Hugendubel.info - Die B2B Online-Buchhandlung 

Merkliste
Die Merkliste ist leer.
Bitte warten - die Druckansicht der Seite wird vorbereitet.
Der Druckdialog öffnet sich, sobald die Seite vollständig geladen wurde.
Sollte die Druckvorschau unvollständig sein, bitte schliessen und "Erneut drucken" wählen.

Wearable Monitoring Systems

E-BookPDF1 - PDF WatermarkE-Book
296 Seiten
Englisch
Springer New Yorkerschienen am17.12.20102011
As diverse as tomorrow's society constituent groups may be, they will share the common requirements that their life should become safer and healthier, offering higher levels of effectiveness, communication and personal freedom. The key common part to all potential solutions fulfilling these requirements is wearable embedded systems, with longer periods of autonomy, offering wider functionality, more communication possibilities and increased computational power. As electronic and information systems on the human body, their role is to collect relevant physiological information, and to interface between humans and local and/or global information systems. Within this context, there is an increasing need for applications in diverse fields, from health to rescue to sport and even remote activities in space, to have real-time access to vital signs and other behavioral parameters for personalized healthcare, rescue operation planning, etc. This book's coverage will span all scientific and technological areas that define wearable monitoring systems, including sensors, signal processing, energy, system integration, communications, and user interfaces. Six case studies will be used to illustrate the principles and practices introduced.mehr
Verfügbare Formate
BuchGebunden
EUR114,50
E-BookPDF1 - PDF WatermarkE-Book
EUR96,29

Produkt

KlappentextAs diverse as tomorrow's society constituent groups may be, they will share the common requirements that their life should become safer and healthier, offering higher levels of effectiveness, communication and personal freedom. The key common part to all potential solutions fulfilling these requirements is wearable embedded systems, with longer periods of autonomy, offering wider functionality, more communication possibilities and increased computational power. As electronic and information systems on the human body, their role is to collect relevant physiological information, and to interface between humans and local and/or global information systems. Within this context, there is an increasing need for applications in diverse fields, from health to rescue to sport and even remote activities in space, to have real-time access to vital signs and other behavioral parameters for personalized healthcare, rescue operation planning, etc. This book's coverage will span all scientific and technological areas that define wearable monitoring systems, including sensors, signal processing, energy, system integration, communications, and user interfaces. Six case studies will be used to illustrate the principles and practices introduced.
Details
Weitere ISBN/GTIN9781441973849
ProduktartE-Book
EinbandartE-Book
FormatPDF
Format Hinweis1 - PDF Watermark
FormatE107
Erscheinungsjahr2010
Erscheinungsdatum17.12.2010
Auflage2011
Seiten296 Seiten
SpracheEnglisch
IllustrationenXIII, 296 p.
Artikel-Nr.1718440
Rubriken
Genre9200

Inhalt/Kritik

Inhaltsverzeichnis
1;Part I: Components and Systems;15
2;Chapter 1: Sensors for Wearable Systems;16
2.1;1.1Introduction;16
2.2;1.2Biomechanical Sensors;17
2.2.1;1.2.1Inertial Movement Sensors;17
2.3;1.3Physiological Sign Sensors;19
2.3.1;1.3.1Respiration Activity;19
2.3.1.1;1.3.1.1Inductive Plethysmography;20
2.3.1.2;1.3.1.2Impedance Plethysmography;21
2.3.1.3;1.3.1.3Pneumography Based on Piezoresistive Sensor;21
2.3.1.4;1.3.1.4Plethysmography Based on Piezoelectric Sensor;22
2.3.2;1.3.2Galvanic Skin Response;23
2.3.3;1.3.3Pulse Oximetry;25
2.3.4;1.3.4Radiant Thermal Sensors;27
2.3.5;1.3.5Biochemical Markers;30
2.3.6;1.3.6Gas Sensors;31
2.3.7;1.3.7Cardiopulmonary Activity Systems;32
2.4;1.4Conclusions;35
2.5;References;35
3;Chapter 2: Energy Harvesting for Self-Powered Wearable Devices;39
3.1;2.1 Introduction to Energy Harvestingin Wearable Systems;39
3.2;2.2 Principles of Energy Harvesting by Using Human Body Heat;40
3.3;2.3 Calculated Characteristics of Wearable TEGs;44
3.4;2.4 Human Body as a Heat Source for a Wearable Thermoelectric Power Supply;47
3.5;2.5 TEGs in Wearable Devices;51
3.6;2.6 Hybrid Thermoelectric-Photovoltaic Wearable Energy Harvesters;55
3.7;2.7 TEGs in Clothing;56
3.8;2.8 Development of New Technologies for Wearable Thermopiles;58
3.9;2.9 Conclusions;60
3.10;References;61
4;Chapter 3: Wireless Communication Technologies for Wearable Systems;62
4.1;3.1 System-Level Considerations;63
4.1.1;3.1.1 Body Area Networks;64
4.1.2;3.1.2 Wireless Standards Comparison;65
4.1.2.1;3.1.2.1 Bluetooth - IEEE 802.15.1;65
4.1.2.2;3.1.2.2 IEEE 802.15.3 and WiMedia;66
4.1.2.3;3.1.2.3 IEEE 802.15.4/ZigBee;67
4.1.3;3.1.3 Device and Information Surety;68
4.2;3.2 Lower-Level Tradeoffs;69
4.2.1;3.2.1 Wireless Technology Categories;69
4.2.2;3.2.2 Signal Throughput;72
4.2.3;3.2.3 Resource Allocations;73
4.2.4;3.2.4 Power Optimization;74
4.3;3.3 Recent Applications of Wireless Technology in Wearable Health Monitoring Systems;75
4.3.1;3.3.1 Human Applications;75
4.3.2;3.3.2 Animal Applications;77
4.4;References;80
5;Chapter 4: Design of Wireless Health Platforms;92
5.1;4.1 System Architecture Requirements for Wireless Health Platforms;92
5.2;4.2 System Design;93
5.2.1;4.2.1 Sensors;93
5.2.2;4.2.2 Signal Acquisition;94
5.2.3;4.2.3 Processing Module and Data Storage;95
5.2.4;4.2.4 Wireless Interface;95
5.2.5;4.2.5 Energy Management;96
5.3;4.3 MicroLEAP: A Wireless Health Platform with Integrated Energy Accounting;96
5.3.1;4.3.1 Hardware;96
5.3.2;4.3.2 Software;98
5.3.3;4.3.3 Performance;99
5.4;4.4 MicroLEAP Application: SmartCane;99
5.4.1;4.4.1 System Implementation;100
5.4.2;4.4.2 Real-Time Feedback;100
5.4.3;4.4.3 Proper Strides;101
5.4.4;4.4.4 Continuous Monitoring;102
5.5;4.5 MicroLEAP Application: Episodic Sampling;103
5.5.1;4.5.1 Motion Sensors;104
5.5.2;4.5.2 Physiological Sensors;104
5.5.3;4.5.3 Feature Extraction and Classification;105
5.5.4;4.5.4 Control Algorithm;105
5.6;4.6 Conclusion and Next Generation Platforms;106
5.7;References;106
6;Chapter 5: Lightweight Signal Processing for Wearable Body Sensor Networks;109
6.1;5.1â¢Wearability Issues;109
6.2;5.2System Architecture and Signal Processing Flow;110
6.3;5.3Action Coverage for Node Placement;112
6.3.1;5.3.1â¢Compatibility Graph;113
6.3.2;5.3.2Problem Definition;114
6.3.3;5.3.3ILP Approach;115
6.3.4;5.3.4Greedy Approach;116
6.3.5;5.3.5Dynamic Design Decision;116
6.3.6;5.3.6Experimental Analysis;117
6.3.6.1;5.3.6.1Compatibility Graphs;117
6.3.6.2;5.3.6.2Static Design Coverage;119
6.3.6.3;5.3.6.3Dynamic Design Coverage;121
6.3.6.4;5.3.6.4Classifier Accuracy;121
6.4;5.4Efficient Temporal Parameter Extraction;121
6.4.1;5.4.1HMEM Training and Use;122
6.4.2;5.4.2Overview;123
6.4.2.1;5.4.2.1Preprocessing and Feature Extraction;123
6.4.2.2;5.4.2.2HMM Training;124
6.4.2.3;5.4.2.3Parametrization and Feature Selection;124
6.4.3;5.4.3HMM Training and the Viterbi Algorithm;124
6.4.4;5.4.4Feature Selection and Model Parametrization Using Genetic Algorithms;126
6.4.5;5.4.5HMEM Application Procedure;126
6.4.6;5.4.6Collaborative Segmentation;127
6.4.7;5.4.7Experimental Analysis;127
6.4.7.1;5.4.7.1Examination of Per-Subject Error;127
6.4.7.2;5.4.7.2Exploration of Different Sensor Types;128
6.4.7.3;5.4.7.3Explicit Feature Reduction;129
6.5;5.5Summary;131
6.6;References;131
7;Chapter 6: Signal Data Mining from Wearable Systems;133
7.1;6.1Definition of the Subject;133
7.1.1;6.1.1Introduction;133
7.1.2;6.1.2Shape of the Data;134
7.1.3;6.1.3Scientific Questions;134
7.1.3.1;6.1.3.1At the Level of the Individual;134
7.1.3.2;6.1.3.2At the Level of a Group of Individuals;134
7.1.4;6.1.4Local vs. Remote Analysis;135
7.1.4.1;6.1.4.1Local or On-Site Analysis;135
7.1.4.2;6.1.4.2Remote Analysis;135
7.2;6.2Feature Extraction;135
7.2.1;6.2.1Time-Frequency Analysis;136
7.2.1.1;6.2.1.1Application to Wearable Systems;137
7.2.1.2;6.2.1.2Available Software;137
7.2.2;6.2.2Multiscale Analysis;137
7.2.2.1;6.2.2.1Application to Wearable Systems;139
7.2.2.2;6.2.2.2Available Software;139
7.3;6.3Dimensionality Reduction;139
7.3.1;6.3.1Principal Component Analysis;140
7.3.1.1;6.3.1.1Application to Wearable Systems;142
7.3.1.2;6.3.1.2Available Software;142
7.3.2;6.3.2Independent Component Analysis;142
7.3.2.1;6.3.2.1Application to Wearable Systems;143
7.3.2.2;6.3.2.2Available Software;143
7.3.3;6.3.3Laplacian Eigenmaps;143
7.3.3.1;6.3.3.1Application to Wearable Systems;144
7.3.3.2;6.3.3.2Available Software;145
7.4;6.4Classification, Learning of States, and Detection of Anomalies;145
7.4.1;6.4.1Unsupervised Methods;146
7.4.1.1;6.4.1.1K-Means Clustering;146
7.4.1.2;6.4.1.2Mixture of Gaussian Densities;147
7.4.1.3;6.4.1.3Application to Wearable Systems;148
7.4.1.4;6.4.1.4Available Software;148
7.4.2;6.4.2Support Vector Machine;148
7.4.2.1;6.4.2.1Support Vector Classifier;149
7.4.2.2;6.4.2.2Support Vector Machines;150
7.4.2.3;6.4.2.3Application to Wearable Systems;150
7.4.2.4;6.4.2.4Available Software;151
7.4.3;6.4.3Semi-Supervised;151
7.4.3.1;6.4.3.1Application to Wearable Systems;152
7.4.3.2;6.4.3.2Available Software;152
7.5;6.5Conclusion and Future Directions;152
7.6;6.6Glossary;153
7.7;References;153
8;Chapter 7: Future Direction: E-Textiles;157
8.1;7.1 Introduction;157
8.2;7.2 Fibres and Textiles for Bioelectrodes;158
8.3;7.3 Fibres and Textiles for Sensing;160
8.3.1;7.3.1 Physical Sensing;160
8.3.2;7.3.2 Chemical Sensors and Biosensors;161
8.4;7.4 Active Fibre Electronics and Woven Logics;162
8.5;7.5 Fibres and Textiles for Energy Harvesting and Storage;163
8.5.1;7.5.1 Textile-Based Solar Cells;163
8.5.2;7.5.2 Electronic Textile Batteries;163
8.6;7.6 Smart Textiles for Actuation;164
8.6.1;7.6.1 Textile Heating Systems;164
8.6.2;7.6.2 Thermo and Electromechanical Actuation;164
8.7;7.7 Textile-Based Communication Devices;165
8.7.1;7.7.1 Textile Keyboards;165
8.7.2;7.7.2 Photonic Fibres and Optical Displays;165
8.7.3;7.7.3 Textile Antennas;166
8.8;7.8 Smart Fabrics and Interactive Textiles Platforms;166
8.9;References;169
9;Part II: Applications;15
10;Chapter 8: A Survey of Commercial Wearable Systems for Sport Application;174
10.1;8.1 Introduction;174
10.2;8.2 Wearable Systems for the Measurement of Physiological Parameters;175
10.2.1;8.2.1 Heart Rate;175
10.2.2;8.2.2 Using Smart Clothes for Body Signal Measurements;176
10.2.3;8.2.3 Cardiopulmonary Response;177
10.3;8.3 Measuring Performance;177
10.3.1;8.3.1 Sensors over Sport Equipment;179
10.4;8.4 Biomechanical Measurements;183
10.4.1;8.4.1 Rehabilitation;184
10.4.2;8.4.2 Corporal Pain Detection;184
10.4.3;8.4.3 Technical Orthopaedics;184
10.4.4;8.4.4 Sports Analysis;185
10.4.5;8.4.5 Sports Using an Implement: Bat, Club, Racquet;185
10.5;8.5 Conclusions;186
10.6;References;187
11;Chapter 9: Wearable Electronic Systems: Applications to Medical Diagnostics/Monitoring;188
11.1;9.1 Introduction;188
11.2;9.2 Historical Perspective;189
11.3;9.3 Present and Possible Clinical Applications;194
11.3.1;9.3.1 ``Holter-Type´´ Monitoring;195
11.3.2;9.3.2 ``Post-Intervention´´ Monitoring;196
11.3.3;9.3.3 ``On-Demand´´ Monitoring;196
11.3.4;9.3.4 ``Emergency/Disaster´´ Monitoring Systems;197
11.4;9.4 Sensing Constraints and Possibilities;198
11.4.1;9.4.1 ``Holter-Type´´ Systems;200
11.4.2;9.4.2 Sensor Patches and Bands;200
11.4.3;9.4.3 Body-Worn Bands and Harnesses;202
11.4.4;9.4.4 Smart Garments;207
11.5;9.5 Discussion and Conclusion;210
11.6;References;211
12;Chapter 10: Emergency and Work;213
12.1;10.1 Introduction;213
12.2;10.2 Designing a Wearable Systems for Emergency and Work: Main Problems and Constraints;215
12.3;10.3 Components of the Wearable System;216
12.3.1;10.3.1 Sensors;216
12.3.2;10.3.2 Energy;217
12.3.3;10.3.3 Communications;218
12.3.4;10.3.4 Electronics and Data Processing;218
12.4;10.4 The Proetex Wearable System;219
12.4.1;10.4.1 Inner Garment;220
12.4.2;10.4.2 Outer Garment;222
12.4.3;10.4.3 Shoes;224
12.4.4;10.4.4 Communications and Electronics;225
12.5;10.5 Conclusions;226
12.6;References;226
13;Chapter 11: Augmenting Exploration: Aerospace, Earth and Self;228
13.1;11.1 Introduction: Exploration and Discovery;228
13.2;11.2 A Brief History of Wearable Technology for Space;229
13.3;11.3 Recent Technological Advances in Technology for Space Exploration;232
13.3.1;11.3.1 Navigation Systems;232
13.3.2;11.3.2 BioSuit Development: A Wearable Second Skin;234
13.4;11.4 Modeling the Human Body in Motion;237
13.5;11.5 BioSuitTM: Inspired Technology Roadmap for Space and Earth Applications;240
13.6;11.6 Transitioning Spacesuit Technology for Earth Applications;241
13.6.1;11.6.1 Current Applications;241
13.6.2;11.6.2 Wearable Future Second Skin Suits;244
13.6.2.1;11.6.2.1 Actuation;244
13.6.2.2;11.6.2.2 Sensing;246
13.6.2.2.1;Force and Strain Measurement;246
13.6.2.2.2;Wearable Kinematics Systems;247
13.7;11.7 Concluding Remarks;251
13.8;References;251
14;Part III: Environmental and Commercial Scenarios;15
15;Chapter 12: Scenarios for the Interaction Between Personal Health Systems and Chronic Patients;258
15.1;12.1 Introduction;258
15.2;12.2 The New Paradigm of Personalized Health: p-Health;259
15.2.1;12.2.1 Patient-Centered Care: Toward a Holistic Vision of Care;260
15.2.2;12.2.2 p-Health;261
15.3;12.3 The AmI Vision;263
15.3.1;12.3.1 Context Awareness;264
15.3.2;12.3.2 Intelligent User Interfaces;266
15.4;12.4 Challenges of User Interaction Within the Patient-Centered Care Paradigm;267
15.4.1;12.4.1 What is HCI;268
15.4.2;12.4.2 Traditional HCI Models;269
15.4.3;12.4.3 Implicit Interaction;270
15.5;12.5 Scenarios for the Application of AmI to p-Health;272
15.5.1;12.5.1 AmI for Patients with Heart Failure;272
15.5.1.1;12.5.1.1 Current Research in the EU;273
15.5.1.2;12.5.1.2 Future Scenarios for the Care of Chronic Heart Patients;274
15.5.2;12.5.2 AmI for Patients with Diabetes;275
15.5.2.1;12.5.2.1 Current Research in the EU;276
15.5.2.2;12.5.2.2 Future Scenarios for the Care of Chronic Diabetes Patients;276
15.5.3;12.5.3 AmI for Patients with Mental Disorders (Bipolar Disorder);277
15.5.3.1;12.5.3.1 Current Research in the EU;278
15.5.3.2;12.5.3.2 Future Scenarios for the Care of Bipolar Disorders Patients;278
15.6;12.6 Conclusions;279
15.7;References;279
16;Chapter 13: The Commercialization of Smart Fabrics: Intelligent Textiles;281
16.1;13.1 Analysis of the Markets: Today and Tomorrow;281
16.1.1;13.1.1 What is a Smart Textile, as Seen from the Technology Perspective?;282
16.1.2;13.1.2 What is a Smart Textile Seen from the User´s Perspective?;283
16.1.2.1;13.1.2.1 Sensing;283
16.1.2.2;13.1.2.2 Energy Harvesting;284
16.1.2.3;13.1.2.3 Acting: Actuating;284
16.1.2.4;13.1.2.4 Intelligence;285
16.1.2.5;13.1.2.5 Interface: Including Displaying;285
16.2;13.2 Common Backbone of Applications;286
16.2.1;13.2.1 SFIT Configuration;286
16.2.1.1;13.2.1.1 Elementary Functions Without Embedded Intelligence (e.g., Reactive Color Change);286
16.2.1.2;13.2.1.2 Intelligence Embedded in the Textile;286
16.2.1.3;13.2.1.3 Distributed Versus Localized;286
16.3;13.3 Present Situation and Competitors in Terms of RandD and Commercialization;287
16.4;13.4 Market Segmentation;290
16.4.1;13.4.1 Medical;290
16.4.2;13.4.2 Wellness;292
16.4.3;13.4.3 Military;293
16.4.4;13.4.4 Professional/Protective;293
16.4.5;13.4.5 Sport;294
16.4.6;13.4.6 Consumer and Fashion Segments;295
16.5;13.5 Market Volumes;297
16.6;13.6 Conclusions;298
16.7;References;298
17;Index;299
mehr