 1: 1,4-Addition of Nitrogen Nucleophiles to a,ß-Unsaturated Aldehydes;826
1.16.7.1.2;25.9.7.1.2 Method 2: Oxidative Cleavage of Homoallylic Amines;827
1.16.7.1.3;25.9.7.1.3 Method 3: Oxidation of Allylic or Propargylic Amines;828
1.16.7.1.4;25.9.7.1.4 Method 4: Ring Opening of Aziridines or Cyclic Sulfamidates;829
1.16.7.1.5;25.9.7.1.5 Method 5: Synthesis by Substitution;830
1.16.8;25.9.8 Product Subclass 8: 3-Phosphorus-Substituted Aldehydes;830
1.16.8.1;25.9.8.1 Synthesis of Product Subclass 8;830
1.17;Keyword Index;836
1.18;Author Index;874
1.19;Abbreviations;930
mehr

Autor