Hugendubel.info - Die B2B Online-Buchhandlung 

Merkliste
Die Merkliste ist leer.
Bitte warten - die Druckansicht der Seite wird vorbereitet.
Der Druckdialog öffnet sich, sobald die Seite vollständig geladen wurde.
Sollte die Druckvorschau unvollständig sein, bitte schliessen und "Erneut drucken" wählen.
E-BookPDF1 - PDF WatermarkE-Book
440 Seiten
Englisch
Springer Netherlandserschienen am28.06.20102010
Digital Soil Mapping is the creation and the population of a geographically referenced soil database. It is generated at a given resolution by using field and laboratory observation methods coupled with environmental data through quantitative relationships. Digital soil mapping is advancing on different fronts at different rates all across the world. This book presents the state-of-the art and explores strategies for bridging research, production, and environmental application of digital soil mapping.It includes examples from North America, South America, Europe, Asia, and Australia. The chapters address the following topics: - evaluating and using legacy soil data - exploring new environmental covariates and sampling schemes - using integrated sensors to infer soil properties or status - innovative inference systems predicting soil classes, properties, and estimating their uncertainties - using digital soil mapping and techniques for soil assessment and environmental application - protocol and capacity building for making digital soil mapping operational around the  globe.mehr
Verfügbare Formate
BuchGebunden
EUR235,39
E-BookPDF1 - PDF WatermarkE-Book
EUR223,63

Produkt

KlappentextDigital Soil Mapping is the creation and the population of a geographically referenced soil database. It is generated at a given resolution by using field and laboratory observation methods coupled with environmental data through quantitative relationships. Digital soil mapping is advancing on different fronts at different rates all across the world. This book presents the state-of-the art and explores strategies for bridging research, production, and environmental application of digital soil mapping.It includes examples from North America, South America, Europe, Asia, and Australia. The chapters address the following topics: - evaluating and using legacy soil data - exploring new environmental covariates and sampling schemes - using integrated sensors to infer soil properties or status - innovative inference systems predicting soil classes, properties, and estimating their uncertainties - using digital soil mapping and techniques for soil assessment and environmental application - protocol and capacity building for making digital soil mapping operational around the  globe.
Details
Weitere ISBN/GTIN9789048188635
ProduktartE-Book
EinbandartE-Book
FormatPDF
Format Hinweis1 - PDF Watermark
FormatE107
Erscheinungsjahr2010
Erscheinungsdatum28.06.2010
Auflage2010
Seiten440 Seiten
SpracheEnglisch
IllustrationenXXII, 440 p. 148 illus., 99 illus. in color.
Artikel-Nr.1717564
Rubriken
Genre9200

Inhalt/Kritik

Inhaltsverzeichnis
1;Foreword;5
2;Preface;7
3;Contents;9
4;About the Editors;13
5;Contributors;14
6;Part I Introduction;22
6.1;to 1 Current State of Digital Soil Mapping and What Is Next;23
6.1.1;S. Grunwald;23
7;Part II Research;33
7.1;Section A Environmental Covariates and Soil Sampling;34
7.1.1;to 2 Environmental Covariates for Digital Soil Mapping in the Western USA ;35
7.1.1.1;J.L. Boettinger;35
7.1.2;to 3 A Generalized Additive Soil Depth Model for a Mountainous Semi-Arid Watershed Based Upon Topographic and Land Cover Attributes;46
7.1.2.1;T.K. Tesfa, D.G. Tarboton, D.G. Chandler, and J.P. McNamara;46
7.1.3;to 4 Applying Geochronology in Predictive Digital Mapping of Soils ;59
7.1.3.1;J.S. Noller;59
7.1.4;to 5 Scale Effects on Terrain Attribute Calculation and Their Use as Environmental Covariates for Digital Soil Mapping;70
7.1.4.1;S.M. Roecker and J.A. Thompson;70
7.1.5;to 6 Conditioned Latin Hypercube Sampling: Optimal Sample Size for Digital Soil Mapping of Arid Rangelands in Utah, USA;82
7.1.5.1;C.W. Brungard and J.L. Boettinger;82
7.2;Section B Soil Sensors and Remote Sensing;91
7.2.1;to 7 Using Proximal Soil Sensors for Digital Soil Mapping;92
7.2.1.1;R.A. Viscarra Rossel, N.J. McKenzie, and M.J. Grundy;92
7.2.2;to 8 The Use of Hyperspectral Imagery for Digital Soil Mapping in Mediterranean Areas;106
7.2.2.1;P. Lagacherie, C. Gomez, J.S. Bailly, F. Baret, and G. Coulouma;106
7.2.3;to 9 Automatic Interpretation of Quickbird Imagery for Digital Soil Mapping, North Caspian Region, Russia ;116
7.2.3.1;M.V. Konyushkova;116
7.2.4;to 10 ASTER-Based Vegetation Map to Improve Soil Modeling in Remote Areas;125
7.2.4.1;E. Meirik, B. Frazier, D. Brown, P. Roberts, and R. Rupp;125
7.2.5;to 11 Digital Soil Boundary Detection Using Quantitative Hydrologic Remote Sensing;135
7.2.5.1;E.M. Engle, J.B.J. Harrison, J.M.H. Hendrickx, and B. Borchers;135
7.3;Section C Soil Inference Systems;147
7.3.1;to 12 Homosoil, a Methodology for Quantitative Extrapolation of Soil Information Across the Globe;148
7.3.1.1;B.P. Mallavan, B. Minasny, and A.B. McBratney;148
7.3.2;to 13 Artificial Neural Network and Decision Tree in Predictive Soil Mapping of Hoi Num Rin Sub-Watershed, Thailand;161
7.3.2.1;R. Moonjun, A. Farshad, D.P. Shrestha, and C. Vaiphasa;161
7.3.3;to 14 Evaluation of the Transferability of a Knowledge-Based Soil-Landscape Model;174
7.3.3.1;J. McKay, S. Grunwald, X. Shi, and R.F. Long;174
7.3.4;to 15 Random Forests Applied as a Soil Spatial Predictive Model in Arid Utah ;187
7.3.4.1;A.K. Stum, J.L. Boettinger, M.A. White, and R.D. Ramsey;187
7.3.5;to 16 Two Methods for Using Legacy Data in Digital Soil Mapping;198
7.3.5.1;T. Mayr, M. Rivas-Casado, P. Bellamy, R. Palmer, J. Zawadzka,and R. Corstanje;198
8;Part III Environmental Application and Assessment;210
8.1;to 17 Mapping Heavy Metal Content in Soils with Multi-Kernel SVR and LiDAR Derived Data;211
8.1.1;C. Ballabio and R. Comolli;211
8.2;to 18 Mapping the CN Ratio of the Forest Litters in Europe-Lessons for Global Digital Soil Mapping;223
8.2.1;F. Carré, N. Jeannée, S. Casalegno, O. Lemarchand, H.I. Reuter,and L. Montanarella;223
8.3;to 19 Spatial Prediction and Uncertainty Assessment of Soil Organic Carbon in Hebei Province, China;232
8.3.1;Y.C. Zhao and X.Z. Shi;232
8.4;to 20 Estimating Soil Organic Matter Content by Regression Kriging;245
8.4.1;A. Marchetti, C. Piccini, R. Francaviglia, S. Santucci, and I. Chiuchiarelli;245
8.5;to 21 Digital Soil Mapping of Topsoil Organic Carbon Content of Rio de Janeiro State, Brazil;259
8.5.1;M.L. Mendonça-Santos, R.O. Dart, H.G. Santos, M.R. Coelho, R.L.L. Berbara, and J.F. Lumbreras;259
8.6;to 22 Comparing Decision Tree Modeling and Indicator Kriging for Mapping the Extent of Organic Soils in Denmark ;270
8.6.1;M.H. Greve, M.B. Greve, R. Bou Kheir, P.K. Bøcher, R. Larsen,and K. McCloy;270
8.7;to 23 Modeling Wind Erosion Events -- Bridging the Gap Between Digital Soil Mapping and Digital Soil Risk Assessment;284
8.7.1;H.I. Reuter, L. Rodriguez Lado, T. Hengl, and L. Montanarella;284
9;Part IV Making Digital Soil Mapping Operational;297
9.1;to 24 Soilscapes Basis for Digital Soil Mapping in New Zealand;298
9.1.1;A.E. Hewitt, J.R.F. Barringer, G.J. Forrester, and S.J. McNeill;298
9.2;to 25 Legacy Soil Data Harmonization and Database Development;309
9.2.1;E. Dobos, T. Bialkó, E. Micheli, and J. Kobza;309
9.3;to 26 Toward Digital Soil Mapping in Canada: Existing Soil Survey Data and Related Expert Knowledge;324
9.3.1;X. Geng, W. Fraser, B. VandenBygaart, S. Smith, A. Waddell, Y. Jiao, and G. Patterson;324
9.4;to 27 Predictive Ecosystem Mapping (PEM) for 8.2 Million ha of Forestland, British Columbia, Canada;335
9.4.1;R.A. MacMillan, D.E. Moon, R.A. Coupé, and N. Phillips;335
9.5;to 28 Building Digital Soil Mapping Capacity in the Natural Resources Conservation Service: Mojave Desert Operational Initiative;355
9.5.1;A.C. Moore, D.W. Howell, C. Haydu-Houdeshell, C. Blinn, J. Hempel,and D. Smith;355
9.6;to 29 A Qualitative Comparison of Conventional Soil Survey and Digital Soil Mapping Approaches;366
9.6.1;S.M. Roecker, D.W. Howell, C.A. Haydu-Houdeshell, and C. Blinn;366
9.7;to 30 Applying the Optimum Index Factor to Multiple Data Types in Soil Survey;382
9.7.1;S. Kienast-Brown and J.L. Boettinger;382
9.8;to 31 U.S. Department of Agriculture (USDA) TEUI Geospatial Toolkit: An Operational Ecosystem Inventory Application ;396
9.8.1;H. Fisk, R. Benton, C. Unger, T. King, and S. Williamson;396
9.9;to 32 Predictive Soil Maps Based on Geomorphic Mapping, Remote Sensing, and Soil Databases in the Desert Southwest ;408
9.9.1;S.N. Bacon, E.V. McDonald, G.K. Dalldorf, S.E. Baker, D.E. Sabol Jr, T.B. Minor, S.D. Bassett, S.R. MacCabe, and T.F. Bullard;408
9.10;to 33 GlobalSoilMap.net -- A New Digital Soil Map of the World ;419
9.10.1;A.E. Hartemink, J. Hempel, P. Lagacherie, A. McBratney, N. McKenzie, R.A. MacMillan, B. Minasny, L. Montanarella, M. Mendonça Santos, P. Sanchez, M. Walsh, and G.L. Zhang;419
9.11;to 34 Methodologies for Global Soil Mapping ;424
9.11.1;B. Minasny and A.B. McBratney;424
10;Index;432
mehr