Hugendubel.info - Die B2B Online-Buchhandlung 

Merkliste
Die Merkliste ist leer.
Bitte warten - die Druckansicht der Seite wird vorbereitet.
Der Druckdialog öffnet sich, sobald die Seite vollständig geladen wurde.
Sollte die Druckvorschau unvollständig sein, bitte schliessen und "Erneut drucken" wählen.

Evolution in Action

E-BookPDF1 - PDF WatermarkE-Book
586 Seiten
Englisch
Springer Berlin Heidelbergerschienen am24.07.20102010
Radiations, or Evolution in Action We have just celebrated the 'Darwin Year' with the double anniversary of his 200th birthday and 150th year of his masterpiece, 'On the Origin of Species by means of Natural Selection'. In this work, Darwin established the factual evidence of biological evolution, that species change over time, and that new organisms arise by the splitting of ancestral forms into two or more descendant species. However, above all, Darwin provided the mechanisms by arguing convincingly that it is by natural selection - as well as by sexual selection (as he later added) - that organisms adapt to their environment. The many discoveries since then have essentially con?rmed and strengthened Darwin's central theses, with latest evidence, for example, from molecular genetics, revealing the evolutionary relationships of all life forms through one shared history of descent from a common ancestor. We have also come a long way to progressively understand more on how new species actually originate, i. e. on speciation which remained Darwin's 'mystery of m- teries', as noted in one of his earliest transmutation notebooks. Since speciation is the underlying mechanism for radiations, it is the ultimate causation for the biological diversity of life that surrounds us.mehr
Verfügbare Formate
BuchGebunden
EUR213,99
E-BookPDF1 - PDF WatermarkE-Book
EUR213,99

Produkt

KlappentextRadiations, or Evolution in Action We have just celebrated the 'Darwin Year' with the double anniversary of his 200th birthday and 150th year of his masterpiece, 'On the Origin of Species by means of Natural Selection'. In this work, Darwin established the factual evidence of biological evolution, that species change over time, and that new organisms arise by the splitting of ancestral forms into two or more descendant species. However, above all, Darwin provided the mechanisms by arguing convincingly that it is by natural selection - as well as by sexual selection (as he later added) - that organisms adapt to their environment. The many discoveries since then have essentially con?rmed and strengthened Darwin's central theses, with latest evidence, for example, from molecular genetics, revealing the evolutionary relationships of all life forms through one shared history of descent from a common ancestor. We have also come a long way to progressively understand more on how new species actually originate, i. e. on speciation which remained Darwin's 'mystery of m- teries', as noted in one of his earliest transmutation notebooks. Since speciation is the underlying mechanism for radiations, it is the ultimate causation for the biological diversity of life that surrounds us.
Details
Weitere ISBN/GTIN9783642124259
ProduktartE-Book
EinbandartE-Book
FormatPDF
Format Hinweis1 - PDF Watermark
FormatE107
Erscheinungsjahr2010
Erscheinungsdatum24.07.2010
Auflage2010
Seiten586 Seiten
SpracheEnglisch
IllustrationenXXV, 586 p.
Artikel-Nr.1717547
Rubriken
Genre9200

Inhalt/Kritik

Inhaltsverzeichnis
1;Preface Radiations, or Evolution in Action;6
2;Introduction to the Priority Programme ``Radiations: Origins of Biological Diversity´´;10
3;Contents;14
4;Contributors;18
5;Part I Approaches in Botany;28
5.1;Rapid Radiations and Neoendemism in the Madagascan Biodiversity Hotspot;29
5.1.1;1 Introduction;30
5.1.2;2 Research Approach;32
5.1.2.1;2.1 Taxonomy;32
5.1.2.2;2.2 Phylogeny;32
5.1.2.3;2.3 Nuclear Markers;32
5.1.2.4;2.4 Establishing Biogeographic Hypothesis;33
5.1.2.5;2.5 Divergence Time Estimates;33
5.1.2.6;2.6 Niche Modelling;34
5.1.3;3 Results;34
5.1.3.1;3.1 Taxonomic Revision;34
5.1.3.2;3.2 Scaly Tree Fern Phylogeny;34
5.1.3.3;3.3 Radiations of Scaly Tree Ferns in Madagascar;34
5.1.3.4;3.4 Comparing Current Distribution and Fundamental Distribution;37
5.1.3.5;3.5 Scaly Tree Ferns on the Mascarene Islands;37
5.1.4;4 Perspectives;39
5.1.5;References;40
5.2;Rapid Radiation in the Barley Genus Hordeum (Poaceae) During the Pleistocene in the Americas;42
5.2.1;1 Introduction;42
5.2.1.1;1.1 Framework of the Studies, Questions to Answer;45
5.2.2;2 Materials and Employed Methods;46
5.2.3;3 Results and Discussion;49
5.2.3.1;3.1 Phylogeny of Hordeum;49
5.2.3.2;3.2 Biogeography;50
5.2.3.3;3.3 Speciation Rates;51
5.2.3.4;3.4 Chloroplast Genealogy of Hordeum;52
5.2.3.5;3.5 The Eurasian Hordeum marinum Species Complex;53
5.2.3.6;3.6 North American H. californicum Group;54
5.2.3.7;3.7 Southern Patagonian Species;54
5.2.4;4 Conclusions;55
5.2.5;References;56
5.3;Studying Adaptive Radiation at the Molecular Level: A Case Study in the Macaronesian Crassulaceae-Sempervivoideae;59
5.3.1;1 Introduction;60
5.3.1.1;1.1 Speciation and Adaptive Radiation;60
5.3.1.2;1.2 Island Radiations and Macaronesian Crassulaceae-Sempervivoideae;60
5.3.1.3;1.3 Candidate Genes;63
5.3.2;2 Material and Methods;63
5.3.2.1;2.1 Selection of the Study Group;64
5.3.2.1.1;2.1.1 nrITS;64
5.3.2.1.2;2.1.2 Candidate Genes;64
5.3.2.2;2.2 Selection of Candidate Genes;64
5.3.2.2.1;2.2.1 Regulatory Genes;64
5.3.2.2.2;2.2.2 Structural Gene;64
5.3.2.3;2.3 Laboratory Work;65
5.3.2.4;2.4 Data Analysis;65
5.3.2.4.1;2.4.1 Phylogenetic Analyses;65
5.3.2.4.1.1;Ka/Ks Values;65
5.3.2.4.2;2.4.2 Dating;66
5.3.2.4.2.1;Molecular Dating;66
5.3.3;3 Results and Discussion;66
5.3.3.1;3.1 Are the MCS the Result of an Adaptive Radiation?;66
5.3.3.2;3.2 Gene Evolution;69
5.3.3.2.1;3.2.1 Orthologous/Paralogous Copies;69
5.3.3.2.1.1;General Pattern;72
5.3.3.2.2;3.2.2 Phylogenetic Significance;75
5.3.3.2.3;3.2.3 Evolution Rates of Candidate Genes;76
5.3.3.3;3.3 Evolution of MCS;77
5.3.4;4 Summary;79
5.3.5;References;79
5.4;Key Innovations Versus Key Opportunities: Identifying Causes of Rapid Radiations in Derived Ferns;84
5.4.1;1 Introduction;84
5.4.2;2 Identifying Evidence for Biological Radiations;85
5.4.3;3 Determining the Role of Key Innovations and/ or Key Opportunities;87
5.4.4;4 Case Studies in the Epiphytic Polypodiaceae;88
5.4.5;5 Key Innovations: Ants and Ferns;90
5.4.6;6 Key Innovations and Key Opportunities;93
5.4.7;7 Perspectives;93
5.4.8;References;95
5.5;Evolution of the Mating System in the Genus Capsella (Brassicaceae);99
5.5.1;1 Introduction;99
5.5.1.1;1.1 The Mating System in Brassicaceae Genera;100
5.5.1.2;1.2 The Genus Capsella Is a Wild Relative of the Model Plant Arabidopsis;101
5.5.1.3;1.3 The Dynamic of the Mating System Provides Adaptive Potential;102
5.5.2;2 Materials and Methods;104
5.5.2.1;2.1 Plant Material;104
5.5.2.2;2.2 Identification of S-alleles in C. grandiflora and C. rubella;104
5.5.2.2.1;2.2.1 DNA Extraction; PCR and Cloning;104
5.5.2.2.2;2.2.2 PCR-RFLP;105
5.5.2.2.3;2.2.3 Sequencing and Sequence Analyzes;105
5.5.2.3;2.3 Screening of BAC-Clones: Identification of S-locus in C. rubella;106
5.5.2.3.1;2.3.1 Analysis of the BAC Insert: Primer Walking;106
5.5.2.4;2.4 Crossing Experiments;106
5.5.2.4.1;2.4.1 Crossing Experiment I: Intraspecific Crossing;106
5.5.2.4.2;2.4.2 Crossing Experiment II: Interspecific Crossing;107
5.5.3;3 Results;107
5.5.3.1;3.1 Identification of S-Alleles;107
5.5.3.1.1;3.1.1 S-Allele Specific PCR-RFLP;109
5.5.3.2;3.2 Screening of BAC-Clones: Identification of S-Locus Genes in C. rubella;109
5.5.3.2.1;3.2.1 Identification of C. rubella 5-kb BAC fragment through comparison with A. thaliana;109
5.5.3.3;3.3 Frequency and Dominance Relationships of S-Allele;111
5.5.3.3.1;3.3.1 Crossing Experiment I: Intraspecific Crossing;111
5.5.3.3.2;3.3.2 Crossing Experiment II: Interspecific Crossing;112
5.5.4;4 Discussion;114
5.5.4.1;4.1 The Chromosomal Location of the Capsella S-Locus is Similar to Arabidopsis;116
5.5.4.2;4.2 Natural Populations of Capsella Exhibit Flexible Mating Strategies;116
5.5.4.3;4.3 Evolutionary Consequences of Flexible Mating Strategies;118
5.5.5;5 Summary;118
5.5.6;References;119
5.6;Pollinator-Driven Speciation in Sexually Deceptive Orchids of the Genus Ophrys;123
5.6.1;1 Introduction;123
5.6.1.1;1.1 Sexual Deception;124
5.6.1.2;1.2 Specialised Pollination and Floral Isolation;125
5.6.1.3;1.3 Speciation;125
5.6.2;2 Case Study 1: Hybrid Speciation and Distinction of Species on Sardinia;128
5.6.3;3 Case Study 2: Pollinator-Driven Selection and Speciation in Ophrys lupercalis, Ophrys bilunulata and Ophrys fabrella on Majorca;130
5.6.4;4 Case Study 3: Speciation and Evolutionary Origin of Two Sympatrically Occurring Endemic Species, O. chestermanii and O. normanii, on Sardinia;133
5.6.5;5 Conclusions;136
5.6.6;References;137
5.7;Population Genetics of Speciation and Demographic Inference Under Population Subdivision: Insights from Studies on Wild Tomatoes (Solanum sect. Lycopersicon);141
5.7.1;1 Introduction;142
5.7.2;2 Materials and Methods;143
5.7.2.1;2.1 Population Sampling and Sequenced Loci;143
5.7.2.2;2.2 The Isolation Speciation Model;146
5.7.2.3;2.3 Sampling Schemes, Population Subdivision, and Range Expansions;147
5.7.3;3 Results and Discussion;148
5.7.3.1;3.1 WH Model Parameter Estimation and the Impact of Population Subdivision;148
5.7.3.2;3.2 Assessing Postdivergence Gene Flow by Linkage Disequilibrium (LD);151
5.7.3.3;3.3 Site Frequency Spectra in Samples from Nonequilibrium, Subdivided Populations;152
5.7.4;4 Summary;154
5.7.5;References;155
5.8;Genetic Diversity, Evolution and Domestication of Wheat and Barley in the Fertile Crescent;158
5.8.1;1 Introduction;159
5.8.2;2 Origins of Cultivated Plants and Agriculture: A Brief Historical Overview;159
5.8.3;3 Evolution and Domestication of Triticeae;161
5.8.3.1;3.1 Wheat Evolution and Domestication;165
5.8.3.1.1;3.1.1 Diploid Wheats;167
5.8.3.1.2;3.1.2 Tetraploid Wheats;173
5.8.3.1.3;3.1.3 Hexaploid Wheats-Bread Wheat;175
5.8.3.2;3.2 Barley Evolution and Domestication;176
5.8.4;4 Conclusions and Final Considerations;178
5.8.5;List of our publications resulting from the SPP 1127;179
5.8.6;Invited Lectures and Data Presented from the SPP 1127;180
5.8.7;Conferences Attended and Data Presented from the SPP 1127;180
5.8.8;Collaborations Resulted from the SPP 1127;181
5.8.9;References;181
6;Part II Host-Plant Interaction;188
6.1;Mechanisms of Speciation in Southeast Asian Ant-Plants of the Genus Macaranga (Euphorbiaceae);189
6.1.1;1 Introduction;190
6.1.1.1;1.1 Co-Evolution in Mutualistic Associations: A Challenge for Evolutionary Biology;190
6.1.1.2;1.2 Radiation on Both Sides of a Myrmecophytic Interaction: The Macaranga-Crematogaster System;190
6.1.1.3;1.3 Aims of Our Study;193
6.1.2;2 What Does Phylogeny Tell Us About the Macaranga-Crematogaster Co-Evolution?;194
6.1.2.1;2.1 Monophyly of Macaranga Sections and Subsectional Groups with Myrmecophytes;194
6.1.2.2;2.2 Co-Adaptation and Host Shift are Major Determinants of the Macaranga-Crematogaster Co-Evolution;196
6.1.3;3 Which Roles Did Hybridization and Reticulate Evolution Play During the Evolution of Macaranga?;197
6.1.3.1;3.1 First Indications for Interspecific Gene Flow in Macaranga;197
6.1.3.2;3.2 Development of Markers to Analyze Species Boundaries and Gene Flow among Macaranga Species;197
6.1.3.3;3.3 Evidence for Introgression and Incomplete Lineage Sorting Among Macaranga Ant-Plants;198
6.1.3.4;3.4 Reticulate Evolution in Macaranga: Frequent Hybridization and Introgression but Little Evidence for Stable Hybrids;200
6.1.4;4 How Could the Ants Have Influenced Speciation Processes in Their Plant Partners?;202
6.1.4.1;4.1 The ``Allopatric Speciation Hypothesis´´: Limited Effective Seed Dispersal Could Enhance Genetic Differentiation in Myrmec.;202
6.1.4.2;4.2 Population Structure of Myrmecophytic Versus Non-Myrmecophytic Macaranga Species: No Support for the Allopatric Speciation Hypothesis ;203
6.1.4.3;4.3 Putative Role of Vicariance;206
6.1.4.4;4.4 The Relative Role of Seed and Pollen Dispersal;207
6.1.5;5 Conclusions;207
6.1.6;References;208
6.2;Speciation in Obligately Plant-Associated Crematogaster Ants: Host Distribution Rather than Adaption Towards Specific Hosts Drives the Process;212
6.2.1;1 Introduction;213
6.2.2;2 Species Delimitation of Crematogaster (Decacrema) Ants Associated with Macaranga;216
6.2.3;3 Co-evolution Between Crematogaster (Decacrema) and Macaranga Hosts: Adaptations of the Ants Towards Their Hosts;221
6.2.3.1;3.1 Choosing and Finding a Host;221
6.2.3.2;3.2 Wax Running;222
6.2.3.3;3.3 Entering the Host: Queen Size Matters;222
6.2.3.4;3.4 Available Food and Nesting Space;223
6.2.3.5;3.5 Are All Ant Partners Equal? - The Plant Perspective;223
6.2.4;4 Radiation in Crematogaster (Decacrema) Ants: Is It Driven By Adaptation Towards Different Host Species?;224
6.2.4.1;4.1 Population Genetic Studies on A Local Scale;224
6.2.4.2;4.2 Vicariant Evolution - The Broader Geographic Scale;227
6.2.5;5 Conclusion and Outlook;228
6.2.6;References;230
6.3;Radiation, Biological Diversity and Host-Parasite Interactions in Wild Roses, Rust Fungi and Insects;233
6.3.1;1 Introduction: Radiation, Biodiversity and Host-Parasite Interaction in the Rosa-System;234
6.3.2;2 Dog Roses are Allopolylpoids: Genetic Constitution of Section Caninae;236
6.3.3;3 Character Inheritance in the Heterogamous System of Dog Roses;237
6.3.4;4 Glandular Trichomes Matter: Rust Fungi on Rosa;239
6.3.5;5 Evolution and Diversity of Plant-Pathogen-Insect Foodwebs on Dog Roses;239
6.3.5.1;5.1 Are Invertebrate Communities Affected by Leaf Trichome Traits of Hosts?;241
6.3.5.2;5.2 Do Rhagoletis alternata and Diplolepis rosae Differ in Density Between the Three Rose Species?;243
6.3.5.3;5.3 Does Rhagoletis alternata Form Host Races on the Three Dog Rose Species?;248
6.3.6;6 How are the Differences Between the Three Closely Related Dog Rose Species Translated Into Higher Trophic Levels?;249
6.3.7;7 Conclusion;251
6.3.8;References;252
6.4;Speciation via Differential Host-Plant Use in the Tephritid Fly Tephritis conura;257
6.4.1;1 Introduction;257
6.4.2;2 Natural History of the T. conura - Cirsium System;259
6.4.2.1;2.1 T. conura;259
6.4.2.2;2.2 The Host Plants;261
6.4.3;3 Geographic Speciation;262
6.4.4;4 Gene Flow and Signs of Selection;265
6.4.5;5 Host-Race Adaptations;267
6.4.5.1;5.1 Plant Recognition and Willingness to Mate;268
6.4.5.2;5.2 Survival on C. oleraceum;269
6.4.5.3;5.3 Adaptation of Ovipositor Length;270
6.4.6;6 Does Plant History Matter in Host-Race Evolution?;271
6.4.7;7 Conclusions;273
6.4.8;References;274
7;Part III Approaches in Zoology;279
7.1;Solar Powered Seaslugs (Opisthobranchia, Gastropoda, Mollusca): Incorporation of Photosynthetic Units: A Key Character Enhancing Radiation?;280
7.1.1;1 Introduction;281
7.1.2;2 Materials and Methods;285
7.1.3;3 Results;286
7.1.3.1;3.1 Phyllodesmium;286
7.1.4;4 Sacoglossa;289
7.1.5;5 Discussion;292
7.1.6;6 Can We Consider the Incorporation of Photosynthetic Units (PUs) an Adaptive Radiation?;295
7.1.7;7 Conclusion;296
7.1.8;8 Summary;296
7.1.9;References;297
7.2;Are Cuticular Hydrocarbons Involved in Speciation of Fungus-Growing Termites (Isoptera: Macrotermitinae)?;300
7.2.1;1 Introduction;300
7.2.2;2 Cuticular Hydrocarbons and Nestmate Recognition;303
7.2.3;3 Variation of Cuticular Hydrocarbons Within and Between Termite Species;306
7.2.4;4 Heritability of Cuticular Hydrocarbons and Environmental Variation;309
7.2.5;5 Cuticular Hydrocarbons and Agonistic Behavior;312
7.2.6;6 Cuticular Hydrocarbons and Genetic Differentiation Between Phenotypes;315
7.2.7;7 Conclusions;316
7.2.8;References;318
7.3;Electric Organ Discharge Divergence Promotes Ecological Speciation in Sympatrically Occurring African Weakly Electric Fish (Campylomormyrus);324
7.3.1;1 Introduction;325
7.3.2;2 Taxonomy of Campylomormyrus;326
7.3.3;3 Indication for Ecological Speciation;330
7.3.4;4 Electric Organ Discharge and Mate Choice;333
7.3.5;5 Electric Organ Discharge: A Magic Trait for Speciation?;334
7.3.6;References;336
7.4;Ongoing Phenotypic and Genotypic Diversification in Adaptively Radiated Freshwater Crabs from Jamaica;339
7.4.1;1 Introduction;340
7.4.2;2 Phenotypic Modification of Body Form in Response to Cave-Living;342
7.4.2.1;2.1 Materials and Methods;343
7.4.2.1.1;2.1.1 Morphometric Data;343
7.4.2.1.2;2.1.2 Genetic Data;344
7.4.2.2;2.2 Results;345
7.4.2.2.1;2.2.1 Morphometrics;345
7.4.2.2.2;2.2.2 Genetics;346
7.4.3;3 Genotypic Diversification Within Three Species of Freshwater Crabs;348
7.4.3.1;3.1 Material and Methods;350
7.4.3.2;3.2 Results;352
7.4.3.2.1;3.2.1 Sesarma dolphinum;352
7.4.3.2.2;3.2.2 Sesarma windsor and Sesarma meridies;355
7.4.3.3;3.3 Discussion;357
7.4.4;4 Additional Findings and Outlook;358
7.4.5;References;362
7.5;The Herring Gull Complex (Larus argentatus - fuscus - cachinnans) as a Model Group for Recent Holarctic Vertebrate Radiations;366
7.5.1;1 Introduction;366
7.5.2;2 State of the Art;369
7.5.3;3 Recent Progress;374
7.5.3.1;3.1 Phylogenetic Framework for the Herring Gull Complex;374
7.5.3.2;3.2 Population History of ``polyphyletic´´ Taxa in the Mitochondrial Gene Tree;375
7.5.3.2.1;3.2.1 Evolution of Herring Gulls in Europe;379
7.5.3.2.2;3.2.2 Phylogeographic History of Circumpolar Breeding Glaucous Gulls;379
7.5.3.2.3;3.2.3 Colonization Pattern of Greater Black-Backed Gulls;381
7.5.3.2.4;3.2.4 Summary;381
7.5.4;4 Future Perspectives;382
7.5.5;References;383
7.6;Genetic Divergence and Evolution of Reproductive Isolation in Eastern Mediterranean Water Frogs;387
7.6.1;1 Introduction;389
7.6.2;2 Materials and Methods;390
7.6.2.1;2.1 Taxon Sampling;390
7.6.2.2;2.2 Estimation of Genetic Divergence;390
7.6.2.3;2.3 Estimation of Rates and Times of Divergence Using a Non-constant Molecular Clock;393
7.6.2.4;2.4 Crossing Experiments;393
7.6.2.5;2.5 Bioacoustic Investigations;394
7.6.2.6;2.6 Female Choice Experiments;394
7.6.3;3 Results and Discussion;394
7.6.3.1;3.1 Genetic Diversity of Eastern Mediterranean Water Frogs;394
7.6.3.2;3.2 Genetic Divergence Between Population Pairs;397
7.6.3.3;3.3 Estimation of Confidence Limits for Divergence Times of Basic Lineages Using a Nonconstant Molecular Clock;401
7.6.3.4;3.4 Evolution of Anatolian Water Frog Populations;402
7.6.3.5;3.5 Genetic Incompatibilities;403
7.6.3.6;3.6 Antihybridization Mechanisms;406
7.6.3.7;3.7 Implications for Water Frog Systematics;409
7.6.3.8;3.8 Conclusions and Prospects;411
7.6.4;References;412
7.7;Inferring Multiple Corsican Limax (Pulmonata: Limacidae) Radiations: A Combined Approach Using Morphology and Molecules;418
7.7.1;1 Introduction;419
7.7.2;2 Materials and Methods;420
7.7.2.1;2.1 Collection and Treatment of Specimens;420
7.7.2.2;2.2 DNA Sequence Analysis;421
7.7.3;3 Results;422
7.7.3.1;3.1 Morphological and Copulation Studies;422
7.7.3.2;3.2 Sequence Analysis;426
7.7.3.3;3.3 Distribution;431
7.7.4;4 Discussion;431
7.7.4.1;4.1 Biogeographical Scenarios;431
7.7.4.2;4.2 Species Boundaries;437
7.7.4.3;4.3 Evolutionary Considerations;437
7.7.5;5 Conclusions;438
7.7.6;References;438
7.7.7;Supplement: List of Material;441
7.7.8;Appendix: Two New Species and One New Name of Peri-Tyrrhenian Limax;445
7.7.9;Limax giustii n. sp.;445
7.7.10;Limax ilvensis n. sp.;446
7.7.11;Limax vizzavonensis n. nom.;447
7.7.12;Additional References;447
7.8;Palaeogeography or Sexual Selection: Which Factors Promoted Cretan Land Snail Radiations?;449
7.8.1;1 Introduction;449
7.8.2;2 Systematics of the Xerocrassa Radiation on Crete;450
7.8.3;3 Ecological Differentiation of the Cretan Xerocrassa Species;453
7.8.4;4 Geographic Mode of Speciation;454
7.8.5;5 Evolution of Genitalia by Genetic Drift Versus Selection;456
7.8.6;6 Lock-and-Key Hypothesis Versus Sexual Selection;456
7.8.7;7 Influence of Evolution of Genitalia on Speciation in Xerocrassa;457
7.8.8;8 Sexual Selection and Non-adaptive Radiation;458
7.8.9;References;459
7.9;Non-Ecological Radiations in Acoustically Communicating Grasshoppers?;463
7.9.1;1 Introduction;464
7.9.2;2 Acoustic Communication and Speciation;465
7.9.2.1;2.1 Species Diversity and Acoustic Communication;465
7.9.2.2;2.2 Molecular Phylogeny;467
7.9.2.3;2.3 Evolution of Leg Movement Patterns;469
7.9.2.4;2.4 Song Evolution in Closely Related Species;471
7.9.3;3 Mechanisms of Speciation;472
7.9.3.1;3.1 Divergence in Allopatry;472
7.9.3.2;3.2 Evolution of New Songs by Hybridization;473
7.9.4;4 Conclusions;474
7.9.5;References;474
7.10;Beyond Sympatric Speciation: Radiation of Sailfin Silverside Fishes in the Malili Lakes (Sulawesi);477
7.10.1;1 Introduction;478
7.10.2;2 Speciation Research in Adaptive Radiations;479
7.10.3;3 Sailfin Silversides in the Malili Lakes;479
7.10.4;4 Patterns of Hybridization;481
7.10.5;5 A Key Role of River Petea?;483
7.10.6;6 Sympatric Speciation in Lake Matano;484
7.10.7;7 On the Mechanisms Driving Speciation Processes;487
7.10.8;8 Sexual Selection and the Evolution of Colour Polymorphisms;488
7.10.9;9 Perspectives;489
7.10.10;References;491
7.11;The Species Flocks of the Viviparous Freshwater Gastropod Tylomelania (Mollusca: Cerithioidea: Pachychilidae) in the Ancient Lakes of Sulawesi, Indonesia: The Role of Geography, Trophic Morphology and Color as Driving Forces in Adaptive Radiation;496
7.11.1;1 Introduction;497
7.11.1.1;1.1 Ancient lakes as ``Natural Laboratories´´;497
7.11.1.2;1.2 The Gastropods in the ``Ancient Lakes´´ on Sulawesi;497
7.11.1.3;1.3 Scope and Aims;499
7.11.2;2 The Species Flocks of Tylomelania in Lakes on Sulawesi: Species Diversity and Endemism;500
7.11.3;3 A Molecular Phylogeny of Tylomelania: Lake Colonization, Species, and Introgression;505
7.11.4;4 Coevolution with Crabs;508
7.11.5;5 Adaptive Radiation Through Trophic Specialization;509
7.11.6;6 Speciation Patterns;512
7.11.7;7 The Distribution and Role of Body Coloration;513
7.11.8;8 Patterns of Radiation: Looking Beyond Tylomelania and the Sulawesi Lakes;515
7.11.9;9 Conservation;515
7.11.10;10 Conclusions and Outlook;516
7.11.11;Appendix1.;519
7.11.12;References;520
7.12;Speciation and Radiation in a River: Assessing the Morphological and Genetic Differentiation in a Species Flock of Viviparous Gastropods (Cerithioidea: Pachychilidae);524
7.12.1;1 Introduction;525
7.12.2;2 The Systematic Framework: Phylogeny of the SE Asian Pachychilidae;526
7.12.3;3 The Kaek River: Geographical and Environmental Settings;530
7.12.4;4 River Capture: Paleogeography and Palaeohydrology;532
7.12.5;5 Sampling Design and Collection Sites;533
7.12.6;6 Patterns of Shell Variation Among and Within the Kaek River Species;536
7.12.7;7 Radular Morphology and Substrate Usage;542
7.12.8;8 Phylogenetic Relationships Inferred by Analyses of Mitochondrial Genes;546
7.12.9;9 Towards an Evolutionary Explanation: Conclusions from Incongruence;550
7.12.10;10 Dispersal or Vicariance: Genetic Exchange Between River Faunas and the Relevance of River Captures Within the Mekong Drainage System;554
7.12.11;11 Speciation and Radiation of Brotia in the Kaek River;555
7.12.12;References;557
7.13;The Neglected Side of the Coin: Non-adaptive Radiations in Spring Snails (Bythinella spp.);562
7.13.1;1 Introduction;563
7.13.2;2 The Spring Snail Genus Bythinella;566
7.13.3;3 Identifying Radiations in the Genus Bythinella;569
7.13.4;4 Bythinella spp. and the Criteria for Non-adaptive Radiations;573
7.13.4.1;4.1 Ecological (Niche) Variation within Bythinella Radiations;573
7.13.4.2;4.2 Phenotypical Variation among and within Bythinella Radiations;574
7.13.4.3;4.3 Sympatry versus Allopatry of Bythinella spp.;577
7.13.5;5 Non-adaptive Radiations in Bythinella spp.;578
7.13.5.1;5.1 What Drives Non-adaptive Radiations?;578
7.13.5.2;5.2 Potential Mechanisms of Non-adaptive Radiations in Bythinella spp.;580
7.13.5.3;5.3 Adaptive and Non-adaptive Radiations: Discrete Processes or Not?;581
7.13.5.4;5.4 Perspectives in Studying Non-adaptive Radiations;583
7.13.6;6 Take Home Message;583
7.13.7;References;585
8;Index;590
mehr